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1 Introduction

The style of a text is characterized by a random feature aet#n include syn-
tactic words, high frequency words, bigrams, etc. Everyuiesis measured by
a relative frequency of the occurrence in the text. Thesguieacies specify
the feature space of text styles. Every frequency set cardsepted geometri-
cally as a pointin a multidimensional feature space. A nurobdifferent texts
form a point “cloud”, or a text scatter plot. However, thesatfires are not of
the same value. Some features describe better the style afithor or genre:
they have greater frequency variance and better distihgaids of different
authors or genres. Others have smaller frequency variamtéeas discrimi-
nation. Besides there are some “noise” features. In mostsc#isese features
are statistically related to each other. This means that@doma feature set has
redundancy. This paper considers the transformation ofeifiteire space that
allows one to find a minimal set of statistically independatent features.

2 Principal component analysis

A widely used statistical method of feature space transétion is that of Prin-
cipal Components Analysis — PCA (Afifiand Azen 1979). Thistmoetconsists
of the orthogonal linear transform of data to a new coor@isgstem in which
the greatest variance of any projection of the data lies erfitet coordinate
(called the first principal component), the second great$ance on the sec-
ond coordinate, and so on. As a result, new factors (prihcqpaponents) are
uncorrelated, and the first few components almost compldefine the whole
scatter of points; so the components with small variancasbeaomitted. In
the space of the first two principal components, the scaftéext-points is
maximal. New features (factors) are defined by factor logsliwhich are the
coefficients at the initial factors. Principal componenalggis requires only
regularity of the correlation matrix of frequency featurése frequency distri-
bution may be arbitrary and not necessarily Gaussian. Hexythe probabilis-
tic approach to principal component analysis is substiywtiased on normal
feature distribution (Lawrence 2005). Normalization cftieres requires a non-
linear transformation of the initial feature space.
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3 Discriminant analysis

Another method of dimensional reduction is that of Discriemt Analysis (cf.
Klecka 1980, Kendall and Stuart 1979. This method consfstslioear trans-
formation of the coordinates of a feature space which leattetmaximization
of the discrepancy of the average values of new featuresfiereint classes.
The deviations of new features from their average valuesiiacerrelated and
have equal variances within the classes. In the case ofrtakiss, the classes
are the groups of texts that differ either in author, or inrgeor in gender of
the author, or in age of the author, etc. Hence, the numbdasées equals the
number of authors, genres, etc. The direction of the first aidhe new feature
space (coordinate axis of the first discriminant functior3F) is chosen so
that the centers of classes have maximum difference from eter on this
axis (for the first DF). The second axis (coordinate axis efgacond DF) is
directed at a right angle to the first axis so that centersadfsgls have max-
imum difference from each other on this axis (for the secoR{l. he third
axis is directed at a right angle to the plane of the two abogetimned axes,
etc. The dimension of the new feature space (of DF) is legsttalesser of
the dimension of the initial space and the number of classassrone. The
discrimination property of discriminant function decreasnonotonically as
the number of DF grows (in the space of the first two DF, theersndf classes
differ from each other in maximal degree).

4 Ranking and normalization of frequency features of text syle

Formally, discriminant analysis does not require the fesatlistribution to be
normal, the same as principal component analysis. Butgitle@on-degener-
acy of the correlation feature matrices within and betwdendasses. How-
ever, evaluation of the quality of the discriminant funatimethod (statistical
significance of DF) is based on normality of features distidm. The normal-
ization of features presumes a proper nonlinear transfiiomaf the initial
feature space (reduction to the Gaussian distribution).

Most methods for solving discrimination, classificatiomdarecognition
problems (such as discriminant analysis, Bayes classditatecognition meth-
ods, etc.) are based on the normal (Gaussian) featurebdistm (Klecka 1980,
Kendall and Stuart 1979). At the same time, relative fregie=nof the initial
feature system of the text style not always correspond teabdistribution.
By this reason the application of the well-known parametréthods of mathe-
matical statistics to text analysis is questionable.

As for the implementation, these methods are not always enadlically
correct. Therefore two approaches are possible. The fimbaph consist of
developing non-parametric (distribution-free) methotigliecriminant analy-
sis, classification, and recognition. The second appraatihfind a nonlinear
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transformation of the absolute and relative frequencidgitél features that
ensures the normality of both the feature distribution dmedgatrincipal compo-
nent and discriminant functions related to them.

This paper proposes a method of the second approach. Leha&leoan
ordered series of the relative frequencies for each featuires analyzed text.
Let n texts of different (in general) volumeég, i = 1,...,n, be examined. We
selectm features of text style (for example) syntactic words or bigrams).
Each j-th feature { = 1,...,m) occurs in thei-th text vj; times. The num-
bersv;; are absolute frequencies of the occurrence ofjtte feature in the
i-th text and can be presented in a table where the columnsspannd to the
features and the rows to the texts. It is obvious that the sbiabsolute fre-
quenciesvij gives the whole numbew; of occurrence of the features set in
thei-th text: 371 vij = vi, i = 1,...,n. Thenpjj = vij/vj is the relative fre-
quency of thej-th feature ini-th text; z'j“:l pij=1foralli=1,...,n. Thus
the relative frequencies show the relative parts of featared assume values
in the interval from 0O to 1, so they cannot be modeled in gdigréhe normal
distribution. The set of frequencies in thth row (thei-th text) forms a vector-
row that specifies the coordinates of ti point-text in the feature space. We
order the relative frequencies of eagtlth feature in all the texts (across the
j-th column, thej-th sample) in ascending order. The place of each element
of a sample in the ordered series is called its rank. Thusyélator-column
Pi = (P1j; P2j,- -5 Pijs---» pnj)T of relative frequencies of thpth feature cor-
responds to the column-vectoy = (rlj,rgj,...,rij,...,rnj)T of their ranks,
j=1,....,m. It will be noted that equal frequencies must have the samie ra
which is the arithmetic mean value of ranks in a bunch of efpegjuencies.
In this case, the row-vectqs = (pi1, Pi2, .-, Pij, - - -, Pim) Of relative features
frequencies will be matched by the row-vectpe= (fi1,ri2, . ..,rij, .., lim) Of
theirranksj=1,...,n.

It is a well known fact (Hollander and Wolfe 1999) that, undgmeral
conditions, the ranks have the uniform probability disitibn in the interval
from one to the sample sizelt follows from the fact that the empirical integral
distribution function of ranks is the uniformly increasisgep function on the
interval [0, n].

Let us divide each element of the column-vector of rankdy n+ 1.
Then the range of ranks will be the unit interyal1] with step ¥(n+ 1),
so ranks from 1 ta will be transformed to the relative ranks froni(h+ 1)
to n/(n+ 1). Nonexistent ranks O ar+ 1 will correspond to the boundary
values 0 and 1 of the intervd,1]. A vector of ranks obtained in this way
will be called a vector of relative ranks. Then every coluwattor of relative
ranks will be transformed by making use of the function iseeto the inte-
gral function of the standard normal distribution. As a teswe get the set
of column-vectorg; = (xlj,xzj,...,>qj,...,xnj)T, j=1,...,m, that are corre-
lated and have the standard normal distribution functidre €olumn-vector
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Xi = (Xi1,%i2,- -, %ij,---,%m), i = 1,...,n, will characterize thé-th text by the
set of normally distributed new features that are corrdlatel have zero mean
and unit variance. New features are normally distributéatixes to the ranks
of the relative frequencies of initial features.

As a result, we come to the nonlinear transformation of atiainieature
space of non-normally distributed relative frequenci@s a new feature space
of normally distributed relative ranks This allows one to use the parametric
methods of discriminant analysis and classification (Kéet®80, Kendall and
Stuart 1979).

5 Mathematical tools of principal component analysis

Now we will find the n-column-vectorsy = (yi1,Vi2,- - Ym) Tl =1,...,m,

of principal the components of the normalized dgtg} by the linear transfor-
mationsy; = XU, —yio. Hereyjp = x U, are scalars (average values of principal
components)x . — the mrrow-vector of the average valuecolumn-vectors
{xj}, x. =3L1%;/n, j =1,...,m; themcolumn-vectors of coefficientdJ; }

are eigenvectors of the following symmetric positive dééirempirical co-
variancem x m-matrix K of vectors{x;}. The coefficient vectors correspond

to nonnegative eigenvalugs,A,, ..., A, ..., Ay that decrease monotonically
with the growth of index. These nonnegative eigenvalues define the variances
of the principal components. Thus we have:

1 n
KU, = )\|U|, K“’/ = m.zl(xij *X.j)(xij’ *X.j’>a (1)
i=

My|:OvDy|:/\|7j7j/7|:15"'ama (2)

whereM is the mathematical expectatidd,is the variance, eigenvalugs, }
are the roots of characteristic equation(det A1) = 0. In this equation is
the identity diagonal matrix. We choo&e< m of the first principal compo-
nents as new features from the principal component systbmn&w features
correspond to the first eigenvalues, greater than unity. Aesalt, we get the
nonlinear statistical reduction of the feature space dbtstyle. The space ob-
tained has a smaller dimension than the initial one.

6 Mathematical tools of discriminant analysis
Now we will find the n-column-vectors of the discriminant functions (DF)

7z =(21,22,---,2n), | = 1,...,9, g= min(m,g — 1), of the normalized data
{xj} by applying the linear transformatiozs= X\ — zo, wherezy = x Vi
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are scalarss . is them-row-vector of average values nfcolumn-vectorgx; };
X.j=3iq1%j/n j =1,....,m; the mrow-vectors{V,} are eigenvectors that
correspond to the matricéd® and W and obey the equatioBV = A\WV{,

I =1,...,9. The set{A; > 0} is composed of their first] eigenvalues, that
satisfy the equation dd@ — AW) = 0 (Klecka 1980). Her® = T — W, where
T/(n—1) is the total covariancen x m-matrix of vectors{x;}:

g Nk
TJJ/: Z Z(Xikj_X--j)(xikj’_x..j’)aj7j/:15---am- (3)
k=1ix=1

Inner summation is taken by the indices (rows) that corredpo thek-th class,
ik =1,...,ng whereny is the number of the elements (rows) of thh class;
So_,Nk=Nn; W/(n—g) is the within-group covariana®x m-matrix of vectors

{xj}:

Wijr =35 > (i —Xij) (K jr —Xkjr)s §,) = 1,...,m. (4)

Herexyj = zi”k“:lxikj/nk, k=1,...,0, ) =1,...,mare elements of the x m-
matrix of average values of vectof;} in the group (class). When aver-
age values of vectorfx;} for different classes (centers of classes) are equal
(Xkj =x.j, k=1,...,0), then matrice§’ andW coincide, and all elements
of the matrixB are zero. But if the averages for different classes diffemfr
each other, then the values of elements of madispecify the discrepancy
measure between the groups (classes). The maximizatioxpoéssion); =
(VTBM)/(V\TWV), | =1,...,q, with respect to the weight vectovs provides
the maximum discrimination ability of DF and leads to eqoaBVf = AW\{,

| =1,...,q, that defines the eigenvectors of the matix'B. Variables{A}
are eigenvalues of this matrix. They give the discrepancysuee between the
classes for each DF, in the order of decreasing eigenvalues.

The utility of eachl-th DF (for every new feature that is obtained in this
way from the initial features) can be evaluated by meanset#nonical cor-
relation coefficient (Klecka 198®, = /A /(1+4),0<R < 1,1=1,...,0.
This coefficient expresses the level of statistical retegiap of thd-th DF with
its classes. The nearer the coefficient of canonical cdioels to 1, the higher
is its relationship with its classes, and the greater andemsecure is its dis-
crimination of the class centers. This allows one to ansterquestion how
many discriminant functions from the maximum numiges min(m,g—1)
ensure the statistically significant discrimination of thass centers.

Let j < g be the number of the first calculated DF. In discriminant gsial
Wilks’ Lambda statistio\ is used to estimate the total discriminative power of
the remaining DF (“remainder discrimination”; cf. Kleck@80):
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q
Nj=
i=j+1
If j =0, one has the highest remainder discrimination becauga allare
nonnegative. The remainder discrimination is the lowestmph= q— 1. So,
Wilks’ A-statistic is the “inverse” measure of class discriminatiy value ofA
close to zero indicates high discrimination of classes @amns that the centers
of classes are well divided and differ greatly from each othi¢h respect to
the value of point scattering within the classes) Misicreases to its maximum
value (one) there is a gradual deterioration of class difféation (the centers
of classes fail to be significantly different with respecthie point scattering
within classes).
For an estimation of the statistical significance of the rifisinative power
of the firstj discriminant functions, Pearson’s chi square test is Usexhased
on the statistic

+
X =—(-""9)inA =0, .a-1 (6)

This statistic has the probability density functigfiwith vi=(m-j)(g—
j—1) degrees of freedom under the condition that hypothégis true (Klecka
1980). That means the remaining- j DF don’t improve the discrimination
ability of the firstj DF (they don’t increase the distance between the centers of
classes). It allows one to calculate the significance |BPugi-level) of the chi
square test that has been reached (the actual probabilty efror of the first
kind to reject by mistake the null hypothesis whenitis triRg)=1— F(Xj2|VJ' ),
whereF (x?|v) is the integral function of the chi square distribution witlle-
grees of freedom.

The interpretation of the discriminant functions as hidganrameters that
determine the differences of classes can be achieved bglation coefficient
analysis (factor loadings analysis) of the column-vegtaf the discriminant
functions with column-vectors; of the normalized relative ranks:

1 n
Pii:rl_zlzil(xij i)/v/DPzaDxj, 1 =1,....q,j=1,....m. (7)
i=

It is well known (Sachs 1972) that statistie= p+/(n—2)/(1— p?) has
Student’'d-distribution withv = n— 2 degrees of freedom, provided tlzatind

Xj have normal distribution and the null hypothesis (the datien coefficient
p = 0) is true. This enables one to find the critical value of Sttidestatistics
as quantilderit =ty_51_p,; /2 Of level 1—Perit /2 of this distribution. The criti-
cal significance level of Studentdest should be fixed, e.d%it = 0.05. From

here one easily gets the critical valpgir = terit /1/(N—2) +tcrIt of the corre-
lation coefficient which specified — Pgit ) - 100%-th interval—pcrit , Pcrit ] Of
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the statistical insignificance of the correlation coeffitid he values of the cor-
relation coefficient outside this interval are statisticalgnificant onP < Pyt
level of significance.

7 Example of feature space reduction on the basis of method$ o
principal components and discriminant analysis

The above described procedures of construatingw-vectors;, m-row-vec-
torsx;, mrrow-vectorsy;, andg-row-vectors; (i = 1,2, ...,n) from the original
m-row-vectorsp; of relative frequencies of text style features for eachualkt
work are implemented in th&tyleAnalyzesoftware (Shevelyov and Poddub-
nyj 2010) which is intended for the complex statistical gsi of textual work
styles of different authors, genres, etc. Figures 1-3 gieenples of using the
described approach to ranking, normalization and reducif@ feature space
on the basis of the methods of principal components andidisant analysis.

Textual material is represented by 80 large works of fictiprib Russian
authors of the 19th century (11 works by N.V. Gogol’, 3 by I@oncharov,
18 by F.M. Dostoevskij, 2 by I.LA. Kuprin, 3 by M.Ju. Lermontdt by N.S.
Leskov, 9 by A.S. Pushkin, 2 by M.E. Saltykov-Shchedrin, 8\. Tolstoj,
13 by I.S. Turgeneyv, 4 by A.P. Chekhov).

We used 55 syntactic words as text style attribdt@ssolute frequencies
of their occurrence in the text are the text style featurégse frequencies are
being presented iBtyleAnalyzem the form of a spreadsheet with indication
of authors and texts in rows and that of style attributes inroos. Figure 1
shows the connection between the original attributes —ladive frequencies
of one in 55 features (namely, the forth one) in 80 tekig-@ata), the ranks
of relative frequenciegénk-datg and the relative ranks (normally distributed
after the non-linear transformations) of relative freqties gauss-data

Eigenvalues of the covariance matKxare the variances of the principal
components. The calculation of them fioit-data and gauss-datavariables
shows that several first principal components are resplensibthe majority
of text variability. For example, the first six principal cponents (10.1% of
its total number) explain 51.4% of the feature variability §auss-dataand
49.6% forinit-data.

Eigenvalues of matri¥v—'B for init-data andgauss-datavariables are the
variances of the discriminant functions of these varialfdsge can see that only
g=min(m,g— 1) = 10 of them are other then zero; hene= 55 is the number

1. These syntactic words aig: ua, c, 3a, K, 10, U3, y, OT, JJIsd, BO, 6€3, 10, 0, 9epes3, CO,
pu, 1po, 06, Ko, HaJ, u3-3a, U3-T0/, TIOJ, U, 9TO, HO, &, Ja, XOTs, KOTJa, 9TOObI,
ecsn, TO¥XKe, UM, TO €CTh, 3aTO0, OYATO, HE, KaK, ¥Ke, JaKe, Obl, JIH, TOJBKO, BOT,
TO, HH, JIUIIb, BEJb, BOH, TO-€CTb, HUOYIb, yKe, JIubO.
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p 0.05 % 100 3
< o
T e e L 50
£ - ’ g
0 =0
0 50 100 0 0.02 0.04 0.06
index init-data
100 < 2
[0 =
g .. : ’
T so 7 h 0 /
c .e a
@ L . 3 K
N AL L g,
0 50 100 0 0.02 0.04 0.06
index init-data
S 2 100
7 k]
o Or. T 50 /
g c
© . ]
o -2 0
0 50 100 -2 -1 0 1 2
index gauss—data

Figure 1: Nonlinear transformation of the data for the fourth feature

of original features (syntactic wordg),= 11 is the number of classes (writ-
ers, authors of works). The calculation of the significarsels (-levels) of
the discriminant functions shows that almost all DF arastteslly significant
(P < 0.05 for the first nine DF).

The points with the markers of different types in Figure 2resent 80
fiction works of 11 writers of the 19th century in the coordasof the first two
principal components (factors 1 and 2) foit-data (see Figure 2a) anghuss-
data (see Figure 2b) variables. Convex hulls of sets of work-sofar each
author are shown by the closed broken lines. One can seéhthabtmalized
relative ranks of relative frequenciegauss-datadistinguish between writers
better than the relative frequencies.

The points with the markers of different types in Figure Zreb the same
80 fiction works of 11 writers of the 19th century in the cooates of first
two discriminant functions (factors 1 and 2) finit-data (see Figure 3a) and
gauss-datgFigure 3a) variables. Convex hulls of sets of the work-ffor
each author are shown by the closed broken lines.

If one compares Figures 2 and 3, one sees that discriminahtsis pro-
vides full discrimination of classes by relative frequerscinit-data) and al-
most full discrimination by their normalized relative rangauss-daty where-
as the author classes overlap significantly in the coursemndipal component
analysis.
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Figure 2: Text representation in the coordinates of the first two p@lccomponents
(features are 55 syntactic words)
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Figure 3: Text representation in the coordinates of the first two dhsicrant functions
(features are 55 syntactic words)

8 Conclusion

Thus, discriminant analysis ensures a considerably bdifterimination of au-
thors in terms of 55 syntactic words as compared with theyaigabf princi-
pal components, though both methods provide graphicatseptation of the
whole Russian fiction literature of the 19th century by sétdads (represent-
ing texts) in the plane. This is to be expected since the ididtant analysis
provides a transformation of the original attribute spadext styles that max-
imally increases the mean-square distance between treadaters fixing the
distance variance between the elements (dots-textskeitisédclasses on a con-
stant level.

In other words, discriminant analysis makes author clasgeally compact
and maximally discriminated from each other. Residual laygring of classes
indicates the proximity of text styles of different authdhsit appears in the
overlapping classes in the corresponding feature space.
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In conclusion, it will be noted that close results could b&agied when the
method of principal components and discriminant analysipiplied directly
to ranks of frequencies rather than the normalized relatwds of relative
frequencies of attributes. This is due to the fact that gangyg of data is no
longer significant when the indicated methods are used ®mthltidimen-
sional analysis of texts, though the calculations of dfatiksignificance of the

results may turn out to be incorrect.
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