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Simple linear regression




Why correlation is not enough?

Correlation coefficient is good In reflecting
the magnitude of association between any
two numerical variables

However, we cannot use correlation to
predict the values of one variable based
on the values of the other one

Author: Sergey Mastitsky
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Simple linear regression: fits a straight line

and has just one predictor

Vi =a+ X + &

Y; — "dependent” variable

o — Intercept

[ - regression coefficient (=slope)

X; — predictor (="independent” variable)
g — errors, independent and N (0, &)
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Don’t be confused by terminology!

“Linear” doesn’t always mean a straight line,

e.g.
Vi =a+ BX "'/Bzxiz T &

IS not linear In X, but is linear In the parameters

S, and S.:
if x>=c

Vi =a+ BX + 0,C +é

Author: Sergey Mastitsky



Estimation of parameters

Parameters a, 3, and ¢? are estimated
using the method of least squares

The method tries to find such o, £, and &2
that minimize the sum of squared residuals
(l.e. find a line that goes as close to all data
points as possible):

SSres — Z(y| o (0( +16Xi ))2



Estimation of parameters

It can be shown the SS. .. takes the smallest

value when

I'es

2 > (% —X)(Y; - )
Z(Xi _)_()2
y — /X

a



Estimation of parameters

The residual variance o2 is estimated as

o’ =SS, I(n—2)

Fes



Significance of parameters

Apparently, regression parameters would
vary if we were to take different samples
Therefore, it Is of great importance to
estimate the significance of the model
parameters

Jsually of prime interest is to test the null
nypothesis that /5, = O (i.e. a horizontal line)

N N

This is done with a t-test; t = 'BS_'BO = ﬁ
Vi

N
Author: Sergey Mastitsky



Significance of parameters

A similar test can be applied to the intercept
However, in most cases it's a meaningless
test because:

there I1s no natural reason to believe that the line
has to go through the origin

or it would involve an extrapolation far outside the
range of data

Author: Sergey Mastitsky
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How old is the Universe?

Freedman et al. (2001)*
report data on distance to
24 galaxies (Mpc)
measured with the Hubble
Telescope

Velocities assessed by

measuring the Doppler
effect red shift are also
reported (km/sec)

*Freedman WL et al. (2001) The
Astrophysical Journal 553: 47-72
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Data from Friedman et al. (2001)
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How old is the Universe?

The Big-Bang Theory says that the Universe
expands uniformly according to the Hubble’s

law: y = /X

where y Is the relative velocity of any two galaxies
separated by distance X

[ 1 gives the approximate age of the Universe,
but It IS unknown

Data from Friedman et al. (2001) can be used to
estimate 8 Y. = X + &,

Author: Sergey Mastitsky



Loading Hubble Telescope data

Use the command
> setwd ("~/Introductory R

Course/R Course Datasets")

Or in RStudio do
Tools -> Set Working Directory -> Choose

Directory -> ...your Desktop -> folder
“Introductory R Course” -> folder

"R Course Datasets”

Author: Sergey Mastitsky



Loading Hubble Telescope data

> hub.data <- read.table

file = "hubble data.txt",
header = TRUE,
Sep — "\t")

# Examine the data:
> head (hub.data)

Author: Sergey Mastitsky



Specifying linear regression in R

# The function Im() is used to estimate the
regression parameters

Model formula:
“~%is called “tilde”
“-1” means the model has

Object that contains the no intercept term

results of analysis

> hub.mod <- Im(y ~ x - 1,
data = hub.data)

\%%}

Name of the data frame in
which the variables are to
be found
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Summary of the analysis

> summary (hub.mod)

call:
Tm(formula =y ~ x - 1, data = hub.data)

Residuals:
Min 1Q Median 3Q Max
-736.5 -132.5 -19.0 172.2 558.0

Coefficients:
Estimate Std. Error t value Pr(>|t|)
X 76.581 3.965 19.32 1.03e-15 *%%
Signif. codes: 0 “*%=’ (0.001 ‘*=' 0.01 **’ 0.05 *." 0.1 * " 1

Residual standard error: 258.9 on 23 degrees of freedom
Multiple R-squared: 0.9419, Adjusted R-squared: 0.9394
F-statistic: 373.1 on 1 and 23 DF, p-value: 1.032e-15

Author: Sergey Mastitsky



“Dissection” of the

summary (hub.mod) output

Call:
Im(formula =y ~ x - 1, data = hub.data)

Repeat of the function call
Useful when many models are fitted during
one R session

Author: Sergey Mastitsky



“Dissection” of the

summary (hub.mod) output

Residuals:
Min 10 Median 30 Max
-736.5 -132.5 -19.0 172.2 558.0

A numerical summary of the distribution of
the model residuals

Can be used as a quick check of the
distributional assumptions

For example, the Median has to be close
to 0, and the Max and Min should be

roughly equal (in absolute value)
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“Dissection” of the

summary (hub.mod) output

Coefficients:
Estimate Std. Error t value Pr(>|t|)
X 76.581 3.965 19.32 1.03e-15 ##%

Signif. codes: 0 ‘*=**' 0,001 ‘*=' 0.01 ‘*’ 0.05 ‘. 0.1 * ' 1

The regression coefficient (76.581), along with

its S.E. and P-value of the t-test of significance

* - Indicators of significance

Below the table — definition of these indicators,

e.g. three stars means 0 < P <0.001

Stars can be turned off with the comand
options (show.signif.stars = FALSE)
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“Dissection” of the

summary (hub.mod) output

Residual standard error: 258.9 on 23 degrees of freedom

The residual variation, 1.e. the variation of
observations around the regression line

O

Author: Sergey Mastitsky



“Dissection” of the

summary (hub.mod) output

Multiple R-squared: 0.9419, Adjusted R-squared: 0.9394

Multiple R-squared (= coefficient of

determination) is the squared Pearson
correlation

Multiple R-squared x 100% = percent of
variation explained by the model; always

Increases with the number of predictors
Adjusted R-squaredisthe Multiple R-

squared adjusted in a certain way to account
for the d.f.
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“Dissection” of the

summary (hub.mod) output

F-statistic: 373.1 on 1 and 23 DF, p-value: 1.032e-15

F-test of the null hypothesis that the data were
generated from a model with only an intercept

term
Test of the overall usefulness of the model

Author: Sergey Mastitsky



Preliminary conculsion

In overall, the model is highly significant
(P <0.001, F-test)

Distance to a galaxy seems to be an
Important predictor of its observed velocity

(P < 0.001, t-test)
The fitted models Is as follows:

y = 76.581x
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Validation of the model

Highly significant P-values don’t guarantee
that the model correctly describes the
process under study

Once the model is fitted, one has to check If
Its assumptions are met

In particular, one has to check if the model
residuals are normally distributed and if
there are any “influential” observations that
distort the real picture



The residuals () function

# resid() extracts the residuals from the model

object:

> resid (hub

1 2
-20.162344 -37.483536
7 8
-145.240750 -17.828771
13 14
100.501018 268.200373
19 20

279.643102 -280.254161

.mod)

3
557.979883
9
-197.989654
15
-736.486745
21
156.456714

4

1500

500
!

219.367962 -202.596044  31.408626

10

11 12

-284.820174 -123.811720 -37.633930

16

17 18

286.003784 141.853390 235.549105

22
-25.849462

23 24
-9.230692 -128.274852
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The £itted () function

# fitted() extracts model-fitted values of the
response variable:

>
> fitted (hub.mod)
X

1 2 3 4 5 b 7
153.1623 701.4835 1236.0201 1374.6320 1675.5960 246.5914 859.2408
8 9 10 11 12 13 14
899.8288 277.9897 1056.8202 765.8117 @805.6339 508.4990 1164.7996
15 16 17 18 19 20 21
1355.4867 1137.9962 1242.1466 1208.4509 1143.3569 1683.2542 946.5433

22 23 24
343.8495 241.2307 1127.2749
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Are the residuals distributed normally?

> plot (resid (hub.mod) ~
fitted (hub.mod),
xlab = "fitted values”,

ylab = "residuals") 8
o | @,
o &7
: . 9 708 o
The spread of residuals is 5 o
increasing with larger fitted S &7 °
values — not good! -
o
o
<@

(@)
I I I

500 1000 1500

fitted values
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Getting four diagnostic plots with one

command

> par (mfrow

[
@
O
-
N

# The comand

> plot (hub.mod)

# will produce four types of plots commonly used
in diagnostics of the regression model validity

Author: Sergey Mastitsky
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“"Residuals vs. Fitted” plots

The same plot that we
already saw before

Red line shows the trend in
the distribution of residuals
There should be no pattern
In the spread of residuals
Potentially influential data
points are labeled with their
Index numbers

Residuals

0 500

-500

Residuals vs Fitted

03

500 1000 1500

Fitted values
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“Scale-location” plots

The residuals are
standardized by dividing by

Scale-Location

their estimated standard R o -
deviation g

Square root of the absolute o .

value of each std. residualis g =~

plotted against the S

equivalent fitted value f'g 2 -

This plot makes it easier to 2

check the constant variance o |

assumption
In this case the assumption
IS not met

500 1000 1500

Fitted values
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“"Normal Q-Q" plot of residuals

The standardized residuals
are plotted against the
guantiles of a standard
normal distribution

The resulting plot should
look like a straight line

In this case, we can see that
the observations #3 and #15
distort the straight line
relationship
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“Residuals vs. Leverage” plot

The standardized residuals are
plotted against the leverage of each

data point & 03 Tl o

Residuals vs Leverage

Leverage measures the potential of 2

a data point to influence the overall 5 < -

model fit 0

If a data point has a large residual in 3 =

combination with a large leverage, it 5 « -

can be considered influential g

Cook’s distance is a measure of the & 7 |08
actual influence each data point has o™ N |1
on the model fit "7\ 7\ ©Rok's distance 15

If a point is outside of the Cook’s 0_60 | 0_64 | 0_68

distance-leverage contour line of ~
0.5, that point is likely to be highly
influential

Leveraoe

Author: Sergey Mastitsky



Refitting the hub . mod

Diagnostic plots suggest that the
observations #3 and #15 have too much
Influence on the model fit. It would be
prudent to refit the model without these

offending points:

> hub.modl <- Im(y ~ x - 1,
data = hub.datal[-c (3, 15), 1)



Summary on the hub .mod1l

> summary (hub.modl)

call:
Im(formula = y ~ x - 1, data = hub.data[-c(3, 15), 1)
Residuals:

Min 1 Median 3Q Max

-304.3 -141.9 -26.5 138.3 269.8

Coefficients:
Estimate Std. Error t value Pr(>|t]|)

X 77.67 2.97 26.15 <Ze-16 ***%

Signif. codes: 0 “***’ 0.001 ‘**’ 0.01 **’ 0.05 “.” 0.1 ° " 1

Residual standard error: 180.5 on 21 degrees of freedom
Multiple R-squared: 0.9702, Adjusted R-squared: 0.9688 -
F-statistic: 683.8 on 1 and 21 DF, p-value: < 2.2e-16

Author: Sergey Mastitsky



> plot (hub.modl)
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So, how old is the Universe?

One Mega-parsec is
3.09x10%° km, so we need to
divide 3 by this amount to
obtain the Hubble’s constant

with units of s1:
> hub.const <-

coef (hub.modl)/3.09e19

# age in seconds:
> age <- 1l/hub.const
# age in years:
> age/ (6072*24%365)
126148547577

Answer: ~ 13 billion years

Velocity (km/sec)

500

1500

1000

10 15 20

Distance (Mnc)
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Confidence intervals for linear

regression parameters

Our estimate of the age of the Universe Is
based on a sample of 22 particular galaxies
If we had a sample of different galaxies, the
estimate would almost for sure be slightly
different

Thus, given the data we have, how can we
estimate the range of possible true values of
the age?

Answer: calculate the confidence interval for
the estimated Hubble’s constant

Author: Sergey Mastitsky



Confidence interval for 3

Recall how we estimate the significance of
the regression coefficient:

A

t:ﬂ_ﬂo

S;

We would reject Hy: B, = O If t was outside its
acceptance region




Confidence interval for 3

The function gt () calculates the acceptance

region of t for a certain significance level and

d.f.:
> gt(p = c(0.025, 0.975), df
(1] -2.08 2.08

21)

t distribution with d.f. = 21

21) (x)

0.1 0.2 0.3

function(x) dt(x, df

Author: Sergey Mastitsky



Confidence interval for 3

Thus, we would accept any 3, that fulfills

Vo

~2.08< P =P <2.08

S;

which re-arranges to give the 95% confidence
interval for 3,

p—2.08S, < f3, < f+2.08S,



Confidence interval for the Hubble’s

constant

> bError <-
summary (hub.modl) Scoefficients[2]
> c1 <- coef (hub.modl) +
gt (c(0.025,0.975), df
> C1
[1] 71.49588 83.84995

21) *bError

Author: Sergey Mastitsky



Confidence interval for the age of

the Universe

> U.c1 <-
ci*60N2*24*365.25/3.09e19

> 1/U.ci

[1] 13695361072 11677548698

# or better yet

> sort (1/U.ci)

[1] 11677548698 13695361072

Thus, with the probability of 95%, the true age of the Universe is

within the interval of values from 11.7 to 13.7 billion years

Author: Sergey Mastitsky
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Confidence bands of the regression line

As we have just seen, the
regression coefficient
cannot be estimated exactly
Thus, there Is an uncertainty
about how the true
regression line goes

This uncertainty is usually
demonstrated graphically by
nlotting confidence bands at 5 10 15 20
noth sides of the regression Distance (Moc)
Ine

1000 1500

Velocity (km/sec)

500
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Calculating and plotting confidence

bands of the regression line

# The function predict() makes all the magic; the
command

> predict (hub.modl)

# would return just the model fitted values of y:

1 2 S 5 6 7 8

155.3458 711.4839 1394.2289 1699.4834 250.1068 871.4901 912.6568

9 10 11 12 13 14 16

281.9527 1071.8863 776.7292 817.1191 515.7482 1181.4051 1154.2196

17 18 19 20 21 22 23

1259.8547 1225.6786 1159.6567 1707.2507 960.0373 348.7514 244.6697
24

1143.3453

Author: Sergey Mastitsky



Calculating and plotting confidence

bands of the regression line

# We can pass a new, artificial dataset with many
values to predict(), and also ask it to calculate the
standard errors for each of the newly predicted
values

> newdat <- data.frame (

x = seqg(min (hub.datasSx),
max (hub.datas$x), 0.05) )

> dim (newdat)

(1] 400 1

Author: Sergey Mastitsky



How to calculate and plot confidence

bands of the regression line

# Predict new values and their SE's:

> Prediction <- predict (hub.modl,
se.fi1t = TRUE, newdata = newdat)

# Check the structure of the new object:

> str (Prediction)

List of 4

$ fit : Named num [1:400] 155 159 163 167 171 ...
.- attr(®*, "names")= chr [1:400] "1™ "2" "3" "4"

$ se.fit : hum [1:400] 5.94 6.09 6.24 6.39 6 53 -

$ df : int 21

$ residual.scale: num 180

Author: Sergey Mastitsky



Plotting the regression line and its

confidence bands

# Plot the raw data:
> plot (hub.data$x, hub.data$y,

col = "blue",
xlab ="Distance (Mpc)",
ylab = "Velocity (km/sec)")

# Plot the fitted regression line:
> abline (hub.modl)

Author: Sergey Mastitsky



Plotting the regression line and its

confidence bands

# Plot the upper 95% confidence band:

> lines (newdatSx,
Prediction$fit +
1.96*PredictionSse.fit,
lty = 2)

# Plot the lower 95% confidence band:

> lines (newdat$x,
Prediction$fit -
1.96*PredictionSse.fit,
1ty = 2)

Author: Sergey Mastitsky



Regression line and its 95%

confidence bands
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