Topic 11

Multiple regression

Sergey Mastitsky © Klaipeda, 28-30 September 2011

Multiple regression

We'll consider regression models with multiple predictors:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \varepsilon$$

Model specification is similar to that of the simple regression analysis and ANOVA
The new part is the model search, i.e. selecting a subset of predictors that describe the response variable sufficiently well

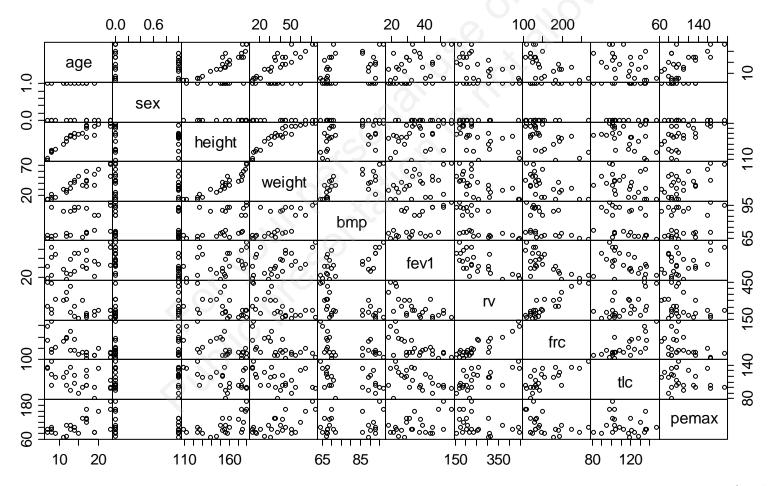
11. Multiple regression

11.1. Plotting multivariate data

An example: cystic fibrosis data

- > library(ISwR)
- > data(cystfibr); attach(cystfibr)

Predictors


- > head(cystfibr)
- > help("cystfibr")

Response: *maximum expiratory pressure*

age	sex	height	weight	bmp	fev1	rv	frc	tlc	pemax
7	0	109	13.1	68	32	258	183	137	95
7	1	112	12.9	65	19	449	245	134	85
8	0	124	14.1	64	22	441	268	147	100
8	1	125	16.2	67	41	234	146	124	85
8	0	127	21.5	93	52	202	131	104	95
9	0	130	17.5	68	44	308	155	118	80
	7 7 8 8 8	7 0 7 1 8 0 8 1 8 0	7 0 109 7 1 112 8 0 124 8 1 125 8 0 127	7 0 109 13.1 7 1 112 12.9 8 0 124 14.1 8 1 125 16.2 8 0 127 21.5	7 0 109 13.1 68 7 1 112 12.9 65 8 0 124 14.1 64 8 1 125 16.2 67 8 0 127 21.5 93	7 0 109 13.1 68 32 7 1 112 12.9 65 19 8 0 124 14.1 64 22 8 1 125 16.2 67 41 8 0 127 21.5 93 52	7 0 109 13.1 68 32 258 7 1 112 12.9 65 19 449 8 0 124 14.1 64 22 441 8 1 125 16.2 67 41 234 8 0 127 21.5 93 52 202	7 0 109 13.1 68 32 258 183 7 1 112 12.9 65 19 449 245 8 0 124 14.1 64 22 441 268 8 1 125 16.2 67 41 234 146 8 0 127 21.5 93 52 202 131	7 1 112 12.9 65 19 449 245 134 8 0 124 14.1 64 22 441 268 147 8 1 125 16.2 67 41 234 146 124 8 0 127 21.5 93 52 202 131 104

Graphical EDA of multivariate data

> pairs(cystfibr, gap = 0, cex.lab = 0.9)

11. Multiple regression

11.2. Model specification and output

Model specification in R

- A multiple regression analysis is done by setting up a model formula with "+" between the predictor variables
- Although some predictors are not likely to be correlated with pemax, we will initially include all of them into the model
- Such a model is called saturated:
- > M0 <- lm(pemax ~ age + sex +
 height + weight + bmp + fev1 + rv
 + frc + tlc, data = cystfibr)</pre>

Model output

```
summary (MO)
                         Call:
                         lm(formula = pemax ~ age + sex + height + weight + bmp + fev1 +
                             rv + frc + tlc, data = cystfibr)
                         Residuals:
                             Min
                                      10 Median
                                                      3Q
                                                             Max
                                         1.081
                         -37.338 -11.532
                                                  13.386
                                                          33.405
                         Coefficients:
                                     Estimate Std. Error t value Pr(>|t|)
                         (Intercept) 176.0582
                                                225.8912
                                                           0.779
                                                                    0.448
                                      -2.5420
                                                  4.8017
                                                          -0.529
                                                                    0.604
                         age
                                      -3.7368
                                                 15.4598 -0.242
                                                                    0.812
                         sex
                                      -0.4463
                                                 0.9034 -0.494
                                                                    0.628
                         height
                                       2.9928
                                                  2.0080
                                                           1.490
                                                                    0.157
                         weight
                                      -1.7449
                                                  1.1552
                                                          -1.510
                                                                    0.152
                         bmp
                                       1.0807
                                                  1.0809
                                                           1.000
                                                                    0.333
                         fev1
                                       0.1970
                                                  0.1962
                                                           1.004
                                                                    0.331
                         rv
                         frc
                                      -0.3084
                                                  0.4924
                                                          -0.626
                                                                    0.540
                         tlc
                                       0.1886
                                                  0.4997
                                                           0.377
                                                                    0.711
                         Residual standard error: 25.47 on 15 degrees of freedom
                         Multiple R-squared: 0.6373, Adjusted R-squared: 0.4197
```

F-statistic: 2.929 on 9 and 15 DF, p-value: 0.03195

Zooming into the results...

- Not a single *t*-test is significant
- Yet, the overall *F*test <u>is</u> significant, so there must be an effect somewhere there
- *t*-tests only say that *no variable* <u>must</u> be included into the model – thus, we <u>can</u> exclude some of them

Coefficients	s:				
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	176.0582	225.8912	0.779	0.448	
age	-2.5420	4.8017	-0.529	0.604	
sex	-3.7368	15.4598	-0.242	0.812	
height	-0.4463	0.9034	-0.494	0.628	
weight	2.9928	2.0080	1.490	0.157	
bmp	-1.7449	1.1552	-1.510	0.152	
fev1	1.0807	1.0809	1.000	0.333	
rv	0.1970	0.1962	1.004	0.331	
frc	-0.3084	0.4924	-0.626	0.540	
tlc	0.1886	0.4997	0.377	0.711	

Residual standard error: 25.47 on 15 degrees of freedom Multiple R-squared: 0.6373, Adjusted R-squared: 0.4197 F-statistic: 2.929 on 9 and 15 DF, p-value: 0.03195

Pay attention to the adjusted R²

Multiple R-squared: 0.6373, Adjusted R-squared: 0.4197

- Adjusted R² is considerably smaller that the multiple R²
- This is due to the large number of variables relative to the number of degrees of freedom for the variance
- This also suggests reducing the model

The ANOVA table

anova (MO) >

anova(MO)						
Response:	per	nax				
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
age	1	10098.5	10098.5	15.5661	0.001296	**
sex	1	955.4	955.4	1.4727	0.243680	
height	1	155.0	155.0	0.2389	0.632089	
weight	1	632.3	632.3	0.9747	0.339170	
bmp	1	2862.2	2862.2	4.4119	0.053010	
fev1	1	1549.1	1549.1	2.3878	0.143120	
rv	1	561.9	561.9	0.8662	0.366757	
frc	1	194.6	194.6	0.2999	0.592007	
tlc	1	92.4	92.4	0.1424	0.711160	
Residuals	15	9731.2	648.7			

The ANOVA table

- Except for tlc, there is practically no correspondence between F-test and t-tests, in particular age is now significant
- That is because *F*-tests are successive, i.e. they correspond to a stepwise removal (from the bottom upward) of terms from the model until only age is left
- Thus, we can remove all the terms except age
 (!) But be careful: age was left in the model primarily because it was mentioned first in the model specification (more on this issue later on...)

Comparing two models with anova ()

- We can formally check whether all the other variables, except for age, can be removed by fitting two separate models and comparing their RSS with the *F*-test:

Comparing two models with anova ()

```
> anova(M0, M1)
```

```
Analysis of Variance Table
```

```
Model 1: pemax ~ age + sex + height + weight + bmp + fev1 + rv + frc +
tlc
Model 2: pemax ~ age
  Res.Df   RSS Df Sum of Sq   F Pr(>F)
1   15  9731.2
2   23 16734.2 -8 -7002.9 1.3493 0.2936
```

- RSS (= unexplained variance) in the second model increases (by 7002.9)
- However, this increase is not significant (P = 0.2936), suggesting than model 2 is preferable as it has less parameters

Comparing two models with AIC

- The Akaike Information Criterion comes from the Information Theory and measures both the goodness of fit and complexity of a model (see ?AIC)
- The smaller the value of AIC, the "better":
- > AIC(M0, M1)
- > df AIC
- MO 11 242.0525
- M1 3 239.6052

Nested models

- Always make sure that the models you compare with anova() or AIC() are nested, e.g. one model is a direct reduced version of another one:

11. Multiple regression

11.2. Stepwise backward model search

Stepwise backward model search

- With this approach, usually the most insignificant terms are sequentially removed until all the remaining terms are significant
- In some cases, a certain logical structure can be imposed on the process, e.g. previous knowledge can suggest removing some parameters first

sex excluded:

M3 <- lm(pemax ~ age + height +
weight + bmp + fev1 + rv + frc +
tlc, data = cystfibr)</pre>

> summary(M3)

Estimate	Std. Error	t value	Pr(> t)	
153.0385	198.7149	0.770	0.452	
-2.1145	4.3308	-0.488	0.632	
-0.3948	0.8517	-0.464	0.649	
2.8349	1.8420	1.539	0.143	
-1.7416	1.1207	-1.554	0.140	
1.2651	0.7429	1.703	0.108	
0.1779	0.1743	1.021	0.323	
-0.2483	0.4123	-0.602	0.555	
0.2084	0.4782	0.436	0,669 🗲	
	153.0385 -2.1145 -0.3948 2.8349 -1.7416 1.2651 0.1779 -0.2483	153.0385198.7149-2.11454.3308-0.39480.85172.83491.8420-1.74161.12071.26510.74290.17790.1743	153.0385198.71490.770-2.11454.3308-0.488-0.39480.8517-0.4642.83491.84201.539-1.74161.1207-1.5541.26510.74291.7030.17790.17431.021-0.24830.4123-0.602	-2.11454.3308-0.4880.632-0.39480.8517-0.4640.6492.83491.84201.5390.143-1.74161.1207-1.5540.1401.26510.74291.7030.1080.17790.17431.0210.323-0.24830.4123-0.6020.555

tlc excluded:

M4 <- lm(pemax ~ age + height +
weight + bmp + fev1 + rv + frc,
data = cystfibr)</pre>

> summary(M4)

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	198.2942	165.3311	1.199	0.2468	
age	-2.6632	4.0438	-0.659	0.5190	
height	-0.4896	0.8037	-0.609	0.5505	
weight	3.1557	1.6478	1.915	0.0725	
bmp	-1.9625	0.9753	-2.012	0.0603	
fev1	1.2479	0.7240	1.724	0.1029	
rv	0.1596	0.1651	0.967	0.3472	
frc	-0.1765	0.3687	-0.479	0.6384 ┥	

frc excluded:

M5 <- lm(pemax ~ age + height +
 weight + bmp + fev1 + rv, data =
 cystfibr)</pre>

> summary(M5)

Estimate Std. Error t value Pr(>|t|) 148.47621 1.124 0.2757 (Intercept) 166.90487 -1.81934 3.56030 -0.511 0.6156 age height -0.41015 0.76930 -0.5330.6005 weight 2.87443 1.50613 1.908 0.0724 . bmp -1.949080.95382 -2.043 0.0559 . fev1 1.41196 0.62383 2.263 0.0362 * 0.09558 0.09461 1.010 0.3258 rv

Age is to be removed!

Final model:

- M8 <- lm(pemax ~ weight + bmp +
 fev1, data = cystfibr)</pre>
- > summary(M8)

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	126.3336	34.7199	3.639	0.001536	**
weight	1.5365	0.3644	4.216	0.000387	***
bmp	-1.4654	0.5793	-2.530	0.019486	*
fev1	1.1086	0.5144	2.155	0.042893	*

The final model still has to be validated by examining the residuals!

Automatic model selection with the step () function

- It's possible to perform automatic search of the optimal model, based on the AIC values
- The function step() does all the magic: > step(M0, direction = "backward")

Automatic model selection with the step () function

Step 1 in automatic model selection:

```
Start: AIC=169.11
pemax ~ age + sex + height + weight + bmp + fev1 + rv + frc +
tlc
```

	Df	Sum of Sq	RSS	AIC
- sex	1	37.90	9769.2	167.20
- tlc	1	92.40	9823.7	167.34
- height	1	158.32	9889.6	167.51
- age	1	181.81	9913.1	167.57
- frc	1	254.55	9985.8	167.75
- fev1	1	648.45	10379.7	168.72
- rv	1	653.78	10385.0	168.73
<none></none>			9731.2	169.11
- weight	1	1441.21	11172.5	170.56
- bmp	1	1480.12	11211.4	170.65

Automatic model selection with the step () function

Final iteration in automatic model selection:

Step: AIC=160.66 pemax ~ weight + bmp + fev1 + rv				
Df Sum of Sq RSS AIC				
<none> 10355 160.66</none>				
- rv 1 1183.6 11538 161.36				
- bmp 1 3072.6 13427 165.15				
- fev1 1 3717.1 14072 166.33				
- weight 1 10930.2 21285 176.67				
Call: lm(formula = pemax ~ weight + bmp + fev1 + rv, data = cystfibr)				
Coefficients: V (Intercept) weight bmp fev1 rv 63.9467 1.7489 -1.3772 1.5477 0.1257				

Checking the model automatically selected by step()

Checking the automatically selected model:

> summary(lm(pemax ~ weight + bmp
+ fev1 + rv, data = cystfibr))

> plot(lm(pemax ~ weight + bmp +
fev1 + rv, data = cystfibr))

Don't fully rely on the automatic procedure. Use your brain too!

Exercise

Try

> step(M0, direction = "forward")

and

> step(M0, direction = "both")