
5.1
Introduction

5.1.1
Brief History and Zoological Description

From the time of initial domestication of wild birds, 
poultry have served humans as a source of food and 
a subject of cultural use, similar to other livestock 
species. The role of poultry production in global food 
provision has been steadily growing since the nine-
teenth century. Different needs of humans have led 
to a rise in poultry breeding and use of pure (fancy) 
breeds, indigenous populations, laboratory lines, and 
commercial poultry. Being notable for high efficiency 
and rapid development dynamic, the poultry indus-
try now exceeds other livestock sectors in production 
growth rate and efficacy. Intensification of commercial 
poultry production has placed emphasis on selection 
and improvement of breeds and strains and on the 
development of novel lines and crosses. This, in turn, 
has required new genetic and selection approaches 
and technologies, and  utilization of genetic resources 
adapted to variable and diverse specific environments. 
The importance of a deeper knowledge of avian biol-
ogy including heredity, variation, and genomics is 
paramount. Substantial progress in poultry produc-
tion can be achieved through advances in several 
areas, including selection, veterinary, nutrition, avian 
genetics, and genomics.

Avian species share a common ancestor with 
humans. The split between synapsids (mammals and 
their extinct ancestors) and diapsids (reptiles) occur-
red around 350 million years ago (MYA). Birds are 

believed to arise from therapod dinosaurs about 150 
MYA. The origin of the whole Galliformes order is 
placed in the late Cretaceous at about 90 MYA, while 
the junglefowl genus, Gallus, evolved among the land 
fowl about 8 MYA (van Tuinen and Dyke 2004). Man 
began domestication of chickens in Southeast Asia 
and adjacent areas 8,000–10,000 years ago (Fig. 1). 
Later, waterfowl species including geese and ducks 
were domesticated. The turkey and Muscovy duck 
were domesticated in the New World, and some 
other birds (e.g., guinea fowl, Japanese quail, and 
ostrich) were also subject to domestication. Today’s 
poultry breeds and their wild progenitors are sepa-
rated across globally established poultry meat and 
egg industries.

There have been four stages of poultry history 
that have affected genetic diversity, leading to the 
chickens that exist today (Crawford 1990). The first 
stage was the process of domestication, involving 
selection for tameness, changes in body size, and 
accumulation of morphological and color variants. 
The second stage was diffusion outward from cent-
ers of domestication; genetic drift, migration, and 
isolation were major genetic forces leading to devel-
opment of distinctive regional types. The third stage 
was the “hen craze era” late in the nineteenth century, 
when nearly all present-day breeds and varieties 
were created. The fourth stage is in place now, where 
multinational corporations breed and distribute egg 
and meat stocks that have remarkable productivity, 
but are derived from a narrow genetic base (Craw-
ford 1995).  During the fourth stage, anthropogenic 
factors have become more and more important in 
evolution and  development of domes tic fowl. Factors 
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such as  civilization development, historical events, 
technological progress (Altukhov 2004), changes in 
climate, and extreme natural disasters greatly influ-
ence poultry genetic variability and may even lead to 
extinction.

Well-known poultry species include chickens, 
ducks, geese, turkeys, guinea fowl, quail and pigeons.  
They play an important role in the world’s economy 
and provide a valuable protein source for people in 
both developing and developed countries. Birds are 
often raised as scavengers, i.e., at little cost, in areas 
where cattle cannot survive, such as those infested by 
the tsetse fly (Glossina spp.). Ostriches, emus, rheas, 
and cassowaries are all at various stages of domes-
tication for their skins, meat, and other products 
(Scherf 2000).

Poultry and other avian species raised and kept 
by man belong to ten orders: Galliformes, Anseri-
formes, Columbiformes, Passeriformes, Ciconiiformes, 
Pele caniformes, Psittaciformes, Struthioniformes, Rhei-
formes, and Casuariiformes (Table 1). Representatives 
of the most useful family of birds are in the Phasiani-
dae family, a widely dispersed group of the order 
Galliformes. A more detailed zoological description 
and origin of the chicken will be narrated below. The 
turkey will be separately described in Chapter 6 of 
this volume. Details on other domesticated species of 
birds (Fig. 2) can be found elsewhere (Barloy 1978; 
Brothwell and Brothwell 1998; Brown 1929; Crawford 
1990, 1995; Darwin 1868; del Hoyo et al. 1992–1996; 
Dembeck 1965; Hyams 1972; Mason 1984; Petrov 
1962; Scherf 2000; Zeuner 1963).

Fig. 1 Domestication of avian species. (a) A red junglefowl rooster (Gallus gallus), the wild chicken progenitor species (from 
Pisenti et al. 1999; http://www.grcp.ucdavis.edu/publications/doc20/front.pdf). (b) An egg-type cock painted on an ostracon from 
the tomb of Tutankhamen, Egypt, 1338 BC (Carter and Mace 1923–1933); published by Cassell Plc, currently a division of The 
Orion Publishing Group (London); attempts at tracing the copyright holder of the image were unsuccessful). (c) Ancient Pacific 
cliff rock paintings, Vatulele Island, Fiji (Ewins 1995; http://www.justpacific.com/fiji/fijianart/cliffart/cliffpaintings.pdf). (d) Red 
junglefowl (shown at the bottom) and several domestic chicken breeds (adapted with permission from Macmillan Publishers Ltd: 
Nature, Andersson 2001, © 2001). (e) A typical depiction of domesticated geese in ancient Egypt
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Fig. 2 Major domesticated avian species other than chicken and turkey. (a) A male of the mallard (Anas platyrhynchos), the 
progenitor of domestic ducks. (b) A domesticated American anseriform species of Muscovy ducks (Cairina moschata). (c) 
A flock of domestic Russian geese (photograph courtesy of Annette Güntherodt, Beberstedt, Germany; © 2004 From Ency-
clopedia of Animal Science by W.G. Pond and A.W. Bell (ed). Reproduced with permission of Routledge/Taylor & Francis 
Group, LLC).  (d) A semidomesticated North American Canada goose (Branta canadensis). (e) Mute swan (Cygnus olor). (f) 
Japanese quail (Coturnix japonica). (g) Ring-necked pheasant (Phasianus colchicus). (h) Emu (Dromaius novaehollandiae). 
a, b, and d-h, USDA Image Gallery (http://www.ars.usda.gov/is/graphics/photos/) and Photography Center (http://www.
usda.gov/oc/photo/opchomea.htm)

5.1.2
Chickens

Taxonomy and Wild Ancestors
The chicken is a member of the class Aves, subclass 
Neornithes, superorder Neognathae, order Galliformes, 
family Phasianidae, subfamily Phasianinae, genus Gal-
lus. Closely related genera are Meleagris (turkey), Pavo 

(peafowl), and Phasianus (pheasant).  Domestic chick-
ens are descendants of junglefowl that now inhabit a 
wide crescent stretching from Pakistan to Indonesia 
including India, Indo-China, and South China, as well 
as the Philippines.

Four junglefowl species are known, including red 
junglefowl (G. gallus; Fig. 1a, d, and 3), gray jungle-
fowl (G. sonneratii), Ceylon junglefowl (G. lafayettei),



Table 1 Taxonomy of major domesticated, semidomesticated, and caged avian species

Order Family Genus Species Distribution

Anseriformes Anatidae Anser A. anser (graylag goose)a Eurasia

,, ,, ,, A. cygnoides (swan goose)a Asia

,, ,, ,, A. fabalis (bean goose)b Eurasia

,, ,, ,, A. albifrons (white-fronted goose)b Northern Hemisphere

,, ,, ,, A. indicus (bar-headed goose)b Asia

,, ,, ,, A. erythropus (lesser white-fronted goose)b Eurasia

,, ,, Branta B. canadensis (Canada goose)c North America

,, ,, Cygnus C. olor (mute swan)c Eurasia

,, ,, Alopochen A. aegyptiacus (Egyptian goose)c Africa

,, ,, Cairina C. moschata (Muscovy duck)a Tropical America

,, ,, Anas A. platyrhynchos (mallard)a Northern Hemisphere

Galliformes Phasianidae Meleagris M. gallopavo (turkey)a North America

,, ,, Gallus G. gallus (red junglefowl)a Southeast Asia

,, ,, ,, G. sonneratii (gray junglefowl) Southwest India

,, ,, ,, G. lafayettei (Ceylon junglefowl) Ceylon

,, ,, ,, G. varius (green junglefowl) Java

,, ,, Pavo P. cristatus (Indian peafowl)a India

,, ,, Phasianus P. colchicus (ring-necked pheasant)c Eurasia

,, ,, ,, P. versicolor (green pheasant)c Japan

,, ,, Lophura L. nycthemera (silver pheasant) Southeast Asia

,, ,, Chrysolophus Ch. pictus (golden pheasant) China

,, ,, Perdix P. perdix (gray partridge)c Eurasia

,, ,, Coturnix C. coturnix (common quail)c Eurasia, Africa

,, Phasianidae ,, C. japonica (Japanese quail)a Asia

,, Numididae Numida N. meleagris (helmeted guinea fowl)a Africa

,, Odontophoridae Colinus C. virginianus (northern bobwhite)c North America

Passeriformes Fringillidae Serinus S. canaria (island canary)a Madeira, Azores, Canary 
Islands

,, Estrildidae Taeniopygia T. guttata (zebra finch) Australia

Columbiformes Columbidae Columba C. livia (rock pigeon)a Eurasia, Africa

,, ,, Streptopelia S. roseogrisea (S. risoria) (African collared 
dove)a

Africa, North America

Pelecaniformes Phalacrocoracidae Phalacrocorax P. carbo (great cormorant)c Asia

Ciconiiformes Ardeidae Egretta E. garzetta (little egret)c Eurasia, Africa, Australia

Psittaciformes Psittacidae Psittacula P. krameri (rose-ringed parakeet) Africa, Asia

,, ,, Melopsittacus M. undulates (budgerigar)c Australia

Struthioniformes Struthionidae Struthio S. camelus (ostrich)a Africa

Rheiformes Rheidae Rhea R. americana (greater rhea)c South America

,, ,, Pterocnemia P. pennata (lesser rhea)c South America

Casuariiformes Dromaiidae Dromaius D. novaehollandiae (emu)c Australia

,, Casuariidae Casuarius C. spp. (cassowary)c New Guinea, Australia

a Domesticated species
b Suggested contribution to polyphyletic origin of a domesticated form
c Semidomesticated species
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and green junglefowl (G. varius). The red  junglefowl, 
in turn, is subdivided into five subspecies depend-
ing on geographic distribution, variation in size of 
facial wattles and combs, and length and color of the 
neck hackles in males: Cochin-Chinese (G. g. gallus),
Burmese (G. g. spadiceus), Tonkinese (G. g.  jabouillei), 
Indian (G. g. murghi), and Javan (G. g. bankiva).

The natural habitat of red jungle fowl varies, 
including most types of forests present in South-
east Asia and in other territories of Asia, field edges, 
groves, and scrubland. The junglefowl is a highly 
adaptable species and can thrive in many habitats 
from sea level to 2,000 meters above sea level. Most 
junglefowl are found in damp forests, secondary 
growth, dry scrub, bamboo groves, and small woods. 
Although not rare, the species is under some hunting 
pressure (Scherf 2000).

Origin of Domestic Fowl — Monophyletic, 
Polyphylet ic or Intermediate?
Because of varying opinions of zoologists, natural-
ists, geneticists, and other specialists, there is great 
interest in  exploring the biology of junglefowl spe-
cies and the origin of the domestic fowl (Moiseyeva 
et al. 2003). Beginning with Charles Darwin’s funda-

mental work on this subject published in The Vari-
ation of Animals and Plants Under Domestication 
(1868), many investigations have been devoted to 
the specific features of junglefowl. The widely spread 
species G. gallus has been most fully described 
for discrete morphological and metric quantita-
tive traits (Darwin 1868; Beebe 1918–1922; Dela-
cour 1977; Nishida et al. 1983, 1985a, b; Moiseyeva 
and Volokhovich 1987; Moiseyeva et al. 1994) and, 
over last four decades, for biochemical (Baker 1964, 
1968; Baker and Manwell 1972; Moiseyeva et al. 1994) 
and molecular (Siegel et al. 1992; Akishinonomiya 
et al. 1994, 1996; Romanov and Weigend 2001b; Hillel 
et al. 2003) markers.

Comparisons of four species of genus Gallus and 
chicken breeds indicate that G. gallus (red junglefowl) 
is the closest to chickens for most traits. This may be 
evidence of the monophyletic origin of chickens (Dar-
win 1868; Tegetmeier 1873; Beebe 1918–1922; Ivanov 
1924; West and Zhou 1989). Another group of scholars 
(Dixon 1848; Abozin 1885; Brown 1906; Finsterbusch 
1929; Hutt 1949; Smith and Daniel 1975; Plant 1984, 
1986) adheres to the theory of polyphyletic origin 
referring to the fact that some characters known in 
chickens are absent in G. gallus, but present in other 

Fig. 3 A lateral view of red junglefowl cock (G. g. gallus). An exhibit of the State Darwin Museum, Moscow, Russia. Photograph 
courtesy of A.A. Nikiforov (Altukhov 2004)
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wild species or in extinct progenitor(s). Several inves-
tigators support an intermittent point of view, that is, 
between strong monophyletists and strong polyphylet-
ists, considering G. gallus the major ancestor but not 
excluding small participation of other species in 
chicken domestication (Baker et al. 1971; Kogan 1979; 
Crawford 1990; Stevens 1991; Altukhov 2004).

Noteworthy, most genetic studies have relied 
upon G. gallus specimens bred by fancy breeders or 
in zoos, which may be contaminated with domes-
tic chicken genes. Wild populations in their natural 
habitats are also quite often mated with village chick-
ens and produce offspring that differ from the pure 
G. gallus (Beebe 1918–1922; Brisbin 1997). This situ-
ation leads to an overestimate of kinship between 
G. gallus and chicken breeds as compared with the 
three other wild species that do not always produce 
fertile hybrids with domestic chickens.

Based on the comparison of mitochondrial DNA 
(mtDNA) D-loop sequences, Akishinonomiya et al.
(1994, 1996) stated that only one subspecies, G. g. gallus,
contains all the biodiversity of chickens. Niu et al. 
(2002) sequenced the first 539 bases of the mtDNA 
D-loop region in six Chinese local chicken breeds 
and compared that data to sequences of four jugle-
fowl species in GenBank. The four species of the 
genus Gallus significantly differed from each other, 
and the Chinese native chickens were closest to the 
red junglefowl in Thailand and its adjacent regions, 
suggesting that the Chinese domestic fowl probably 
originated from the red junglefowl in these regions. 
It was  suggested that the two subspecies of Thailand, 
G. g. gallus and G. g. spadiceus, form one subspecies 
because of their similarity to each other. However, 
these findings did not provide absolute proof because 
not all five G. gallus subspecies were surveyed and 
only one or two representatives per taxon were com-
pared. Unfortunately, there was no mention in those 
studies of the correspondence of the sampled birds to 
the standards of a species or breeds. In addition, the 
authors did not acknowledge that local residents often 
mate different Gallus species with domestic chickens. 
Phylogenetic relationships of species in the genus Gal-
lus could not be validated in this study due to insuffi-
cient statistical analyses (Nishibori et al. 2005).

On the other hand, supporters of the polyphyletic 
origin of chickens have not presented any archeo-
logical evidence about extinct ancestor(s), at least for 
heavy Asiatic meat-type breeds. Lack of many traits 

in G. gallus currently in chickens is not a conclusive 
argument for the polyphyletic origin. Domestic ani-
mal species often have significant breed diversity 
compared to their ancestral forms. One of the strong 
arguments in favor of the polyphyletic origin is the 
observation of fertile progeny produced from a wild 
fowl species other than G. gallus and domestic chick-
ens or red junglefowl (Darwin 1868; Mason 1984; 
Johnsgard 1999), although hybrid stocks usually ter-
minate in the second and backcross (BC) generations 
(Crawford 1995).

Remarkably, Darwin (1868) did express an opin-
ion that “we have not such good evidence with fowls 
as with pigeons, of all the breeds having descended 
from a single primitive stock.” In recent studies, Nishi-
bori et al. (2005) provided evidence at the molecular 
level for hybridization of species in the genus Gal-
lus except G. varius. They determined sequences of 
the whole mtDNA and two genomic sequences 
(intron) of ornithine carbamoyltransferase and four 
chicken repeat one elements for the species in the 
genus Gallus. According to the mtDNA sequence-
based phylogenetic analyses, two gray junglefowls 
formed a cluster with red junglefowls and chicken, 
whereas one gray junglefowl was located in a remote 
position close to Ceylon junglefowl. The analyses 
based on the nuclear sequences resulted in alterna-
tive clustering of gray junglefowl alleles with those 
of Ceylon junglefowl and with those of red jungle-
fowls and chicken. Red junglefowl and chicken alle-
les were also alternatively clustered. These findings 
could strongly suggest interspecies hybridizations 
between gray junglefowl and red junglefowl/chicken 
and between gray junglefowl and Ceylon junglefowl. 
A question was raised whether these three Gallus 
species are actually subspecies, but examination of 
more individuals of each species is needed to validate 
this hypothesis.

Another important quesion is what chicken 
breeds, i.e., evolutionary branch(es) of chickens, are 
most close ly related to G. gallus and, therefore, which 
domesticated fowl are the most ancient. Studies to 
address these issues may be complicated because of 
possible contamination of the wild populations with 
domestic genes, usage of different markers, differ-
ent sets of breeds across studies, genetic variation 
within chicken breeds,  crossbreeding used for breed 
development, and different statistical methods for 
data analyses. A systems approach for addressing 
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this problem has been proposed (Moiseyeva 1998, 
2003).

Time of Origin and Evolutionary Lineages
Darwin (1868) was uncertain about the exact center(s) 
of chicken origin, saying that “all our breeds are 
probably the descendants of the Malayan or Indian 
variety” of the red junglefowl. After Darwin, various 
authors named different geographical regions as the 
center of origin, including Burma (Peters 1913), India 
(Ivanov 1924; Wood-Gush 1959; Zeuner 1963), China 
(Ho 1977), Southeast Asia (West and Zhou 1989), and 
Thailand (Akishinonomiya et al. 1994, 1996). The 
origin of domestic chickens is dated approximately 
6000–8000 BC (Ho 1977; Plant 1986; West and Zhou 
1989; Crawford 1995). Scherf (2000) proposes that 
“the first domestication occurred in Southeast Asia 
some time prior to 6000 BC, before introduction of 
chickens into China.” This was followed by the spread 
of chickens in the ancient times to the west, north and 
east including the Mediterranean and, more recently, 
the Pacific islands (Fig. 1b, c). Around 2500–2100 BC, 
chickens might have been separately domesticated 
in the Indus Valley (Pakistan) or diffused over there 
from Southeast Asia (Scherf 2000). The first domes-
ticated chickens were probably assigned cultural or 
religious significance or were used for cockfighting, 
although the possibility of gathering eggs from wild 
and domestic chickens at the early stage of domes-
tication is possible (Petrov 1941). In ancient beliefs, 
the rooster symbolized a clock, sun, fire, courage, or 
fecundity; the hen was related to maternity, house-
keeper, and economy; and the egg was associated 
with development of life. Cockerels and hens were 
also used in predictions and divinations.

Chickens spread rapidly and their meat and eggs 
became highly appreciated as an important source of 
animal protein (Scherf 2000). As early as the times of 
Plato and Aristotle, chicken varieties were discernible 
(Moiseyeva and Lisichkina 1996; Scherf 2000). There 
is strong cumulative evidence that chickens were 
already present in the Americas at the time of Span-
ish discovery, and they came from across the Pacific 
(Carter 1971). However, acceptance of this point of 
view awaits the discovery of bones from securely 
dated pre-Columbian sites (Crawford 1995).

Despite the fact that chickens have been sub-
ject to domestication for less than 10,000 years, the 
amount of phenotypic variation accumulated over 

time is surprising (Jensen 2005). To date, four major 
evolutionary lineages can be observed among vari-
ous chicken breeds selected by man (Moiseyeva et al. 
2003; Fig. 4): egg-type, or Mediterranean, game, meat-
type, and Bantam. Early domesticated chickens were 
small and shared morphological characteristics with 
modern egg-type fowl of Mediterranean roots and/
or with true Bantams. This hypothesis, developed by 
Moiseyeva et al. (2003), is in agreement with ancient 
depictions of domestic chickens, which had the egg-
layer morphological type (Brown 1929; Fig. 1b). 
The game chicken breeds might descend directly 
from the red junglefowl or from egg-type domes-
tic birds. The meat-type breeds represent the latest 
chicken lineage and were probably selected from 
game breeds.

Based on analyses of biological, historical, archeo-
logical, etymological, ethnological, and ethnographi-
cal evidences, the domestication process of wild forms 
into chickens might have occurred independently in 

Fig. 4 Morphotypological forms of the domestic fowl and pos-
sible major evolutionary lineages from the main wild ancestor, 
Gallus gallus (1), to egg-type (2), Bantam-type (3), game (4), 
and meat-type (5) breeds (Altukhov 2004)
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several parts of Asian region and at different times 
(West and Zhou 1989; Crawford 1995; Moiseyeva 
1998; Moiseyeva et al. 2003). Each evolutionary line-
age of chickens could contain a different polyphyletic 
origin, and some types, e.g., Mediterranean and Ban-
tam breeds, might come directly from G. gallus. The 
hypothesis of multiple origins in South and South-
east Asia is supported by molecular analyses of the 
mtDNA hypervariable segment I for 834 Eurasian 
domestic chickens, as well as 66 wild red junglefowls 
from Southeast Asia and China (Liu et al. 2006).

5.1.3
Economic Importance and Nutritional Value

Meat, milk, and eggs produced by domestic animals 
have long represented important parts of the diets of 
many people (Pond and Bell 2004). The world poultry 
industry is a growing part of global agribusiness and 
also one of the most dynamic components of world 
agribusiness trade. Over the last four decades, an esti-
mated live poultry population of the world (Table 2) 

has increased by 330% (chickens), 440% (ducks), 
112% (turkeys), and 724% (geese). On the other hand, 
the number of fancy breeds and indigenous popula-
tions has significantly decreased during the twentieth 
century.

Poultry meat is defined as meat from chicken, 
turkey, duck, goose, guinea fowl, and pigeon. Poul-
try is one of the most consumed meats in the world 
and is the most consumed meat per capita in the 
United States (Pond and Bell 2004). The produc-
tion and consumption of poultry meat, specifically 
chicken, turkey, duck, and goose, has dramatically 
increased over the last several decades, with total 
production of estimated 81.4 million metric tons 
(MT) in 2005 (Table 3). The bulk of poultry meat 
is produced from chickens, mostly broilers that are 
raised for meat production and have been selected 
for increased meat yield. In the 1950s, it took approx-
imately 11 weeks to raise a 1.6-kilogram (kg) broiler. 
Currently, a 2.3-kg broiler can be raised in 6–7 weeks 
depending on feed quality, genetic background of 
crosses, and local management conditions. Broil-
ers are shipped to the market at various ages and 

Table 2 World poultry production: live animal stocksa

Stocks (1000)     Year  

 1961 1970 1980 1990 1995 2000 2005

Chickens 3,883,540 5,207,622 7,216,976 10,673,952 12,959,165 14,476,988 16,695,877
Ducks 193,453 256,318 351,979 552,612 797,412 927,973 1,044,736
Geese 36,640 54,578 69,273 131,557 235,103 234,497 301,905
Turkeys 130,745 99,832 200,644 243,042 247,387 268,015 276,821

a FAOSTAT (2006)

Table 3 World poultry production: meata

Poultry meat     Year 

production (MT)
 1961 1970 1980 1990 1995 2000 2005

Poultry all 8,953,120 15,100,097 25,962,116 41,025,900 54,730,103 69,176,770 81,436,269
Chicken 7,557,158 13,141,695 22,907,219 35,459,934 46,572,934 59,029,981 70,474,502
Turkey 902,220 1,224,183 2,054,235 3,703,989 4,568,167 5,125,341 5,167,560
Duck 335,922 500,841 713,113 1,231,933 2,096,213 3,000,542 3,447,564
Goose 149,717 226,270 282,322 616,534 1,476,930 2,001,974 2,326,683
Pigeon and other birds 8,102 7,108 5,228 13,680 15,859 18,932 19,958

a FAOSTAT (2006)
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Table 5 World poultry production: live animal stocks (1000) by country in 2005a

Country Chickens Country Ducks Country Geese Country Turkeys

China 4,360,243 China 725,018 China 267,819 USA 88,000
USA 1,950,000 Viet Nam 50,000 Egypt 9,100 France 30,820
Indonesia 1,249,426 Indonesia 34,275 Romania 4,000 Chile 26,500
Brazil 1,100,000 India 33,000 Poland 3,000 Italy 26,000
India 430,000 France 22,406 Madagascar 3,000 Brazil 16,200
Mexico 425,000 Ukraine 22,000 Taiwan 2,819 Germany 10,611
Russia 328,933 Thailand 17,000 Russia 2,750 UK 8,300
Turkey 296,876 Malaysia 16,000 Hungary 2,127 Portugal 7,000
Japan 283,000 Bangladesh 11,700 Israel 1,400 Slovakia 5,800
Iran 280,000 Philippines 10,439 Turkey 1,400 Canada 5,600

a Top ten countries in raising each of major poultry species ; FAOSTAT (2006)

Table 4 World poultry production: eggsa

Eggs primary    Year 

production (MT)
 1961 1970 1980 1990 1995 2000 2005

Chicken eggs 14,408,065 19,538,393 26,215,604 35,243,467 42,854,069 51,678,162 59,433,971
Total 15,133,710 20,412,719 27,414,941 37,524,123 46,891,269 55,797,691 64,576,599

a FAOSTAT (2006)

weights and as a variety of products, including whole 
carcasses weighing around 1 to 4–5 kg broilers sub-
ject to meat deboning (Pond and Bell 2004). Modern 
domestic turkeys have been selected primarily for 
large body size and rapid growth rate. Commercially, 
they are usually grown until they reach sexual matu-
rity. For males, this is approximately 20 weeks of 
age, when they can weigh over 20 kg, compared to a 
3-year-old male wild turkey that weighs a mere 9 kg 
(Pond and Bell 2004).

Eggs produced globally are predominantly from 
chickens (Table 4), with an increase in egg produc-
tion of about 50% in the 1990s. While duck eggs lag 
far behind chicken eggs in importance, they are in 
high demand in China, several Pacific Rim coun-
tries, and Europe. There is commercial produc-
tion of quail eggs in many countries, although on a 
smaller scale. In the past, ostrich, pelican, peafowl, 
swan, and guinea fowl eggs were also valued (Bell 
and Weaver 2002).

Chicken is the most developed global poultry 
industry sector, while ducks, geese, and turkeys are 
raised more regionally (Table 5). The world leader in 
poultry stocks, except turkeys, is China. Turkeys are 

mainly produced in the USA, Europe, and Latin Amer-
ica. Turkey is second after the chicken in economic 
importance among poultry species in the USA.

Capital investment necessary for an increase in 
production is roughly US $1 per kilogram for both 
eggs and broilers. Investment for new facilities in 
the poultry industry has been US $4 billion annu-
ally worldwide. During the 1990s, over US $40 bil-
lion was invested in the world chicken industry. It 
is likely that the world increase in chicken meat 
and egg production will continue into the twenty-
first century, but not at such a rapid pace (Bell and 
Weaver 2002).

In addition to low production costs, one of the 
main reasons that poultry meat consumption has 
increased in the last decade is the nutritional value of 
the meat (Table 6). The fat in poultry meat is located 
in the skin and is therefore easily removable com-
pared to other meats, enabling consumers to adopt a 
more low-fat type of meat in their diets. In addition, 
the fat in poultry meat is lower in saturated fatty acids 
and higher in unsaturated fatty acids. This fat deposi-
tion can vary among species and is diet-dependent. 
Therefore, poultry meat can easily be incorporated 
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into a well-balanced diet to improve health (Pond 
and Bell 2004).

Eggs are not only palatable, but are also consid-
ered to be a healthy food (Bell and Weaver 2002). Its 
protein value is the highest of all food, it is easy to 
digest, and its calories and fat content are moderate 
(Table 7). This image has been tarnished somewhat 
in the last 20 years due to increased awareness of 
cholesterol, food safety, and lack of convenience in 
preparation (Bell and Weaver 2002).

Waterfowl production is traditionally popular in 
Asia and some countries of Europe and Near East. 
One of the major features of geese is their capabil-
ity to forage on grass alone, which is impossible for 
chickens. Also, geese are willing to eat more than is 
required. Owing to this peculiarity, they have been 
used for fattening since very early times and have 
become too heavy to fly (Scherf 2000). Duck produc-
tion is not a dominant global sector, especially in 
most developed countries (Kear 1975), most likely 
because of a monogamous mating system, the depo-

sition of large amounts of fat below the swim line, a 
large bone:meat ratio in the carcass, a long incuba-
tion period of 28 days, and a breeding season con-
fined to the spring (Scherf 2000). Muscovy duck 
farming is nowadays very popular in all equatorial 
countries of Africa and Asia. In Europe and Taiwan, a 
sterile hybrid, the mulard, is commercially produced 
by crossing the Muscovy with the common domestic 
duck (Crawford 1992; Scherf 2000).

Next among poultry farming is the ostrich. The 
annual world demand for ostrich skins is almost one 
million, while their world production, largely from 
South African farms, is less than 250,000 skins a year 
(Scherf 2000). Small numbers of skins are also sup-
plied to the market from Zimbabwe, Tanzania, and 
Texas. In Australia, there were more than 35,000 
farmed ostriches in 1995 and numbers rapidly 
increased to 200,000 birds in 2000. In 1995, the local 
price for ostrich meat in Australia was Aus $40 per 
kilogram (US$29) and a pair of breeding ostriches 
sold for Aus$60,000–120,000. Currently, the demand 

Table 6 Proximate composition and energy values of raw poultry meat in avian speciesa

Species Meat type/skin Moisture % Protein % Fat % Ash % Energy (kcal/100 g)

Chicken Light, with skin 68.6 20.3 11.1 0.86 186
Chicken Light, without skin 74.9 23.2 1.6 0.98 114
Chicken Dark, with skin 65.4 16.7 18.3 0.76 237
Chicken Dark, without skin 76.0 20.1 4.3 0.94 125
Turkey Light, with skin 69.8 21.6 7.4 0.90 159
Turkey Light, without skin 73.8 23.6 1.6 1.00 115
Turkey Dark, with skin 71.1 18.9 8.8 0.86 160
Turkey Dark, without skin 74.5 20.1 4.4 0.93 125
Duck All, with skin 48.5 11.5 39.3 0.68 404
Duck All, without skin 73.8 18.3 6.0 1.06 132
Goose All, with skin 49.7 15.9 33.6 0.87 371
Goose All, without skin 68.3 22.8 7.1 1.10 161

a Pond and Bell (2004)

Table 7 Percentage composition of the chicken egga, b

Component Water Protein Lipid Carbohydrate Ash Calories (kcal/egg)

Albumen 88.0 9.7–10.6 0.03 0.4–0.9 0.5–0.6 19
Yolk 48.2 15.7–16.6 31.8–35.5 0.2–1.0 1.1 65
Whole egg 75.5 12.8–13.4 10.5–11.8 0.3–1.0 0.8–1.0 84

a 60 g egg. Shell is not included. Percentages of different components vary in different breeds
b After Bell and Weaver (2002)



 Chapter 5 Poultry 85

for ostrich meat is far in excess of supply; world 
production is only 12,000–15,000 MT as the indus-
try has not yet made a full transition from a breeder 
market to commercial production. Around 60% of 
this production is in South Africa (World Ostrich 
Association, http://www.world-ostrich.org/demand.
htm). However, the skin is the most valuable ostrich 
product (Scherf 2000). High-quality, unprocessed 
ostrich skins harvested at 14 months of age are worth 
about US $200 wholesale. The price for a domestic 
ostrich in South Africa was worth R 150 in 1979 
and included 48% for the skin, 40% for the feathers, 
and 12% for the carcass. In 1994 in Texas, the esti-
mated value of an ostrich was US $900. Processing of 
ostrich skins is done in South Africa and Germany, 
while ladies handbags, shoes, briefcases, and wal-
lets are produced from the skins in France and Italy. 
The greatest demand for these articles is from Japan 
(Scherf 2000).

The emu farming industry produces meat, skins, 
and byproducts (oil and feathers) which are sold in 
Australia and overseas, the key importers being the 
USA, Japan, France, and Southeast Asia (Scherf 2000). 
For some farms, tourism is also a source of income. 
Since 1991, farmed emus have been slaughtered in 
Australia, and there was an estimate of 85,000 birds 
available for slaughter in 1995. Emu meat is charac-
terized by a lower fat and cholesterol content, and by 
a gamey flavor. Emu oil is produced by rendering fat; 
it is utilized in cosmetics and for muscle and joint 
pain treatment. An emu was valued as US$450 in 
Texas in 1994, where there were about 30,000 birds. 
The outlook for emu farming is very promising, 
although production and processing costs will need 
to be decreased (Scherf 2000).

5.1.4
Breeding Objectives

Over the 20th century, modern selective breeding 
has resulted in spectacular progress in both egg and 
meat production traits (Burt 2002). By 2002, world 
egg production was 795 billion/year and broiler 
meat was at 6.5 million MT/year (Burt 2005). How-
ever, these successes have led to an increase in the 
incidence of undesirable conditions including con-
genital disorders (e.g., ascites, lameness), reduced 
fertility, and reduced resistance to infectious disease 

in meat-type chickens, and osteoporosis in laying 
hens. Since genetic progress in egg and meat produc-
tion could approach its limit within the next 20 years 
(Burt 2002), the poultry industry priorities would be 
to reduce losses from undesirable traits, develop new 
products with higher quality (e.g., increased egg shell 
strength), and secure greater uniformity and pre-
dictability in production. Another growing concern 
is food safety that requires a reduction in the use of 
chemicals and antibiotics and to increase genetic 
resistance to pathogens (Burt 2005).

At present, three major categories of poultry 
stocks coexist: pure fancy or exhibition breeds, indig-
enous populations, and commercial poultry. Each of 
these categories is characterized by specific features 
that depend on the needs of man. Pure breeds main-
tained by fanciers may be classified by purpose of 
use, geographical origin, evolutionary roots, and 
other criteria. Indigenous flocks are kept locally 
in primitive conditions and without any selection. 
Commercial poultry stocks involve in selected egg 
and meat-type lines and crosses. These three types 
of poultry stocks also differ in their  utility impor-
tance. Fancy fowl and indigenous populations rep-
resent genetic resources in poultry, i.e., they may be 
used as the sources of genetic variability for com-
mercial poultry and in creating new breeds and lines. 
Poultry breeders maintain breed characteristics and 
economically important traits at the standard level. 
Commercial poultry is related to commodity output. 
The main selection task in developing this type of 
poultry is to increase the productivity and viabil-
ity of industrial lines and crosses. At the same time, 
essential efforts are undertaken to lower costs of 
produce. New genetic and selection approaches and 
technologies, and genetic resources adapted to vari-
ous environment conditions are sought by the com-
mercial poultry industry.

Modern poultry breeding industry comprises 
a limited number of major companies worldwide. 
These companies maintain the foundation and great 
grandparent stock to produce commercial meat and 
egg-type lines (Bell and Weaver 2002). At first pure 
breeding was used, then, crossbreeding to exploit 
heterosis was employed between 1930 and 1950, and 
now crosses of strains and synthetic lines are done 
routinely but only a few breeds and varieties are used. 
White Leghorns (WL) dominate white egg produc-
tion, Rhode Island Red (RIR) and a few others are 
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used for brown eggs, and White Cornish and White 
Plymouth Rocks for meat (Crawford 1995). However, 
there is a tendency to utilize more breeds in commer-
cial poultry, especially those breeds adapted to local 
environments or suitable to meet consumer prefer-
ences (Altukhov 2004).

The genetic performance of the birds is a main 
target of breeding in the poultry industry. Traits for 
selection, or at least monitoring, by egg-type chicken 
breeders include age of sexual maturity, rate of lay 
before and after molt, livability in the growing and 
laying house, egg weight, body weight (BW), feed con-
version, shell color, shell strength, albumen height, 
egg inclusions (blood and meat spots) and tempera-
ment, as well as traits associated with the productiv-
ity of the parent (Keeton et al. 2003). Since the early 
1980s, the increasing proportion of eggs used in food 
processing has added such traits as percentage solids 
and lipids in the egg. Egg production per hen housed 
remains the  single selected trait, although its major 
component is now considered to be persistency of lay 
rather than peak rate of lay. Importance of selection for 
disease resistance varies from one breeding company 
to another. In meat-type chickens, breeding objec-
tives include broiler growth rate, meat yield traits, liv-
ability, hatching egg production, and fertility (Keeton 
et al. 2003), as well as decreased abdominal and car-
cass fat, and lower feed conversion. Skeletal problems, 
such as leg weakness, in commercial broiler, egg lay-
ing, and breeder flocks represent another major chal-
lenge for poultry breeding and selection  (Bennett 
and Ijpelaar 2003).

5.2
Classic Genetics

5.2.1
Brief History of Poultry Genetics

Analysis of inheritance in the chicken began more 
than one century ago and led to the development 
of the classical genetic map (Fig. 5). The first genes 
assigned to a single chromosome were sex-linked 
(reviewed by Crawford 1990; Romanov et al. 2004). 
In about the mid-twentieth century, poultry immu-
nogenetics began. Cytogenetics as a branch of poul-
try genetics appeared in the early 1960s and became 
another research avenue in the field of avian hered-

ity. The chicken has been a model for cytogenetic 
research given that its chromosomal morphology 
and behavior parallels that of other animal species 
(Crawford 1990). Chromosome numbers for some 
avian species are given in Table 8.

Recent progress in molecular biology, cytoge-
netics, and DNA technologies have resulted in novel 
tools to address chicken gene mapping and genom-
ics issues. In the 1990s, configurations of chicken 
molecular and cytogenetic maps were significantly 
advanced. The application of bacterial artificial chro-
mosome (BAC) libraries, BAC-contig physical maps, 
expressed sequence tags (EST), and whole-genome 
sequencing has provided new prospects in chicken 
genomics (reviewed by Romanov  et al. 2004).

The chicken haploid genome has about 1.2 × 109 
base pairs of DNA (Stevens 1986; Bloom et al. 1993; 
Bennett et al. 2003) arranged on 38 pairs of autosomes 
as well as the Z and W sex chromosomes (Yamashina 
1944). Many of the autosomes are small microchro-
mosomes and, unlike the larger macrochromosomes, 
cannot be identified by size (Ohno 1961; Crawford 
1990). This intricacy of the genome composition 
has impeded mapping of chicken genes and sorting 
of chicken chromosomes. Current molecular and 
physical maps for the chicken encompass more than 
2,000 genes and markers and other advanced chicken 
genomic resources also exist (Romanov et al. 2004).

5.2.2
Early Classical Mapping Efforts

After the rediscovery of Mendel’s laws, Bateson 
and Saunders (1902) wrote one of the first articles 
devoted to hereditary characters or “allelomorphs” 
(now known as “alleles”) in the chicken and some 
other organisms. This was the first introduction of 
the domestic fowl as a classical genetic model (see 
reviews by Pisenti et al. 1999; Romanov et al. 2004). 
The notion of “linkage” emerged thanks to Sut-
ton (1903) who claimed that “all the allelomorphs 
represented by one chromosome must be inherited 
together.” Lock (1906) also suggested that linkage 
might happen if genes lie on the same chromosome. 
Other geneticists extended these ideas in subsequent 
decades. Thomas Hunt Morgan demonstrated cross-
ing over, a form of chromosomal recombination 
between closely linked genes (Morgan 1910, 1911). 
Morgan received the Nobel Prize in Physiology or 
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Medicine in 1933 for postulating the role that chro-
mosomes play in heredity.

The discovery of gene linkage and crossing over 
became the beginning of classical genetic map devel-
opment. It was found that the stronger linkage between 
two genes, the shorter distance between them, and to 
measure this linkage, the frequency of crossing over 

was exploited. In honor of Morgan, the map distances 
were called “centi-Morgan,” with 1% of linkage break-
age being equal to one centimorgan (1 cM) (reviewed 
by Romanov et al. 2004).

Sex linkage, as the most obvious variant of 
genetic linkage, was first reported for the imperfect 
albinism in canaries by Durham and Marryat (1908) 

Fig. 5 Outline of poultry genetics history. Around the time of rediscovery of Mendel’s laws of inheritance (1900), William 
Bateson (a), the father of modern genetics, conducted with his fellows a series of experiments in the chicken, thus introducing 
this domestic bird as a classical genetic model. By 1930, the first chicken genetic linkage map was generated by Serebrovsky (b) 
and Petrov (c). By the middle of the last century, avian immunogenetics was born and the chicken blood groups were discov-
ered thanks to efforts of L. Cole (d), Irwin, McGibbon, E. Briles (e), C. Briles, Miller (f), and many others. In 1944, Yamashina 
(g) defined the chicken karyotype, as we know it today. With the advent of molecular genetic era, the first DNA-based chicken 
linkage map was created in UK in 1992. The follow-up development of molecular maps in the USA and the Netherlands led to 
the generation of the consensus linkage map in 2000 (h, USDA Image Gallery, http://www.ars.usda.gov/is/graphics/photos/). The 
classical chicken chromosome map was last updated in 1993. In 2004, the publication of the draft chicken sequence became a 
landmark in the history of poultry genetics (i, adapted with permission from Macmillan Publishers Ltd: Nature, © 2004)
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and for the barring pattern (BARR**) in Barred Ply-
mouth Rock chickens by Spillman (1908) (reviewed 
by Romanov et al. 2004). Unlike mammals, the female 
bird is the heterogametic sex carrying the two differ-
ent sex chromosomes (now referred to as Z and W), 
while the male is the homogametic sex (ZZ). There 
were subsequent assignments of other chicken genes 
to the sex (Z) chromosome and estimation of linkage 
between them (Punnett and Bateson 1908; Bateson 

1909; Hagedoorn 1909; Bateson and Punnett 1911; 
Davenport 1911, 1912; Sturtevant 1911, 1912; Morgan 
and Goodale 1912; Goodale 1917; Haldane 1921; Sere-
brovsky 1922). Dunn and Jull (1927) found a close link-
age between the genes for dominant white (I, or SILV) 
and crest (CR), and Serebrovsky and Petrov (1928) 
reported on creeper (CP) and rose comb (R) that were 
the first known instances of  autosomal  linkage. Loci 
mapped by classical mating are  presented in Table 9.

Table 8 Genome size of the selected avian species

Species Chromosome C value (pg)a Reference

 number (2n)

Gallus gallus (red junglefowl) 78 1.25 Crawford (1990), Gregory (2006)
Coturnix japonica (Japanese quail) 78 1.29–1.41 Crawford (1990), Gregory (2006)
C. coturnix (common quail) 78 1.35 Gregory (2006)
Meleagris gallopavo (turkey) 80 1.31–1.68 Crawford (1990), Gregory (2006)
Numida meleagris (helmeted guinea fowl) 78 1.23–1.31 Crawford (1990), Gregory (2006)
Pavo cristatus (Indian peafowl) 76 — Sasaki et al. (1968)
Phasianus colchicus (ring-necked pheasant) 82 0.97–1.27 Crawford (1990), Gregory (2006)
Chrysolophus pictus (golden pheasant) 82 1.21 Gregory (2006)
Lophura nycthemera (silver pheasant) 80 — Schmid et al. (2000)
Anas platyrhynchos (mallard) 80 1.24–1.54 Crawford (1990), Gregory (2006)
Cairina moschata (Muscovy duck) 80 1.00–1.34 Crawford (1990), Gregory (2006)
Anser anser (graylag goose) 80 1.08b Crawford (1990), Gregory (2006)
A. cygnoides (swan goose) 80 or 82+ 1.08b Crawford (1990), Gregory (2006)
Cygnus olor (mute swan) 80 1.48 Gregory (2006)
Struthio camelus (ostrich) 80 2.16 Gregory (2006)
Rhea americana (greater rhea) 80 — Gunski and Giannoni (1998)
Dromaius novaehollandiae (emu) 80 1.55–1.63 Gregory (2006)
Casuarius spp. (cassowary) 80 — Takagi et al. (1972)
Apteryx australis (brown kiwi) 80 — De Boer (1980)
Columba livia (rock pigeon) 80 1.14–1.65 Gregory (2006)
Streptopelia roseogrisea (African collared dove) 78 — Schmid et al. (2000)
Serinus canaria (island canary) 80 1.48–1.62 Gregory (2006)
Taeniopygia guttata (zebra finch) 80 1.25 Pigozzi and Solari (1998), 
    Gregory (2006)
Psittacula krameri (rose-ringed parakeet) 68 1.37 Gregory (2006)
Melopsittacus undulates (budgerigar) 58–60 1.02–1.37 Gregory (2006)
Grus grus (common crane) 80 1.54 Gregory (2006)
Ciconia ciconia (white stork) 68 1.58 Takagi and Sasaki (1974), 
    Gregory (2006)
Leptoptilos crumeniferus (Marabou stork) 72 1.34 Gregory (2006)
Gymnogyps californianus (California condor) 80 or 82 1.51 Raudsepp et al. (2002), 
    Gregory (2006)
Pelecanus onocrotalus (great white pelican) 66 1.25 Gregory (2006)
Falco peregrinus (peregrine falcon) 50 1.45 Gregory (2006)
Aquila chrysaetos (golden eagle) 62 1.48 Gregory (2006)

a 1 pg = 978 Mb
b C value for an unknown goose species (Gregory 2006) 
c C value for the turtle dove (Streptopelia turtur; Gregory 2006)
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Table 9 Classical chicken loci reviewed by Bitgood and Somes (1993)

Locus 

 symbola

Aliases Locus/gene name 

(synonym)

Classical linkage 

group

Bitgood and Somes 

(1993) chromosome

Molecular linkage 

group according to 

Schmid et al. (2000, 

2005) and other 

considerationsb

CP Cp Creeper I Presumably chro-
mosomes 2, 3, or 4

N/A [presumably 
GGA4 if controlled 
by FGFR3]

R — Comb, rose I Presumably chro-
mosomes 2, 3, or 4

N/A [presumably 
GGA4 due to link-
ing to CP]

U — Uropygial I Presumably chro-
mosomes 2, 3, or 4

N/A [presumably 
GGA4 due to link-
ing to R]

LAV lav Lavender, plumage 
color

I Presumably chro-
mosomes 2, 3, or 4

N/A [presumably 
GGA4 due to link-
ing to R]

MP Mp Ametapodia I Presumably chro-
mosomes 2, 3, or 4

N/A [presumably 
GGA4 due to link-
ing to R]

FR fr Fray II Presumably chro-
mosomes 2, 3, or 4

N/A [possibly 
E22C19W28_
E50C23 due to 
linking to SILV]

CR Cr Crest, tassel feather 
length

II Presumably chro-
mosomes 2, 3, or 4

N/A [possibly 
E22C19W28_
E50C23 due to 
linking to SILV]

SILV I, PMEL17, MMP, 
MMP115

Silver homolog 
(mouse) [dominant 
white plumage 
color; 115-kDa 
melanosomal 
matrix protein]

II Presumably chro-
mosomes 2, 3, or 4

E22C19W28_
E50C23

F f Frizzle, feather 
structure

II Presumably chro-
mosomes 2, 3, or 4

E22C19W28_
E50C23

BCDO2 w, W, APOA1 Beta-carotene
dioxygenase 2

III 1 GGA24

CPHH Ea-H, EAH Erythrocyte 
alloantigen H 
(blood group 
system H)

III 1 N/A [possibly 
GGA24 due to 
 linking to APOA1]

SE se Sleepy-eye III 1 N/A [possibly 
GGA1 due to 
 linking to CPJJ]

CPJJ Ea-J, EAJ Erythrocyte alloan-
tigen J (blood group 
system J)

III 1 N/A [possibly 
GGA1 due to 
 linking to O]

(continued)
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Table 9 (Continued)

Locus 

 symbola

Aliases Locus/gene name 

(synonym)

Classical linkage 

group

Bitgood and Somes 

(1993) chromosome

Molecular linkage 

group according to 

Schmid et al. (2000, 

2005) and other 

considerationsb

P — Pea comb III 1 N/A [possibly 
GGA1 due to link-
ing to ALVE1]

CHA cha Charcoal III 1 N/A [possibly 
GGA1 due to link-
ing to P]

DB Db, ma Dark brown Colum-
bian-type plumage 
pattern (marbling)

III 1 N/A [possibly 
GGA11 due to link-
ing to MC1R]

MC1R E Melanocortin 1 
receptor (alpha 
melanocyte stimu-
lating hormone 
receptor) [extended 
black plumage pat-
tern]

III 1 GGA11

TAFF t Feathering, 
retarded-tardy 
feather growth

III 1 N/A [possibly 
GGA11 due to link-
ing to MC1R]

ML Ml Melanotic, plumage 
pattern

III 1 N/A [possibly 
GGA11 due to link-
ing to MC1R]

PG Pg Patterning gene, 
penciling, feather 
pattern

III 1 N/A [possibly 
GGA11 due to link-
ing to ML]

CPPP Ea-P, EAP Erythrocyte alloan-
tigen P (blood 
group system P)

III 1 (questionable 
assignment)

GGA3

NA Na Naked neck III 1 (questionable 
assignment)

GGA3

H h Silkiness, feather 
structure

III 1 (questionable 
assignment)

N/A [possibly 
GGA3 due to link-
ing to NA]

FL Fl Flightless III 1 (questionable 
assignment)

N/A [possibly 
GGA3 due to link-
ing to H]

CYP19A1 Hf, HF, P450arom, 
MCW0357, 
CYP19

Cytochrome P450, 
family 19, subfamily 
A, polypeptide 1 
(aromatase; henny 
feathering, feather 
structure)

III 1 GGA10

GH1 Gh, ROS0118, GH Growth hormone 1 III 1 GGA27

(continued)
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Table 9 (Continued)

Locus 

 symbola

Aliases Locus/gene name 

(synonym)

Classical linkage 

group

Bitgood and Somes 

(1993) chromosome

Molecular linkage 

group according to 

Schmid et al. (2000, 

2005) and other 

considerationsb

CPDD Ea-D, EAD Erythrocyte alloan-
tigen D (blood 
group system D)

III 1 N/A

CPII Ea-I, EAI Erythrocyte alloan-
tigen I (blood group 
system I)

III 1 GGA23

ALVE1 ev1, ev-1,EV1 Endogenous retro-
virus 1

III 1 GGA1

PE pe Perosis III 1 N/A [possibly 
GGA1 due to link-
ing to SE]

MB Mb Muffs and beard, 
feather length

III 1 N/A [possibly 
GGA24 due to link-
ing to CPHH]

CPCC Ea-C, EAC Erythrocyte alloan-
tigen C (blood 
group system C)

III 1 N/A

CPEE Ea-E, EAE Erythrocyte alloan-
tigen E (blood 
group system E)

III 1 GGA26

CPAA Ea-A, EAA Erythrocyte alloan-
tigen A (blood 
group system A)

III 1 GGA26

PTI(?)c Pti-? Ptilopody, feathered 
shank

III 1 N/A [possibly 
GGA24 due to link-
ing to APOA1]

ALVE4 ev4, ev-4, EV4 Endogenous retro-
virus 4

III 1 GGA6

ALVE5 ev5, ev-5, EV5 Endogenous retro-
virus 5

III 1 N/A [cytogeneti-
cally assigned to 
GGA1; could also 
be on GGA6 due to 
linking to ALVE4]

ALVE6 ev6, ev-6, EV6, 
ALVE6A

Endogenous retro-
virus 6

III 1 GGA1

ALVE13 ev13, ev-13, EV13 Endogenous retro-
virus 13

III 1 N/A [cytogeneti-
cally assigned to 
GGA1]

ALVE8 ev8, ev-8, EV8 Endogenous retro-
virus 8

III 1 N/A [cytogeneti-
cally assigned to 
GGA1]

ALVE(?) ev(?) Avian leukosis virus 
(ALV) provirus

III 1 N/A

(continued)
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Table 9 (Continued)

Locus 

 symbola

Aliases Locus/gene name 

(synonym)

Classical linkage 

group

Bitgood and Somes 

(1993) chromosome

Molecular linkage 

group according to 

Schmid et al. (2000, 

2005) and other 

considerationsb

HBG2 HGB, HBB, HBB@ Hemoglobin, 
gamma 
G (hemoglobin, 
beta)

III? 1 or 2 GGA1

HBG1 or 
HBE1

HBE or HBR Hemoglobin, 
gamma A or epsilon 
1 (globin, epsilon 
or rho; embryonic 
beta-like globins)

III? 1 or 2 N/A [assigned to 
GGA1 or GGA2 by 
chromosomal frac-
tionation; linked to 
HBD; assembled on 
GGA1]

D — Cup-, V-type duplex 
comb

IV Presumably chro-
mosomes 2, 3, or 4

N/A [probably 
GGA2 due to link-
ing to LMBR1 and 
M]

M — Spurs, multiple IV Presumably chro-
mosomes 2, 3, or 4

N/A [probably 
GGA2 due to link-
ing to LMBR1]

LMBR1 Po, PO Limb region 1 
homolog (mouse) 
[polydactyly, dupli-
cate polydactyly]

IV Presumably chro-
mosomes 2, 3, or 4

GGA2

VLDLR Ro, RO Very low-density 
lipoprotein receptor 
(restricted ovula-
tor)

V Z GGAZ

SH sh Shaker V Z N/A

N n Naked V Z N/A

PX px Paroxysm V Z N/A

LN ln Lethal liver necrosis V Z N/A

GHR dw, DW Growth hormone 
receptor (sex-linked 
dwarfism)

V Z GGAZ

WL wl Sex-linked wingless V Z N/A

PN pl Prenatal lethal V Z N/A

K ev21 Sex-linked late 
feathering

V Z GGAZ

SLC45A2 S Solute carrier 
family 45, mem-
ber 2 (silver, gold, 
albinism plumage 
color)

V Z N/A [assembled on 
GGAZ]

LK lk Ladykiller V Z N/A

LI Li Light down V Z N/A

(continued)
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Table 9 (Continued)

Locus 

 symbola

Aliases Locus/gene name 

(synonym)

Classical linkage 

group

Bitgood and Somes 

(1993) chromosome

Molecular linkage 

group according to 

Schmid et al. (2000, 

2005) and other 

considerationsb

ABCA1 y, Y ATP-binding cas-
sette, subfamily A 
(ABC1), member 1 
(sex-linked reces-
sive white skin)

V Z N/A [assembled on 
GGAZ]

BR br Brown eye V Z N/A

ID Id Dermal melanin 
inhibitor

V Z GGAZ

BARR B Barring dilution 
sex-linked feather 
pattern

V Z N/A

KO ko Head streak V Z N/A

ALVE7 ev7, ev-7, EV7 Endogenous retro-
virus 7 (defective 
ALV provirus)

V Z N/A [cytogeneti-
cally assigned to 
GGAZ]

ALVE21 ev21, ev-21, EV21 Endogenous retro-
virus ev21

V Z GGAZ

BA ba Baldness, congenital V Z N/A

CD cd Cerebellar degen-
eration

V Z N/A

CHOC — Chocolate plumage 
color, sex-linked

V Not reviewed N/A

CHZ chz Sex-linked chon-
drodystrophy

V Z N/A

CM cm Sex-linked colo-
boma

V Z N/A

DP4 dp-4 Diplopodia-4 V Z N/A

GA ga Gasper V Z N/A

HZ H-Z Z-linked histoan-
tigen

V Z N/A

J j Jittery V Z N/A

POP pop Pop-eye V Z N/A

PR pr Protoporphyrin 
inhibitor

V Z N/A

PW1 Pw1, Pw
1 Agglutinogen, 

pokeweed (“Pw1” 
agglutinogen)

V Z N/A

PW2 Pw2, Pw
2 Agglutinogen, 

pokeweed (“Pw2” 
agglutinogen)

V Z N/A

RG rg Recessive sex-linked 
dwarf

V Z N/A

SLN sln Sex-linked nervous 
disorder

V Z N/A

(continued)
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Table 9 (Continued)

Locus 

 symbola

Aliases Locus/gene name 

(synonym)

Classical linkage 

group

Bitgood and Somes 

(1993) chromosome

Molecular linkage 

group according to 

Schmid et al. (2000, 

2005) and other 

considerationsb

ST1 St1, St
1 Agglutinogen, 

potato (“St1” agglu-
tinogen)

V Z N/A

ST2 St2, St
2 Agglutinogen, 

potato (“St2” agglu-
tinogen)

V Z N/A

XL xl Sex-linked lethal V Z N/A

Z — Dominant sex-
linked dwarf

V Z N/A

— sex Sex-linked lethal 
Bernier

V Z N/A

HW H-W W-linked histoan-
tigen

VI? W (questionable 
assignment)

N/A

PPAT Ade-A, ADEA, 
GPAT

Phosphoribosyl 
pyrophosphate 
ami dotransferase 
(adenine synthe-
sis A)

VII 6 N/A [linked to 
ALB and PGM2 as 
shown by somatic 
cell hybridization; 
assembled on 
GGA4]

ALB Alb Albumin (serum 
preproalbumin)

VII 6 GGA4

GC Gc, VTDB Group-specific 
component (vita-
min D-binding 
protein)

VII 6 GGA4

PGM2 Pgm-2, 
RCJMB04_33e1

Phosphogluco-
mutase 2

VII 6 N/A [linked to 
ALB and PPAT as 
shown by somatic 
cell hybridiza-
tion; assembled on 
GGA4]

ADEB Ade-B Adenine 
synthesis B

VIII 7 N/A

DMD dys Dystrophin (muscu-
lar dystrophy, Duch-
enne and Becker 
types)

IXd 10 N/A [cytogeneti-
cally assigned to 
GGA10 but 
assembled on GGA1 
sequence]

THRA c-erb-A, ERBA1, 
THRA1

Thyroid hormone 
receptor, alpha 
[erythroblastic 
leukemia viral 
(v-erb-a) oncogene 
homolog, avian]

IX Presumably chro-
mosomes 10–14

N/A [assigned to a 
microchromosome 
by chromosomal 
fractionation; 
assembled on UN]

(continued)
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Table 9 (Continued)

Locus 

 symbola

Aliases Locus/gene name 

(synonym)

Classical linkage 

group

Bitgood and Somes 

(1993) chromosome

Molecular linkage 

group according to 

Schmid et al. (2000, 

2005) and other 

considerationsb

ETS1 c-ets, c-ets-1, 
ETSB, MCW0075, 
LOC768354

v-ets erythrob-
lastosis virus E26 
oncogene homolog 
1 (avian)

IX Presumably chro-
mosomes 9–16

GGA24

FES c-fps, LOC429374 Feline sarcoma 
oncogene

IX Presumably chro-
mosomes 9–16

N/A [assigned to a 
microchromosome 
by chromosomal 
fractionation; 
assembled on 
GGA10]

RAF1 c-mil/mht, MIL v-raf-1 murine 
leukemia viral 
oncogene homolog 
1

IX Presumably chro-
mosomes 9–16

N/A [assigned to a 
microchromosome 
by chromosomal 
fractionation; 
assembled on 
GGA12 sequence]

SRC c-src, MCW0050, 
SDR, PP60C-SCR

v-src sarcoma 
(Schmidt-Ruppin 
A-2) viral oncogene 
homolog (avian)

IX Presumably chro-
mosomes 10–12

N/A [cytogeneti-
cally assigned to a 
microchromosome 
10, 11 or 12; assem-
bled on GGA20 
sequence]

HCK ev3, ev-3, 
EV3, ALVE3, 
LOC419280

Hemopoietic cell 
kinase (endogenous 
retrovirus 3)

IX Microchromosome GGA20

HPRT1 hprt, HPRT Hypoxanthine 
phosphoribosyl-
transferase 1

IX Microchromosome GGA4

OVM Ovm, LOC416236, 
LOC396462

Ovomucoid IX Presumably chro-
mosomes 10–15

GGA13

TF Tf Transferrin 
(ovotransferrin, 
conalbumin)

IX Presumably chro-
mosomes 9–12

N/A [cytogeneti-
cally assigned to a 
microchromosome; 
assembled on GGA9 
sequence]

TK1 Tk-F, tk-F, TK Thymidine kinase 1, 
soluble (cytosol F)

IX Microchromosome N/A [assigned to 
a microchromo-
some by somatic 
cell hybridization; 
assembled on 
GGA18 sequence]

HBA1 HBA, HBA@, 
HBAA

Hemoglobin, alpha 
1 (hemoglobin, 
alpha A)

IX Presumably chro-
mosomes 10–15

GGA14

(continued)
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Table 9 (Continued)

Locus 

 symbola

Aliases Locus/gene name 

(synonym)

Classical linkage 

group

Bitgood and Somes 

(1993) chromosome

Molecular linkage 

group according to 

Schmid et al. (2000, 

2005) and other 

considerationsb

HBA2 HBAD, 
LOC416651

Hemoglobin, alpha 
2 (hemoglobin, 
alpha D)

IX Presumably chro-
mosomes 10–15

GGA14

HBZ — Hemoglobin, zeta 
(hemoglobin, pi and 
pi-prime; embryonic 
alpha-like globin)

IX Presumably chro-
mosomes 10–15

N/A [linked to 
HBA1 and HBAD; 
assembled on 
GGA14 sequence]

HLA-B B@, MHC, HLA, 
LOC769497

Major histocom-
patibility complex 
(MHC), class I, B

X 17 GGA16

MHCB B-G, Ea-B MHC B complex, 
class IV, B-G region

X 17 GGA16

HLA-G B-F, B-FL1, BF1, 
BF2, MHC1

MHC B complex, 
class I, B-F region

X 17 GGA16

HLA-DRB5 B-L, B-LBL2, 
B-LBL1, MHC2A, 
MHC2B, 
LOC425256

MHC B complex, 
class II, B-L region

X 17 GGA16

CPBB Ea-B, EAB Erythrocyte alloan-
tigen B (blood 
group system B)

X 17 GGA16

GAT Ir-GAT Immune response 
to synthetic 
polypeptide

X 17 N/A [GGA16 due to 
linking to MHC]

R-Rs-1 Rs Subgroup C Rous 
sarcoma virus-
induced tumor 
regression

X 17 N/A [GGA16 due to 
linking to GAT]

NOR — Nucleolar organiz-
ing region

X 17 N/A [GGA16 due to 
linking to MHC]

ACT act Macrophage activa-
tion

X 17 N/A [probably 
GGA16 due to link-
ing to MHC]

ALVE(?) ev(?) ALV provirus X 17 N/A [probably 
GGA16 due to link-
ing to MHC]

EGFR c-erb-B, 
LOC396494

Epidermal growth 
factor receptor 
[erythroblastic 
leukemia viral 
(v-erb-b) oncogene 
homolog, avian]

I, II, or IV? 2 GGA2

ALVE2 ev2, ev-2, EV2 Endogenous retro-
virus 2 (codes for 
RAV-0)

I, II, or IV? 2 GGA1

(continued)
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Table 9 (Continued)

Locus 

 symbola

Aliases Locus/gene name 

(synonym)

Classical linkage 

group

Bitgood and Somes 

(1993) chromosome

Molecular linkage 

group according to 

Schmid et al. (2000, 

2005) and other 

considerationsb

SHL shl Shankless I, II, or IV? 2 N/A [assigned to 
GGA2 based on an 
X-ray-induced peri-
centric inversion 
on 2p]

OV Ov, pUN121ov, 
LOC396058

Ovalbumin I, II, or IV? 2 or 3 GGA2

G(3) G
3
, G3 Egg white ovoglob-

ulin G(3)
I, II, or IV? 2 or 3 N/A [probably 

GGA2 due to link-
ing to OV]

MYC c-myc, CMYCA v-myc myelocy-
tomatosis viral 
oncogene homolog 
(avian)

I, II, IV, or IX? Presumably chro-
mosomes 2, 3, or 
13–16

GGA2

MYB c-myb, ROS0064 v-myb myeloblas-
tosis viral oncogene 
homolog (avian)

I, II, IV, or IX? Presumably chro-
mosomes 2, 3, or 
13–16

GGA3

ACTB LOC396526, 
RCJMB04_4h19

Actin, beta I, II, IV, or IX? Presumably chro-
mosomes 2 or 9–12

N/A [cytogeneti-
cally assigned to 
GGA2; assembled 
on UN sequence]

ALVE14 ev14, ev-14 Endogenous retro-
virus 14

I, II, or IV? 3 N/A [cytogeneti-
cally assigned to 
GGA3]

CPMM Ea-M, EAM Erythrocyte alloan-
tigen M (blood 
group system M)

— UN N/A [linked to 
CPQQ]

CPQQ Ea-Q, EAQ Erythrocyte alloan-
tigen Q (blood 
group system Q)

— UN N/A [linked to 
CPMM]

CPOO Ea-O, EAO Erythrocyte alloan-
tigen O (blood 
group system O)

— UN N/A [linked to 
CPSS]

CPSS Ea-S, EAS Erythrocyte 
alloantigen S (blood 
group system S)

— UN N/A [linked to 
CPOO]

ES1 Es-1 Serum esterase 1 — UN N/A [presumably 
GGA2 due to link-
ing to ES2]

ES2 Es-2 Serum esterase 2 — UN N/A [presumably 
GGA2 if controlled 
by PON2; linked to 
ES1]

(continued)
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Table 9 (Continued)

Locus 

 symbola

Aliases Locus/gene name 

(synonym)

Classical linkage 

group

Bitgood and Somes 

(1993) chromosome

Molecular linkage 

group according to 

Schmid et al. (2000, 

2005) and other 

considerationsb

IGY IgG-1, IGG Immunoglobulin 
7S-1 IgG H chain

— UN GGA15

IGM IgM-1 Immunoglobulin 
17S-1 IgM H chain

— UN GGA15

TVA Tv-A, tva ALV subgroup A 
receptor

— UN GGA28

BTN1A1 Tv-C, tvc, TVC Butyrophilin, sub-
family 1, member 
A1 (ALV subgroup 
C receptor)

— UN GGA28

RHOBTB2 Tv-B, TVBS3, 
CAR1, TVB

Rho-related BTB 
domain containing 
2 (cytopathic ALSV 
receptor; ALV sub-
group B receptor)

— UN GGA22

TVE Tv-E, SEAR ALV subgroup E 
receptor

— UN N/A [GGA22 
due to linking to 
RHOBTB2; assem-
bled on GGA22 as 
RHOBTB2]

CHRND — Cholinergic recep-
tor, nicotinic, delta

— UN N/A [assembled 
on GGA9; linked to 
CHRNG]

CHRNG — Cholinergic recep-
tor, nicotinic, 
gamma

— UN N/A [assembled 
on GGA9; linked to 
CHRND]

LOC396498 cryd1, CRYD1, 
d-cry

Crystallin, delta 1 — UN N/A [assembled on 
GGA19; linked to 
ALS]

ASL cryd2, CRYD2 Argininosuccinate 
lyase (crystallin, 
delta 2)

— UN N/A [assigned to 
GGA19 by RH map-
ping; assembled on 
GGA19; linked to 
LOC396498]

BL Bl Blue plumage color — Not reviewed N/A [possibly 
GGA3 (if linked 
to NA), GGA1 
(if controlled by 
KITLG) or GGA4 (if 
encoded by KIT)]

FM Fm Fibromelanosis — Not reviewed N/A [possibly 
GGA11 due to 
linking to MC1R or 
GGA4 if controlled 
by EDNRB2]

(continued)
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Table 9 (Continued)

Locus 

 symbola

Aliases Locus/gene name 

(synonym)

Classical linkage 

group

Bitgood and Somes 

(1993) chromosome

Molecular linkage 

group according to 

Schmid et al. (2000, 

2005) and other 

considerationsb

TYR c Tyrosinase (oculo-
cutaneous albinism 
IA) [autosomal 
albinism]

— Not reviewed GGA1

N/A, not assigned to the molecular map; UN, unknown chromosome or linkage group.
a  According to Schmid et al. (2000, 2005). If possible and when there is a homologous human (or other mammalian) gene, the 
name of the homolog is used (Burt 1999)

b  N/A, not assigned by molecular linkage mapping. Where applicable, chromosomal location of the genes in the whole-genome 
sequence assembly is given as found in the NCBI databases (http://www.ncbi.nlm.nih.gov/; accessed August 2006)

c  There are several ptilopody loci, the one involved here has not been identified. Serebrovsky (1926) suggested at least two domi-
nant and at least two recessive feathered shank genes. Somes (1992) described two loci, PTI1 and PTI2. PTI1 has two alleles, the 
Langshan allele (PTI1*L) and the Brahma allele (PTI1*B). The Brahma allele was shown to be dominant over the Langshan allele. 
Both the Sultan and Cochin breeds possess two shank-feathering loci, and one of the loci in the Sultan contained the PTI1*L 
allele. The comparable allele in the Cochin breed was hypothesized to be PTI1*B. The second locus in both of these breeds 
appears to be similar, and the symbol PTI2 is suggested

d  Discontinued. It was not a classical group, but was convenient for listing loci on microchromosomes (Bitgood and 
Somes 1990)

5.2.3
First Chicken Map

The first chicken genetic map was constructed by a 
Russian group led by A.S. Serebrovsky (Serebrovsky 
and Wassina 1927; Serebrovsky and Petrov 1928, 1930; 
Petrov 1931; Sungurov 1933). It was also the first link-
age map ever developed for any domestic animal and, 
as such, was a great milestone in the history of genet-
ics (reviewed by Romanov et al. 2004). Serebrovsky’s 
group launched mapping of chicken genes in 1919 at 
the Central Station for Livestock Genetics, Anikovo. 
Serebrovsky and Petrov (1930) undertook one of the 
first attempts to summarize the available information 
on chicken linkage groups, six years before the arti-
cle by FB Hutt (1936), but their work was overlooked 
or not properly credited by others (Moiseyeva et al. 
2000; Romanov et al. 2004). The 1930 chicken map 
comprised four linkage groups with 12 genes and four 
other unlinked genes (Fig. 6) and was improved in two 
amendments published by Petrov (1931) and Sungurov 
(1933). Aggregated together, the map designed by Ser-

ebrovsky, Petrov, and Sungurov, with the acknowl-
edged assistance of Serebrovskaya, Wassina, Rebrina, 
Kobystina, Ovsyannikova, and Grechka, included 15 
chicken genes on six linkage groups: I, or Z chromo-
some (ID-BARR-SLC45A2-K), II (CP-R), III (NA-BL), 
IV (LMBR1-D), VI (MC1R-FM), and IX (CR-SILV–F), 
plus six independent loci (P, APOA1, MB, TYR, PTI1, 
and PTI2), and the recessive ptilopody gene*. The link-
age group assignments or independent positions for 
these loci have been recently confirmed by molecular 
mapping (Sazanov et al. 1998; Okimoto et al. 1999; Pitel 
et al. 2000; Smith et al. 2000b, 2001a; Schmid et al. 2000; 
Kerje et al. 2003; Huang et al. 2006a).

These early linkage mapping efforts were sup-
plemented by Dunn and Jull (1927), Warren (1928, 
1933, 1935), Dunn and Landauer (1930), Jull (1930), 
Landauer (1931), Suttle and Sipe (1932), Hertwig 
(1933), Hutt (1933), Warren and Hutt (1936), and 
others. Hutt (1936) prepared the second map that 
consisted of 18 genes assigned to five linkage groups 
(Fig. 6). For some reason, Hutt did not provide any 
appropriate credit to the Serebrovsky and Petrov 

*The numbering of true linkage groups (I–IV, VI, and IX) takes into account three independent loci (P, APOAI, and MB) that were 
also considered by Serebrovsky, Petrov, and Sungurov as single linkage groups V, VII, and VIII, respectively.
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Romanov et al. 2004). The concept suggested that 
a signal gene does not affect an economic trait 
by itself. However, if located near a gene for an 
economic trait, it serves as a landmark for deter-
mining the latter. The accuracy of predicting such 
an association between the signal gene and the 
economic trait gene depends on the position of the 
signal gene relative to the trait gene, and the best 
prediction is achieved with two signal genes closely 
flanking the economic trait gene. Knowledge of a 
thorough chromosome map is a prerequisite for 
using the signal gene approach.

The Serebrovsky and Petrov (1930) and Hutt 
(1936) maps were further advanced by revisions of 
Hutt and Lamoreux (1940), Hutt (1949, 1960, 1964), 
Etches and Hawes (1973), Somes (1973, 1978, 1987), 
and Crawford (1990). The last update of the map (Bit-
good and Somes 1993) listed 140 loci/traits including 
morphological mutations, biochemical polymor-
phisms, and chromosomal breakpoints (Romanov 
et al. 2004). Physical map positions were established 
for 41 single gene loci on five autosomal linkage groups 
and the Z chromosome (Tables 9 and 10). Moreover, 
there were 83 loci/traits assigned to one of the groups 
or chromosomes but without exact mapping infor-
mation (including 25 loci/traits placed on micro-

chromosomes), and eight pairs of linked markers 
are not anchored to a linkage group.

5.3
Molecular Genetics and 
Whole-Genome Sequence

5.3.1
First-generation Molecular Maps

In the 1990s, three reference mapping populations were 
developed for the chicken (reviewed by Romanov et al. 
2004): the Compton population created at the Institute 
for Animal Health, UK (Bumstead and Palyga 1992); 
the East Lansing (EL) population developed at Michi-
gan State University in collaboration with the United 
States Department of Agriculture (USDA) Avian Dis-
ease and Oncology Laboratory and the University 
of California at Davis, USA (Crittenden et al. 1993; 
Cheng et al. 1995); and the Wageningen University, 
Netherlands population (Groenen et al. 1998). The EL 
population involved 400 back cross (BC) progeny from 
two highly inbred lines, UCD001 (red junglefowl) and 
UCD003 (WL). The BC design maximized variation of 
the DNA markers to be mapped, so that each autosomal 

Table 10 Breakdown of the updated classical gene map (Bitgood and Somes 1993) of the chicken

Classical  linkage 

group
I II III IV V VI VII VIII X IXa

Chromosome GGA2, 
GGA3 or 
GGA4

GGA2, 
GGA3 or 
GGA4

GGA1 GGA2, 
GGA3 or 
GGA4

GGAZ GGAW GGA6 GGA7 GGA17 
(now 
GGA16)

Other 
micro-
chromo-
somes

No. of mapped 
loci

3 4 12 3 17 0 0 0 2 0

No. of assigned 
loci precisely 
not mappedb

13c (7) See the 
table foot-
note c

23 (2) 
foot-
note c

See the 
table

21 1 4 1 8 17 (3)

a Discontinued (Crawford 1990)
b Numbers of loci assigned to more than one chromosome due to conflicting reports are given in parentheses
c  Including three loci assigned to GGA2, one to GGA3, seven to more than one chromosome due to conflicting reports, and two to 
classical group I. If the two unmapped classical group I loci are ignored, the remaining 11 loci might equally belong to classical 
groups I, II, or IV. The chromosomes containing each of these linkage groups were unknown in 1993, but they were presumably 
GGA2, GGA3, and GGA4 (Bitgood and Somes 1993)
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marker would be biallelic in the BC population. These 
three chicken linkage maps were integrated into one 
consensus map by Groenen et al. (2000). By that time, 
there were 1,965 loci localized on 26 chromosomes 
and 24 unknown linkage groups (Schmid et al. 2000). 
Further updates led to a map covering 4,200 cM with 
2,261 loci on 53 linkage groups (Schmid et al. 2005). In 
many cases, smaller subsets of individuals were used 
to build the afore-mentioned reference maps (e.g., the 
EL map was based on genotypes for only 52 animals at 
most marker loci). The Wageningen mapping popu-
lation included a larger set of animals (reviewed by 
Romanov et al. 2004).

Another chicken linkage map was developed 
using the Kobe University, Japan resource family (Lee 
et al. 2002). The integrated Hiroshima-Tsukuba map 
was also constructed in Japan using a resource popu-
lation based on a cross between Japanese Game and 
White Leghorn chickens, and 301 markers, including 
183 new ones, were localized to specific chromosomes 
either through linkage analysis or by analysis of the 
chicken draft sequence (Takahashi et al. 2005).

Initially, restriction fragment-length polymor-
phisms (RFLP) and random amplified  polymorphic 
DNA (RAPD) markers with unknown sequence infor-
mation were placed on the chicken genetic linkage 
map. Subsequently, microsatellites (or short tandem 
repeats), amplified fragment-length polymorphisms 
(AFLP), single nucleotide polymorphisms (SNP), and 
other sequence tagged site (STS) markers became the 
markers of choice. Mapped loci are subdivided in two 
classes: type I (coding sequences) and type II (anony-
mous, mainly microsatellites) markers. At present, 31 
of the 53 linkage groups have been assigned to a par-
ticular chromosome (Masabanda et al. 2004). For the 
remaining 22 linkage groups, an ExxCxxWxx number 
is used with capital letters corresponding to the linkage 
groups of the original three linkage maps: East Lans-
ing, Compton, and Wageningen (Schmid et al. 2005).

To map a mutant, experimental families segre-
gating for one or more mutations are usually con-
structed (reviewed by Romanov et al. 2004). If no 
preliminary information of the chromosomal loca-
tion of a mutant is available, a whole-genome scan 
using molecular markers is carried out (e.g., Lee 
et al. 2002). Bulked segregant analysis can essentially 
lower the cost of this approach (Michelmore et al. 
1991; Ruyter-Spira et al. 1997, 1998; Pitel et al. 2000), 

where genotyping is done on DNA samples pooled 
according to the phenotype.

Currently, the positions of 62 classical mutants 
and loci have been determined based on linkage with 
molecular markers or localization using the whole-
genome sequence assembly. There is one instance of 
discrepancy (the DMD locus) between the assembly 
data and linkage or physical mapping data (Table 9). 
The 78 classical loci/traits listed in Bitgood and Somes 
(1993) have to be assigned to the molecular map, not 
to mention many other reported classical mutations 
that have not yet been mapped. Only group I on the 
classical map that involves five mutations has not yet 
been connected with the molecular map. By analogy 
with the human and mouse short-limb disorders, the 
FGFR3 gene mapped to GGA4 (Suchyta et al. 2001) 
might contain a causative mutation for the chicken 
creeper (CP), so the position of group I could be 
expected on this chromosome (Romanov et al. 2004). 
Mapping of the crest (CR) and frizzle (F) mutations 
that flank the dominant white mutation (SILV) on 
linkage group E22C19W28_E50C23 (Ruyter-Spira 
et al. 1997) would also facilitate the integration of 
molecular and classical maps (Schmid et al. 2000). 
A preliminary study by an Indian group (GB Pant 
University of Agriculture and Technology, http://
gbpuat.ac.in/acads/cvsc/gnab.htm) demonstrated that 
the F gene is linked to ROS0054 and MCW0188 mic-
rosatellite loci on E22C19W28_E50C23. If there is a 
candidate gene for a mutation, it could be used to 
map the trait either by fluorescent in situ hybridiza-
tion (FISH; e.g., Suzuki et al. 1999b) or by identifica-
tion of a SNP within the gene (e.g., Dunn et al. 1999). 
Thus, the number of classical genes mapped with 
molecular markers is expected to increase.

Another approach for development of the genomic 
maps is the radiation hybrid (RH) panel (Brown et al. 
2003). Whole-genome radiation hybrid (WGRH) pan-
els can give higher resolution than conventional recom-
bination analysis, and no polymorphisms are required 
for RH mapping. A chicken WGRH panel (ChickRH6) 
was created at Institut National de la Recherche 
Agronomique (INRA), France, by fusion of irradiated 
(6,000 rad) chicken embryonic fibroblasts and HPRT-
deficient hamster cells (Morisson et al. 2002). The aver-
age retention rate of the chicken chromosomes was 
estimated as 21.9% in 90 clones, although it was lower 
than 20% for the two largest macrochromosomes.
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An enormous collection of chicken ESTs that can 
be used for marker design and mapping have been 
generated making it the fourteenth most plentiful 
organism in the NCBI dbEST database (http://www.
ncbi.nlm.nih.gov/dbEST/dbEST_summary.html; as of 
February 21, 2008). ESTs also serve as a source of infor-
mation for identification of expressed genes and their 
function, and for annotating genome sequence and 
physical maps (Abdrakhmanov et al. 2000; Tirunagaru 
et al. 2000; Boardman et al. 2002; Brown et al. 2003).

5.3.2
Physical Maps

A clone-based physical map is built using contiguous, 
overlapping recombinant DNA clone inserts (contigs) 
that cover all, or almost all, of the genome (reviewed 
by Romanov et al. 2004). Contigs are often con-
structed by fingerprinting, which is done by digest-
ing clones, such as BACs, with restriction enzymes. 
The resulting restriction patterns (or fingerprints) 
are then analyzed for shared fragments and overlap-
ping clones are assembled into contigs. The integra-
tion of the genetic linkage map with the physical map 
provides the critical bridge between phenotypes, i.e., 
major mutations and quantitative trait loci (QTL), 
and their causative gene/allele combinations.

Since the mid-1990s, physical mapping resources 
have become readily available for major farm animal 
species including chicken. High-density large-insert 
libraries have been generated for the chicken and 
provide 4–10-fold genome coverage (Toye et al. 1997; 
Zimmer and Verrinder Gibbins 1997; Buitkamp et al. 
1998; Crooijmans et al. 2000; Schmid et al. 2000; Kato 
et al. 2002). Using DNA from the UCD001 red jun-
glefowl female 256 (Fig. 7), three BAC libraries have 
been produced in a collaboration between Texas A 
& M University and Michigan State University, USA 
(Lee et al. 2003). Based on the same UCD001 genome, 
another BAC library has been made at the Children’s 
Hospital Oakland Research Institute (CHORI), CA, 
USA (Nefedov et al. 2003). Experimental chicken BAC 
libraries were also generated in Japan (Hori et al.
2000; Kato et al. 2002) and China (Liu et al. 2003b). 
These BAC libraries are publicly available (Table 11).

Many of these BAC libraries, including the four 
UCD001-based libraries and one derived from a WL 

chicken, have been used in physical mapping and 
genome sequencing projects (Crooijmans et al. 2000). 
BAC clones from these libraries were fingerprinted to 
build a physical contig map covering more than 90% 
of the chicken genome (Ren et al. 2003; Wallis et al. 
2004). In parallel, a BAC-based whole-genome physi-
cal map of the chicken genome was integrated with 
the linkage map by hybridizing probes containing 
markers to filter-spotted arrays (Lee et al. 2003; Ren 
et al. 2003; Romanov et al. 2003).

For integrating genetic and physical maps, a high-
throughput screening technique is BAC filter hybridiza-
tion using highly specific OVERGO probes (Romanov 
et al. 2003), which are overlapping oligo probes derived 
from specific sequence regions in known genes or 
markers. The OVERGO probes are synthesized by 
annealing two oligonucleotides that have an 8-bp over-
lap, followed by labeling in vitro. Use of OVERGOs 
facilitates pooling strategies because the melting tem-
peratures for all probes are usually the same.

Typically, a collection of OVERGOs is arranged 
for three-dimensional screening by plates, rows, and 
columns. In the case of 6 × 6 × 6 screening scheme, 
a set of 216 probes is designed, and a pool 36 OVER-
GOs is used for a single hybridization. Each probe 

Fig. 7 A female 256, the inbred red junglefowl line UCD001, 
served as a DNA source for generating BAC libraries and the 
draft sequence of the chicken genome. (Photograph courtesy 
of William S. Payne)
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can be assigned to a number of positive BAC clones 
common for a particular intersection of plate, row, 
and column (Romanov et al. 2003).

Screening of the four UCD001 BAC  libraries iden-
tified 918 genes and markers across all chromosomes 
and linkage groups, resulting in assignments of nearly 
8,000 clones. Most of the OVERGOs were single copy 
in the chicken genome and the resulting assignments 
are available online (U.S. Poultry Genome Project 
http://poultry.mph.msu.edu/resources/Resources.
htm#bacdata) and  contributed to the alignment of 
the first-generation BAC-contig map (Ren et al. 2003) 
to the linkage map (Fig. 8). They also aided in align-
ment of the second-generation physical map to the 
linkage map (Wallis et al. 2004), developed in  parallel 
with the whole-genome sequence, and resulted in 
the assignment of BAC contigs to specific chicken 
chromosomes (Fig. 9). The second- generation physi-
cal map was made at 20-fold coverage and contained 
260 contigs of 180,000+ overlapping clones. It covers 

about 91% of the chicken genome and has been used 
for determining chicken BACs aligned to positions in 
other sequenced genomes (Wallis et al. 2004).

Additionally, the physical map has been inte-
grated with the cytogenetic map. Many BACs positive 
for genes have been hybridized by FISH to several 
chicken chromosomes (e.g., Sazanov et al. 2004a, b; 
Fig. 10), and a detailed analysis of microchromosome 
17 using FISH has been conducted (Romanov et al. 
2005). The GGA17 map orientation was demonstrated 
to be different and reversed from that currently pro-
posed for the linkage map and draft sequence.

5.3.3
Whole-Genome Sequence

Over the previous 100 years of chicken genetics, 
efforts have been aimed at genetic mapping in order 
to identify, characterize, and locate genes  associated 

Fig. 8 First-generation BAC physical map of the chicken genome (after Ren et al. 2003). Example of a BAC contig anchored to 
the GGA1 genetic map. This contig consists of 142 clones from three source BAC libraries (prefixed with “h,” “b,” and “r”), con-
tains 903 unique fingerprint bands, and is estimated to span 4.01 Mb. The contig was anchored to the region around 361 cM of 
the GGA1 genetic map using five DNA markers, MSU0301, ADL0037, GCT0013, GCT0033, and ROS0081 (Groenen et al. 2000) as 
shown with the arrows. The highlighted clones indicate the positive clones identified by DNA marker hybridization
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with productivity and health of the species (Romanov 
et al. 2004). To elucidate genomic architecture 
underlying productivity and disease resistance traits, 
further progress in chicken gene discovery and, even-
tually, the complete genome sequence will be required. 
The whole-genome sequence is the ultimate physical 
map and the basis for a high-resolution linkage map 
(Dodgson 2003).

In February 2002, a “white paper” for sequencing 
the chicken genome was submitted to the US National 
Human Genome Research Institute (NHGRI). The pro-
posal stated that because of its evolutionary  distance 
from mammals (around 310 MYA), the chicken would 
make a significant contribution to  comparative ge-
nomics at the sequence level. Due to a notable level 
of conservation in gene order between mammalian 

Fig. 9 Chicken BAC tiling set from the fingerprint map for, List 003, Ctg 1203 (Martin Krzywinski, Genome Sciences Centre, 
Vancouver, Canada). The estimated minimum tiling path set consisted of 9,210 BAC clones with an average clone overlap of 77 kb 
(Wallis et al. 2004)

Fig. 10 FISH of the chicken BAC clones. 
(a) Clone b071F17 (KITLG, GGA1; Sazanov 
et al. 2004a). (b) Clone b027G23 (CTSL, 
GGAZ; Sazanov et al. 2004b; arrows indi-
cate sites of specific hybridization)
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and chicken genomes, the chicken genome is also 
a perfect model for studying the evolution of gene 
order and arrangement (Burt et al. 1999; Groenen 
et al. 2000; Waddington et al. 2000; Suchyta et al. 2001). 
The NHGRI added the chicken to the list of high-
priority genomes for sequencing, making it the first 
sequenced bird genome and also the first sequenced 
agricultural species (Jensen 2005). The project objec-
tives were to provide the assembly of a 6-fold whole-
genome shotgun coverage of the UCD001 genome and 
ordered the resulting sequence scaffolds by alignment 
to BAC, fosmid, and plasmid-paired end reads in a 
comprehensive contig map at the Washington Univer-
sity Genome Sequencing Center (WUGSC, St. Louis, 
MO, USA) (reviewed by Romanov et al. 2004). This 
strategy led to a high-quality assembly thanks to the 
relatively small size of the chicken genome (1/3 that of 
a mammal) and low repetitive DNA  content (only 11% 
compared with 40–50% in  mammals) (Burt 2005).

The approximately 1 Gigabase sequence pub-
lished in Nature by the International Chicken Genome 
Sequencing Consortium (2004) is based on DNA from 
the inbred red junglefowl female 256. At a later stage, 
gaps in the genome sequence should be finished and 
errors eliminated in the contig assembly. In particular, 
a substantial number of clone contigs have unknown 
or ambiguous chromosome assignment (Aerts 
et al. 2005). As a contribution to the assembly, Aerts 
et al. (2005) mapped 86 SNP markers derived from 
86 clones on the genetic map and, thus, anchored 56 
clone contigs and 13 individual BACs that correspond 
to a total of 57,145 clones. Another problem is a poor 
assembly of the sex chromosome sequences, which 
currently contains only 30% of the Z [expected 100 
Megabases (Mb)] and 2% of the W (expected 30 Mb) 
chromosomes, due to single copies of these chromo-
some in the female used for sequencing as well as 
high repeat content in the W chromosome. Owing to 
overlaps with an additional set of BACs sequenced to 
high quality, sequence coverage on the autosomes was 
98% (Burt 2005). The sequence was only obtained for 
30 chromosomes, although the final goal is to have 
linkage and sequence maps for all 39 chromosomes in 
the chicken genome (Schmid et al. 2005).

The draft sequence is also being annotated in 
terms of aligning and characterizing genes and other 
genome elements. Overlaps with cDNA clones sug-
gested 5–10% of genes were missing from the final 
assembly because of gene duplications (e.g., MHC

region) and GC-rich sequences (Burt 2005). The se-
quence annotation will eventually contain an esti-
mate of 20,000–23,000 chicken genes (International 
Chicken Genome Sequencing Consortium 2004).

Advanced bioinformatics resources involving 
genome browsers, genetic maps, marker and gene 
expression databases, and other related poultry 
genetics and genomics information are available on 
the World Wide Web (see the selected list at the end 
of this chapter).

5.3.4
Chicken Genome and Sequence Features

Birds are characterized by the greatest conservatism 
of genome size among vertebrate animals, with the 
diploid nuclear DNA content per nucleus ranging 
between 2.5 and 3.0 picograms (1 pg = 978 Mb) (as 
reviewed by Romanov et al. 2004). Haploid DNA con-
tent (C value) for various avian species, including the 
chicken, is presented in Table 8. The average avian 
haploid genome is 1.45 pg; flightless birds have larger 
genome sizes, with the largest one being 2.16 pg in the 
ostrich. The chicken genome is at 2.8-fold less than 
the average mammalian genome (Gregory 2006).

The size of the avian genome positively corre-
lates with red blood cell and nucleus sizes and nega-
tively with metabolic rate. There is no correlation 
with developmental rate or longevity, and no cases 
of polyploidy in birds are known. Comparatively low 
DNA content could be because of the “necessity of 
flight,” i.e., as a response to selection for high metabo-
lism/flight, or due to high evolutionary conservatism 
of this parameter, taking into consideration mono-
phyletic origin of the class Aves (Kadi et al. 1993; 
 Gregory 2006).

The avian karyotype is characterized by a 
remarkably large number and heterogeneity of chro-
mosomes. The avian karyotype contains several 
macrochromosomes (3–8 m) and numerous micro-
chromosomes (0.3–3 m) (Schmid et al. 2000). The 
chicken karyotype is thought to represent an ances-
tral type of avian karyotype (Rodionov 1997; Derju-
sheva et al. 2004).

In the past, the number of macrochromosomes 
varied in the literature between 6 and 10 pairs, includ-
ing the Z and W in the heterogametic female (Schmid 
et al. 2005). The International Chicken Genome 



108 M. N. Romanov et al.

Sequencing Consortium (2004) designated three 
chromosome size groups: large macrochromosomes 
(GGA1–5), intermediate chromosomes (GGA6–10), 
and 28 microchromosomes (GGA11–38). Masabanda 
et al. (2004) and Schmid et al. (2005) proposed a new, 
definitive classification system. In accordance with 
this classification, group A is composed of chro-
mosomes 1–10, Z, and W (cytogenetically distin-
guishable macrochromosomes tractable in a flow 
karyotype). Group B is composed of chromosomes 
11–16 (large microchromosomes up to and includ-
ing the nucleolar organizing region chromosome). 
Group C is composed of chromosomes 17–32 (small 
microchromosomes most of which associated with 
known linkage groups) and group D chromosomes 
33–38 (smallest microchromosomes not yet associ-
ated with known linkage groups).

Chicken microchromosomes constitute about 
23% of the genome and possess not less than 50% 
of the avian genes (Smith et al. 2000b; Schmid et al. 
2000). Furthermore, there are many indirect indica-
tions of the increased gene density on the microchro-
mosomes (e.g., Andreozzi et al. 2001; Habermann 
et al. 2001). The recombination frequencies in macro- 
and microchromosomes are one crossover per 30 and 
12 megabases (Mb), respectively, which is two and five 
times less than in mammals (Rodionov 1996). Detailed 
elaboration of the structural and functional organiza-
tion of chicken microchromosomes would be useful 
for both enlightening minimally required elements of 
eukaryotic chromosomes and studying the evolution 
of vertebrate karyotypes (Romanov et al. 2004).

As a result of the comparative genomics analysis, 
80 or more regions of evolutionary conservation have 
been suggested on the aligned human and chicken 
chromosomes (Burt et al. 1999; Burt 2002). This level 
of conserved grouping of orthologous genes, also 
called conserved synteny (“gene loci in different 
organisms located on a chromosomal region of com-
mon evolutionary ancestry”; Passarge et al. 1999), 
was even higher than that between the human and 
the mouse (Burt et al. 1999).

As a straightforward approach for direct physi-
cal mapping, FISH of chicken chromosomes is nor-
mally used. The intrachromosomal localization 
has been identified for around 250 type I markers 
(reviewed by Romanov et al. 2004). Moreover, many 
cytogenetically assigned large-insert clones that 
include coding sequences can be employed for com-

parative genome anchoring. There are a number 
of FISH techniques for determining hybridization 
signals that are used for chicken genome map-
ping. Using large-insert clones of genomic libraries 
like BACs as DNA probes for FISH achieves almost 
100% efficiency of hybridization, making it one of 
the most perspective approaches (Buitkamp et al. 
1998; Smith et al. 2000b; Sazanov et al. 2002). Sets 
of chromosome-specific clones and whole chromo-
some paints represent powerful tools for micro-
chromosome detection and ordering (Zimmer et al. 
1997; Fillon et al. 1998; Guillier-Gensik et al. 1999). 
To improve the resolution of FISH technique, lamp-
brush chromosomes, in addition to mitotic ones, can 
be effectively used (Mizuno and Macgregor 1998; 
Rodionov et al. 2002). Using the confocal micros-
copy, spatial distribution of the chromosome paints 
in the chicken nucleus can be examined to better 
understand micro- and macrochromosome locali-
zation features during interphase (Habermann et al. 
2001). Chromosome microisolation and microclon-
ing followed by isolation and mapping of micros-
atellite markers is another approach for increasing 
map density (Ambady et al. 2002). The combination 
of molecular and cytological approaches was dem-
onstrated in a study of the W chromosome by Itoh 
and Mizuno (2002).

Ultimately, the 6.6-fold coverage draft genome 
sequence was generated and its analysis revealed 
the following major features (International Chicken 
Genome Sequencing Consortium 2004):

● The chicken genome is characterized by a sub-
stantial decrease in interspersed repeat content, 
pseudogenes and segmental duplications, and in 
intron size. This reduction accounts for the nearly 
3-fold difference in size between the chicken and 
mammalian genomes.

● There are long blocks of conserved synteny that 
contain chicken–human aligned segments (Fig. 11).

● When comparing macro- vs. microchromosomes, 
there is a negative correlation between the size of 
chicken chromosomes and recombination rate 
(Fig. 12), G + C and CpG content, and gene density, 
but there is a positive correlation between chro-
mosome size and repeat density.

● Genes in both chicken microchromosomes and 
in subtelomeric regions of macrochromosomes 
show higher synonymous substitution rates.
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Fig. 11 Maps of conserved synteny between chicken 
chromosomes and human chromosomes (reprinted 
with permission from Macmillan Publishers Ltd: 
Nature, International Chicken Genome Sequencing 
Consortium 2004, © 2004): chicken compared to human 
(top), and human compared to chicken (bottom)
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● Unlike other vertebrate genomes, the chicken 
genome has had no active insertions of short 
interspersed nucleotide elements (SINE) over the 
last 50 MYR.

● At least 70 Mb of the chicken–human aligned 
sequences seem to be functional in both species.

● Alignment of the chicken–human noncoding 
sequences often led to their localization far from 
genes and in clusters that are likely to be under 
selection for unknown functions.

In a parallel article, the International Chicken Poly-
morphism Map Consortium (2004) described 2.8 
million SNPs that represented the first chicken 
genome-wide genetic variation map. This set of SNPs 

was designed by comparing the sequences of three 
domestic chicken breeds (a broiler, a layer, and a 
Chinese Silkie) and the red junglefowl. At least 90% 
of the variant sites were true SNPs, and at least 70% 
were common SNPs showing segregation in many 
domestic breeds. For almost every possible compari-
son between domestic breeds and junglefowl, aver-
age nucleotide diversity was about five SNPs per 1 
kilobase (kb), which contradicts with previous views 
of domestic animals as highly inbred in comparison 
with their wild progenitors. Most of the chicken SNPs 
seem to have arisen prior to domestication, and little 
evidence of selective sweeps for adaptive alleles was 
found on length scales greater than 100 kb.

The chicken genome sequence and genetic poly-
morphisms are expected to benefit agriculture and 
medicine, shed new light on animal domestication, 
and provide an ideal model for studies in develop-
ment and evolution as well as comparative research 
in 9,600 extant avian species (Burt 2005).

5.3.5
Genetics and Molecular Mapping in Other Birds

Until recently, genetic studies and gene mapping 
in the other poultry, semidomesticated and caged 
species (Table 1) have been carried out at a signifi-
cantly slower pace despite the fact that duck, Mus-
covy duck, canary, pigeon and budgerigar, along with 
chicken, mouse, rat, rabbit, and three fish species, 
were among the first vertebrates in which sex-linked 
and autosomal-linked genes were found (Durham 
and Marryat 1908; Spillman 1908; Hutt 1936; Table 12). 
The limited classical linkage maps of the Japanese 
quail and turkey Z chromosome involved only two 
and three morphological loci, respectively (Craw-
ford 1990; Minvielle et al. 2000). There were also four 
known classical Z-linked loci in the turkey, five in the 
ring-necked pheasant, three in the guinea fowl, three 
in the peafowl, five in the pigeon, one in the African 
collared dove, four in the domestic duck, two in the 
Muscovy duck, one in the mute swan and, presum-
ably, up to five in the goose (Table 12). Additionally, 
four classical autosomal linkage relationships have 
been reported in the Japanese quail, two in each of 
the turkey and dove, and one in each of the duck and 
pigeon. Several cases of sex and autosomal linkage 
have been discovered in major caged birds.

Fig. 12 Relationships between chicken chromosome charac-
teristics for chromosomes 1–28: comparison of recombination 
rate and sequence length (top), and comparison of genetic 
and sequence length (bottom). Both plots exclude chromo-
somes 16, 22, 23, 25, which have insufficient genetic markers 
or sequence. Upright squares: macrochromosomes; circles: 
intermediate chromosomes; diagonal squares: microchromo-
somes (adapted with permission from Macmillan Publishers 
Ltd: Nature, International Chicken Genome Sequencing Con-
sortium 2004, © 2004)



 Chapter 5 Poultry 111

Table 12 Linkage in other avian species raised by man

Loci linked (locus 

alleles) <aliases>

Trait name (synonym) Chromosome (Z, W, 1) 

or autosomal linkage (AL)

Reference

Anseranser (goose)

b Diluted feet Z Staško (1970)

b1 Buff celler Z Hollander (1990)

G Gray Z (linked to Sd) Crawford (1990)

Sd Dilution Z (linked to G) Crawford (1990)

Sp2 Solid pattern Z Crawford (1990)

Cygnusolor (muteswan)

r Polish Z Lancaster (1977)

Cairina moschata (Muscory duck)

ALDOB Aldolase B, fructose-
bisphosphate

Z Nanda and Schmid (2002)

ch3 Chocolate Z Sokolovskaya (1935); Hollander 
(1970); Crawford (1990)

— Crest Z Sokolovskaya (1935)

HBA1 Hemoglobin, alpha 1 (globin, 
alpha A)

AL (linked to HBA2 and HBAZ) Niessing et al. (1982); Erbil and 
Niessing (1984)

HBA2 Hemoglobin, alpha 2 (globin, 
alpha D)

AL (linked to HBA1 and HBAZ) Niessing et al. (1982); Erbil and 
Niessing (1984)

HBAZ Hemoglobin, zeta (embryonic 
alpha-globin pi-prime)

AL (linked to HBA1 and HBA2) Niessing et al. (1982); Erbil and 
Niessing (1984)

HBG1 Hemoglobin, gamma A (globin, 
epsilon)

AL (linked to HBG2) Lin and Paddock (1984)

HBG2 Hemoglobin, delta (globin, beta) AL (linked to HBG1) Lin and Paddock (1984)

Anas platyrhynchos (domestic duck) Buff dilution

bu Z Crawford (1990)

d3 Brown dilution Z Crawford (1990)

IFNA1 Interferon, alpha 1 Z Nanda et al. (1998)

IFNB1 Interferon, beta 1, fibroblast Z Nanda et al. (1998)

WPKCI-8 <Wpkci, 
HINTW, Wpkci-7, 
ASW>

W chromosome-specific histi-
dine triad nucleotide-binding 
protein 1

W Hori et al. (2000)

ASL <CRYD2> Argininosuccinate lyase (crystal-
lin, delta 2)

AL (linked to CRYD1) Li et al. (1995)

CRYD1<d-cry> Crystallin, delta 1 AL (linked to ASL) Li et al. (1995)

E Black AL (linked to S) Crawford (1990)

HLA-B MHC, class I, B AL (linked to TAP2) Mesa et al. (2004)

S Bib AL (linked to E) Crawford (1990)

TAP2 Transporter 2, ATP- binding cas-
sette, subfamily B (MDR/TAP)

AL (linked to HLA-B) Mesa et al. (2004)

(continued)
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Table 12 (Continued)

Loci linked (locus 

alleles) <aliases>

Trait name (synonym) Chromosome (Z, W, 1) 

or autosomal linkage (AL)

Reference

Meleagris gallopavo (turkey) Achondroplasia

ach Z Crawford (1990)

bo Bobber Z Crawford (1990)

e Brown Z Crawford (1990)

K Late feathering Z Crawford (1990)

n (n, nal) Narragansett, imperfect albinism Z Crawford (1990)

tt Tetanic torticollar spasm Z Savage et al. (1993)

vi Vibrator Z Crawford (1990)

WPKCI-8 <Wpkci, 
HINTW, Wpkci-7, 
ASW>

W chromosome-specific histi-
dine triad nucleotide-binding 
protein 1

W Hori et al. (2000)

D Slate AL (linked to ga) Crawford (1990)

ga Glaucoma AL (linked to D) Crawford (1990)

ha Hairy AL (linked to r) Crawford (1990)

r Red AL (linked to ha) Crawford (1990)

Pavo cristatus (Indian  peafowl)

ca <d> Cameo (silver-dun) Z Somes and Burger (1988); 
Hollander (1990)

— Purple Z Legg4

— Peach Z Legg4

WPKCI-8 <Wpkci, 
HINTW, Wpkci-7, 
ASW>

W chromosome-specific histi-
dine triad nucleotide-binding 
protein 1

W Hori et al. (2000)

a Phasianus colchicus
(ring-necked pheasant) Incom-
plete albinism

Z Crawford (1990)

Ba Barring Z Crawford (1990)

di Dilute Z Crawford (1990)

DMRT1 Doublesex and mab-3-related 
transcription factor 1

Z Nanda et al. (2000)

id Dermal melanin Z Crawford (1990)

s Gold Z Crawford (1990)

P. versicolor (green  pheasant)

WPKCI-8 <Wpkci, 
HINTW, Wpkci-7, 
ASW>

W chromosome-specific histidine 
triad nucleotide-binding protein 1

W Hori et al. (2000)

Chrysolophus pictus (golden pheasant) 

ALDOB Aldolase B, fructose-
 bisphosphate

Z Nanda and Schmid (2002)

(continued)
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Table 12 (Continued)

Loci linked (locus 

alleles) <aliases>

Trait name (synonym) Chromosome (Z, W, 1) 

or autosomal linkage (AL)

Reference

DMRT1 Doublesex and mab-3-related 
transcription factor 1

Z Nanda et al. (2000)

Coturnix coturnix (common quail) 

DMRT1 Doublesex and mab-3-related 
transcription factor 1

Z Nanda et al. (2000)

C. japonica (Japanese quail)

ACO1 <IREBP> Aconitase 1, soluble Z Saitoh et al. (1993)

ALDOB Aldolase B, fructose-bisphos-
phate

Z Suzuki et al. (1999a), Nanda and 
Schmid (2002)

SLC45A2 <AL (al, 
alC, alD, alreb)>

Solute carrier family 45, mem-
ber 2 (imperfect albino, cinna-
mon, dark-eyed dilute, red-eyed 
brown)

Z Crawford (1990); Minvielle et al. 
(2000); Gunnarsson et al. (2007)

BR (br, ro) Brown, roux Z Crawford (1990); Minvielle et 
al. (2000)

EMB <ZOV3> Embigin homolog (mouse) Z Saitoh et al. (1993)

GHR Growth hormone receptor Z Suzuki et al. (1999a)

MUSK Muscle, skeletal, receptor 
 tyrosine kinase

Z Suzuki et al. (1999a)

PRLR Prolactin receptor Z Suzuki et al. (1999a)

WPKCI-8 <Wpkci, 
HINTW, Wpkci-7, 
ASW>

W chromosome-specific 
 histidine triad nucleotide-
binding protein 1

W Hori et al. (2000)

Bh Black at hatch 1 Niwa et al. (2003)

ALB <Alb> Albumin AL (linked to s and GC) Crawford (1990); Shibata and 
Abe (1996)

GC Group-specific component 
(vitamin D-binding protein)

AL (linked to ALB) Shibata and Abe (1996)

EDNRB2 <S> Endothelin receptor B subtype 2 
gene (panda)

AL (linked to ALB) Crawford (1990); Miwa et al. 
(2006, 2007)

E Extended brown AL (linked to GPI) Crawford (1990)

GPI <Pgi> Glucose phosphate isomerase AL (linked to E) Crawford (1990)

HIST1H1A <H1.a> Erythrocyte histone H1.a AL (linked to HIST1H1B and 
HIST1H1Z)

Palyga (1998)

HIST1H1B <H1.b> Erythrocyte histone H1.b AL (linked to HIST1H1A and 
HIST1H1Z)

Palyga (1998)

HIST1H1Z <H1.z> Erythrocyte histone H1.z AL (linked to HIST1H1A and 
HIST1H1B)

Palyga (1998)

wb White-breasted AL (linked to y) Crawford (1990)

y Yellow AL (linked to wb) Crawford (1990)

(continued)
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Table 12 (Continued)

Loci linked (locus 

alleles) <aliases>

Trait name (synonym) Chromosome (Z, W, 1) 

or autosomal linkage (AL)

Reference

Numida meleagris (guinea fowl)

ACO1 <AconB> Aconitase 1, soluble 
( cytoplasmic aconitase)

Z Crawford (1990)

is Brown, dundotte Z Hollander (1990)

k Sex-linked feathering Z Crawford (1990)

Serinus canaria (island canary)

cin Cinnamon (brown) Z Mason5

ino (ino, inoag) Sex-linked imperfect albinism, 
agate

Z Durham and Marryat (1908); 
Onsman6

— Hearing and song in the Belgian 
Waterslager canary

Z Wright et al. (2004)

Taeniopygia guttata (zebra finch)

ACO1 <IREBP> Aconitase 1, soluble Z Lacson and Morizot (1988), Itoh 
et al. (2006)

ATP5A1 ATP synthase, H+ transport-
ing, mitochondrial F1 complex, 
alpha subunit 1, cardiac muscle

Z Itoh et al. (2006)

B Brown (fawn) Z Miller (1992)

C Chestnut flanked white Z Miller (1992)

CHD1 Chromodomain helicase DNA-
binding protein 1

Z Itoh et al. (2006)

DMRT1 Doublesex and mab-3-related 
transcription factor 1

Z Itoh et al. (2006)

GHR Growth hormone receptor Z Itoh et al. (2006)

HINT1 Histidine triad nucleotide-bind-
ing protein 1

Z Itoh et al. (2006)

HSD17B4 Hydroxysteroid (17-beta) dehy-
drogenase 4

Z Itoh et al. (2006)

NIPBL Nipped-B homolog (Drosophila) Z Itoh et al. (2006)

NR2F1 Nuclear receptor subfamily 2, 
group F, member 1

Z Itoh et al. (2006)

NTRK2 Neurotrophic tyrosine kinase, 
receptor, type 2

Z Chen et al. (2005), Itoh et al. 
(2006)

PAM Peptidylglycine alpha-amidating 
monooxygenase

Z Itoh et al. (2006)

S Silver Z Miller (1992)

SMAD2 SMAD family member 2 Z Itoh et al. (2006)

SPIN1 Spindlin 1 Z Itoh et al. (2006)

UBE2R2 Ubiquitin-conjugating enzyme 
E2R 2

Z Itoh et al. (2006)

(continued)
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Table 12 (Continued)

Loci linked (locus 

alleles) <aliases>

Trait name (synonym) Chromosome (Z, W, 1) 

or autosomal linkage (AL)

Reference

— Light back Z Miller (1992)

WPKCI-8 <Wpkci, 
HINTW, Wpkci-7, 
ASW>

W chromosome-specific histi-
dine triad nucleotide-binding 
protein 1

W O’Neill et al. (2000)

Columba livia (pigeon)

ACO1 <IREBP> Aconitase 1, soluble Z Saitoh et al. (1993)

b (BA, b) Ash-red, brown Z Hollander (1990)

d (DP, d) Pale, dilute Z Hollander (1990)

EMB <ZOV3> Embigin homolog (mouse) Z Saitoh et al. (1993)

R (r, rRU) Reduced, rubella Z Hollander (1990); Huntley7

St (St, StH, StQ, StF, 
StSa, StFr, StC)

Almond, hickory, qualmond, 
faded, sandy, frosty, chalky

Z Hollander (1990); Huntley7

Wl Web lethal Z Hollander and Miller (1982); 
Hollander (1990)

WPKCI-8 <Wpkci, 
HINTW, Wpkci-7, 
ASW>

W chromosome-specific histi-
dine triad nucleotide-binding 
protein 1

W Hori et al. (2000)

C (CT, CD, C, CL, c) T-pattern, dark checker, checker, 
light checker, barless

AL (linked to o and S) Miller and Hollander (1978); 
Huntley7

o Opal AL (linked to C and S) Miller and Hollander (1978); 
Huntley7

S Spread pattern AL (linked to C and o) Miller and Hollander (1978); 
Huntley7

Streptopelia roseogrisea (S. risoria) (African collared dove)

d (d, dB, dw) Dark, blond (fawn), white Z Cole (1930)

ALB <H-R> S. tranquebarica humilis-
specific albumin

AL (linked to hu-y) Miller and Weber (1969)

hu-8 S. tranquebarica humilis-
specific erythrocyte 
alloantigen hu-8

AL (linked to L) Miller (1964)

hu-y S. tranquebarica humilis-
specific erythrocyte 
alloantigen hu-y

AL (linked to ALB) Miller and Weber (1969)

L Silky AL (linked to hu-8) Miller (1964)

Psittacula krameri (rose-ringed parakeet)

cin Cinnamon Z Rašek8

ino (ino, inopd, inopy) Ino, pallid (lime), pearly Z Onsman6; Rašek8

op Opaline Z Rašek8

bl (bl, bltq, blaq) Blue, turquoise(parblue), 
aqua(parblue)

AL (linked to D) Rašek8

D Dark AL (linked to bl) Rašek8

(continued)
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Table 12 (Continued)

Loci linked (locus 

alleles) <aliases>

Trait name (synonym) Chromosome (Z, W, 1) 

or autosomal linkage (AL)

Reference

Melopsittacus undulates (budgerigar)

ACO1 <IREBP> Aconitase 1, soluble Z Saitoh et al. (1993)

cin Cinnamon Z (closely linked to ino and sl) Mason5; Onsman6

EMB <ZOV3> Embigin homolog (mouse) Z Saitoh et al. (1993)

ino (inocb, inol, inopl, 
ino)

Clearbody, lime, platinum, 
lutino (sex-linked imperfect 
albinism)

Z (closely linked to cin and sl) Mason5; Onsman6

op Opaline Z Mason5; Onsman6

sl Slate Z (closely linked to cin and ino) Mason5; Onsman6

bl (bl1, bl2, bltq, blgf; 
or bl1, bl2, blyf2, blgf) 
<s, b>9

Blue (blue 1, blue 2, turquoise, 
blue goldenface, blue 
yellowface 2)

AL (linked to D) Onsman6; Hesford10

D Dark AL (linked to bl) Mason5; Olszewski11

ACO1 <IREBP> Struthio camelus (ostrich)
Aconitase 1, soluble

Z Ogawa et al. (1998); Tsuda et al. 
(2007)

ATP5A1 ATP synthase, H+  transporting, 
mitochondrial F1 complex, 
alpha subunit 1, cardiac muscle

Z, W Tsuda et al. (2007)

CHD1 Chromodomain helicase 
DNA-binding protein 1

Z, W Tsuda et al. (2007)

EMB <ZOV3> Embigin homolog (mouse) Z, W Ogawa et al. (1998)

GHR Growth hormone receptor Z, W Tsuda et al. (2007)

HINT1 Histidine triad nucleotide-
binding protein 1

Z Tsuda et al. (2007)

NTRK2 Neurotrophic tyrosine kinase, 
receptor, type 2

Z, W Tsuda et al. (2007)

RPS6 Ribosomal protein S6 Z, W Tsuda et al. (2007)

SPIN1 Spindlin 1 Z, W Tsuda et al. (2007)

TMOD1 Tropomodulin 1 Z, W Tsuda et al. (2007)

WPKCI-8 <Wpkci, 
HINTW, Wpkci-7, 
ASW>

W chromosome-specific 
 histidine triad nucleotide-
binding protein 1

W O’Neill et al. (2000); Tsuda et al. 
(2007)

Dromaius novaehollandiae (emu)

ACO1 <IREBP> Aconitase 1, soluble Z, W Ogawa et al. (1998)

DMRT1 Doublesex and mab-3-related 
transcription factor 1

Z Shetty et al. (2002)

EMB <ZOV3> Embigin homolog (mouse) Z, W Ogawa et al. (1998)

WPKCI-8 <Wpkci, 
HINTW, Wpkci-7, 
ASW>

W chromosome-specific 
 histidine triad nucleotide-
binding protein 1

W O’Neill et al. (2000)

(continued)
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Table 12 (Continued)

Loci linked (locus 

alleles) <aliases>

Trait name (synonym) Chromosome (Z, W, 1) 

or autosomal linkage (AL)

Reference

Casuarius casuarius (southern cassowary)

ACO1 <IREBP> Aconitase 1, soluble Z Nishida-Umehara et al. (1999)

EMB <ZOV3> Embigin homolog (mouse) Z, W Nishida-Umehara et al. (1999)

1 This locus appears to be the same as g
2 Some authors (e.g., Lancaster, 1977) consider this gene to be autosomal
3  Sokolovskaya (1935) and Hollander (1970) showed a homology between the loci ch in the Muscovy duck and d in the domestic 

duck
4 Legg B. http://www.leggspeafowl.com/peafowlcolors.htm
5 Mason AD. http://www.cabinsoftware.biz/Genetics_Tutorial/Part1.htm
6 Onsman I. http://www.euronet.nl/users/hnl/; http://www.euronet.nl/users/dwjgh/
7 Huntley RR. http://www.angelfire.com/ga/huntleyloft/
8 Rašek M. http://www.gencalc.com/
9 A universal nomenclature is required for this locus

10 Hesford C. http://ourworld.compuserve.com/homepages/clivehesford/parblu04.html
11 Olszewski A. http://www.petcraft.com/docs/avgen.shtml

Over the last decade, molecular tools and genetic 
maps have been developed in other avian species, 
and comparative avian genome studies have been 
boosted by creating the chicken genomic resources. 
From the field of comparative cytogenetics includ-
ing ZOO-FISH  studies, comparative mapping of BAC 
clones, and comparative chromosome G-banding, it 
is known that chicken chromosome 2 has split into 
chromosomes 3 and 6 of turkey and pheasants, while 
chicken chromosome 4 is a fusion between chro-
mosome 4 and a microchromosome in many other 
birds (Shetty et al. 1999; Schmid et al. 2000, 2005; 
Raudsepp et al. 2002; Guttenbach et al. 2003; Derju-
sheva et al. 2004; Itoh and Arnold 2005). In the guinea 
fowl, chromosome 4 is the result of a centric fusion 
of chicken chromosome 9 with the q arm of chicken 
chromosome 4 (Shibusawa et al. 2002). Guinea fowl 
chromosome 5 represents the fusion of chicken chro-
mosomes 6 and 7. A pericentric inversion in guinea 
fowl  chromosome 7 corresponds to chicken chromo-
some 8. Chicken chromosome-specific paints from 
macrochromosomes 1–9 and Z hybridized to met-
aphases of the Japanese quail and red-legged par-
tridge revealed no interchromosomal rearrangements 
(Schmid et al. 2000; Shibusawa et al. 2002; Kasai 
et al. 2003). Comparative FISH mapping of selected 
chicken BAC clones specific for macrochromosomes 
(GGA1–8, GGAZ) suggested strong conservation 

between sequences of the chicken, quail, turkey, and 
duck (Schmid et al. 2005) that represent two early 
evolutionary avian lineages split nearly 90 MYA. Sev-
eral intrachromosomal rearrangements, fusions, or 
fissions were detected in four species. Evolution of 
karyotypes in birds seems to have proceeded slower 
in time than in mammals, which have more radical 
karyotype rearrangements. Avian karyotypes could 
have evolved via many fusion/fission and/or inver-
sions instead of reciprocal translocations (Burt et al. 
1999; Burt 2002; Schmid et al. 2005).

Comparative investigations also contributed to 
chicken genome mapping and cross-species appli-
cation of molecular tools in chicken, turkey, guinea 
fowl, Japanese quail, duck, and pigeon (Pimentel-
Smith et al. 2000; Smith et al. 2000a, 2001b; Reed 
et al. 2003; Schmid et al. 2005). Using FISH mapping 
and direct sequencing of genomic regions, several 
loci have been assigned to the sex chromosomes and 
autosomes in the turkey, peafowl, pheasants, quails, 
ducks, pigeon, ostrich, emu, cassowary, budgerigar, 
zebra finch (Table 12), and some other birds.

Comparative mapping using BAC contigs can pro-
vide a critical component of the genomic research in 
other birds. Large-insert BAC libraries are also avail-
able for several other avian species (Table 11). For 
instance, a zebra finch BAC library (Clayton 2004) 
with ~16-fold coverage was made at the  Arizona 
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Genome Institute, an emu BAC library (13.5×) at 
the US Department of Energy Joint Genome Insti-
tute (Kellner et al. 2005), and a California  condor 
(Gymnogyps californianus, family Cathartidae, order 
Ciconiiformes) BAC library with ~14-fold cover-
age by CHORI (Nefedov et al. 2003; Romanov et al. 
2006). Genomic cosmid libraries have been con-
structed for the Japanese quail, pigeon, goose, emu 
and two passerines, red-winged blackbird (Agelaius 
phoeniceus) and brown-headed cowbird (Molothrus 
ater) (Kameda and Goodridge 1991; Edwards et al. 
1998; Longmire et al. 1999; Shiina et al. 1999; Roots 
and Baker 2002; Takahashi et al. 2003), and a fosmid 
library for the domestic duck (Moon and Magor 2004). 
Large-insert contig physical maps of other avian 
genomes, aligned with the chicken sequence, would 
be valuable resources. Furthermore, these compara-
tive maps would aid in the analysis and application 
of the chicken whole-genome sequence.

Thomas et al. (2002) demonstrated that so-called 
universal OVERGO probes, or Uprobes, can be 
used to identify orthologous BACs in a variety of 
mammals (primates, cat, dog, cow, pig) and, more 
recently, between vertebrate orders (Kellner et al. 
2005).  OVERGOs are designed from regions of high 
sequence conservation and then used to probe un-
sequenced genomes. Romanov and Dodgson (2006) 
analyzed cross-species hybridizations using OVER-
GOs that were derived from chicken genomic and 
zebra finch EST sequences and probed to turkey 
and zebra finch BAC libraries. OVERGOs within 
coding sequences were more effective than those 
within untranslated region (UTR), intron or flanking 
sequences. In general, interspecies hybridization was 
more successful between chicken and turkey than for 
more distant evolutionary comparisons (chicken-
zebra finch or zebra finch-turkey). This strategy can 
be used to align BAC contig maps of other avians 
along the chicken genome sequence and to construct 
interspecific comparative maps.

Molecular markers and tools have been generated 
for the Japanese quail (e.g., Pang et al. 1999; Kayang 
et al. 2002), duck and goose (Maak et al. 2003; Huang 
et al. 2005, 2006b), pheasant (Baratti et al. 2001), pea-
fowl (Hanotte et al. 1991; Hale et al. 2004), pigeon (Trax-
ler et al. 2000), ostrich (Tang et al. 2003), emu (Taylor 
et al. 1999), budgerigar (Kamara et al. 2007), and other 
avian species. These tools should facilitate linkage map 
construction, which has lately become reality for the 

duck (Huang et al. 2006b). Its preliminary linkage map 
was developed by segregation analysis of microsatellite 
markers using an inbred Peking duck resource popula-
tion that consisted of 12 full-sib families with a total of 
224 F

2
 individuals. As a result, 115 loci were placed into 

19 linkage groups and 34 markers were unlinked. The 
total length of the preliminary sex-averaged linkage 
map for duck is 1,387.6 cM, as in other species. Integra-
tion of the genetic and cytogenetic map of the duck 
genome was done by FISH using chicken BAC clones, 
and 11 of 19 linkage groups were assigned to ten duck 
chromosomes (Huang et al. 2006b). The construction 
of a duck BAC library (Yuan et al. 2006) will pave the 
way for genome research in this poultry species.

A considerable breakthrough in genetic mapping 
of the Japanese quail genome has been achieved by 
designing molecular maps using AFLP and micros-
atellite markers. The first genetic linkage map con-
tained 258 AFLP markers assigned to 39 autosomal 
linkage groups plus the Z and W sex chromosomes 
(Roussot et al. 2003). The first-generation microsat-
ellite linkage map of this species included 58 mark-
ers resolved into 12 autosomal linkage groups and 
Z chromosome (Kayang et al. 2004). On the second-
generation genetic linkage map, 1,660 AFLP and 
eight microsatellite markers, phenotype of a genetic 
disease (neurofilament-deficient mutant) and sex 
phenotype were assigned to 44 multipoint linkage 
groups, the W chromosome and 21 two-point linkage 
groups (Kikuchi et al. 2005). Six more microsatellite 
loci derived from ESTs (Mannen et al. 2005) and nine 
EST markers derived from cDNA-AFLP fragments 
(Sasazaki et al 2006a) were added to this map.

A subsequent contribution to the Japanese quail 
molecular linkage map and its enrichment with clas-
sical markers, such as plumage colors and blood pro-
teins, was done by Miwa et al. (2005). These authors 
constructed maps for 14 autosomal linkage groups 
and the Z chromosome and the maps contained 69 
microsatellite markers and five classical markers: 
yellow (Y), black at hatch (Bh), hemoglobin (Hb-1), 
transferrin (T f), and prealbumin-1 (Pa-1). The study 
confirmed an earlier observation from FISH stud-
ies that the Bh locus was mapped on the long arm 
of chromosome 1 (CJA1) using the flanking sequence 
of Bh as a probe (Niwa et al. 2003). Miwa et al. (2006) 
mapped five other microsatellite markers and the 
panda (s) character to chromosome 4 (CJA4), sug-
gesting the endothelin receptor B subtype 2 gene 
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(EDNRB2) as a candidate for the s locus that was con-
firmed in a follow-up study by Miwa et al. (2007).

Two microsatellite and the AFLP quail genetic 
maps were integrated and amended with the align-
ment of the quail linkage groups on the chicken 
genome sequence assembly and with interspe-
cific FISH. Kayang et al. (2006) obtained a total of 
14  autosomal and Z chromosome-specific linkage 
groups with 92 loci and aligned them with the AFLP 
map. The total map distance was 904.3 cM with an 
average spacing of 9.7 cM between loci. After aligning 
the quail linkage groups and the chicken sequence, 
marker order for nine macrochromosomes and 14 
microchromosomes was found to be very similar 
between the two species. No interchromosomal rear-
rangements were detected for all 23 chromosomes, 
suggesting conservation of the aligned syntenic seg-
ments (Kayang et al. 2006).

In a separate effort, Sasazaki et al. (2006b) devel-
oped another integrated map for quail that comprised 
1,995 markers, including 1,933 AFLP, three pheno-
typic loci (Quv, LWC, and sex) and 59 genes/ESTs, 
assigned to 66 linkage groups (including the W chro-
mosome). The total linkage map length was 3,199 cM 
and an average marker interval of 5.0 cM. There were 
similar positions of the genes and their orders in the 
quail and chicken except within a known inversion 
on quail chromosome 2 (CJA2; Shibusawa et al. 2001). 
On the other hand, low map resolution did not allow 
detection of three other inversions previously found 
in CJA1, CJA4, and CJA8.

Another well-known laboratory bird is the zebra 
finch, referred to as “the mouse, or Drosophila of the 
avian world” (Arnold and Clayton 2004). Zebra finch 
is an Australian songbird that is a widely studied 
behavioral model, especially for mechanisms of learn-
ing and control of the male song, adult neurogenesis, 
and steroid synthesis in brain. There is a  remarkable 
sexual dimorphism in brain regions controlling 
song. Interest in the genetic regulation of zebra finch 
behaviors has led to the generation of a BAC library, 
two EST projects, and a cDNA microarray (Arnold 
and Clayton 2004; Wade et al. 2004; Luo et al. 2006). 
Comparative cytogenetic analysis in the zebra finch 
using chicken chromosome paints  suggested a very 
few chromosomal rearrangements since the evolu-
tionary divergence of these two species, and a high 
conserved synteny of chicken genes and zebra finch 
orthologs (Itoh and Arnold 2005). Two major intrac-

hromosomal rearrangements were detected that split 
chicken chromosome 1 into two macrochromosomes 
in zebra finches, and chicken chromosome 4 into a 
zebra finch macrochromosome and a microchromo-
some. Later on, zebra finch BAC end sequences and the 
whole BAC sequence were aligned with the chicken 
sequence, and a high degree of conserved synteny 
between two genomes was verified (Luo et al. 2006). 
BACs assigned by Romanov and Dodgson (2006) to 
zebra finch genes using cross-species hybridization 
are available online (US Poultry Genome Project, 
http://poultry.mph.msu.edu/resources/Resources.
htm#bacdatafinch).The zebra finch will be the third 
avian species for which the BAC-contig physical map 
and sequence of the whole genome are available 
(Clayton et al. 2005).

A partial linkage map has been built for another 
passerine bird, great reed warbler (Acrocephalus arund-
inaceus; Hansson et al. 2005), as well as a comparative 
chicken-passerine microsatellite map ( Dawson et al. 
2006). The first linkage map for a passerine species 
included 43 microsatellite markers on 11 autosomal 
linkage groups and seven loci on the Z chromosome 
(Hansson et al. 2005). A predicted passerine map 
(Dawson et al. 2006) was based on the sequence simi-
larity between 550 passerine microsatellites and the 
draft chicken genome sequence, and was also aligned 
with the Hansson et al. (2005) great reed warbler 
linkage map. A SNP-based Z chromosome map for 
23 genes was created by  Backström et al. (2006) using 
a natural population of collared flycatchers (Ficedula 
albicollis) and chicken genome sequence; conserved 
synteny with gene order  rearrangements on the avian 
Z chromosome was demonstrated.

To initiate genomic studies for the California 
condor and take advantage of progress in chicken 
genomics, Raudsepp et al. (2002) attempted a broad 
cytogenetic analysis in this endangered species. As a 
result, a chromosome number of 80 was  established 
(with a likelihood of an extra pair of microchromo-
somes), and information on the centromeres, telom-
eres, and nucleolar organizing regions was obtained. By 
hybridizing individual chicken  chromosome- specific 
paints for 1–9 and Z and W on condor metaphase 
spreads, condor and chicken  macrochromosomes 
were compared. Good correspondence of the 
chicken macrochromosomes with a single condor 
 macrochromosome was observed, except for chro-
mosomes 4 and Z. GGA4 was  homologous to condor 
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chromosomes 4 and 9, supporting the idea that the 
latter are ancestral avian chromosomes. The GGAZ 
paint hybridized to both Z and W in the condor, sug-
gesting incomplete differentiation of the condor sex 
chromosomes during evolution, contrary to data 
for sex chromosomes in all other nonratites studied 
(Raudsepp et al. 2002).

Additionally, a first-generation comparative 
chicken-condor physical map was developed using 
a condor BAC library and OVERGO hybridization 
approach (Romanov et al. 2006). The OVERGOs 
were designed using chicken (164 probes) and New 
World vulture (8 probes) sequences. After screen-
ing a 2.8 × subset of the total library, 236 BAC-gene 
assignments were identified, with an average success 
rate of 2.5 positive BAC clones per probe. A prelimi-
nary comparative chicken-condor BAC-based map 
contained 93 genes. Alignment of selected condor 
BAC sequences with orthologous chicken sequences 
showed a high conserved synteny between the two 
avian genomes. This study has created indispensable 
resources for seeking candidate loci for chondrodys-
trophy in condors and assisting genetic management 
of this disease (Romanov et al. 2006).

Currently, the active genome mapping and 
sequencing projects in birds include chicken, tur-
key, duck, Japanese quail, zebra finch, brown kiwi, 
and California condor (NCBI Entrez Genome Project 
database, http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?db=genomeprj). The majority of 1,075,888 nucle-
otides and 73,649 protein avian sequences deposited 
in GenBank (as of May 7, 2007) belong to chicken, 
turkey, zebra finch, duck, and condor; while chicken, 
pigeon, common and Japanese quail, and duck remain 
key avian models for biomedical research as assessed 
by the number of PubMed accessions (Table 13). 
Details on turkey genetics and genome mapping are 
given in Chapter 6 of this volume.

5.4
QTL and Functional Genomics

5.4.1
QTL Analysis

The identification of genes underlying the expression 
of economically important traits is a main research 
focus in agricultural genomics. Most of these traits 

are characterized by a wide variation in the expres-
sion of genes at certain loci called QTL (Cheng et al. 
1995), which are polymorphic loci associated with 
variation in a phenotypic trait like egg production, 
body weight (BW), and so on. Characterization of the 
chromosomal regions carrying QTL can be applied 
in MAS to improve breeding efficiency (Grisart et al. 
2002). Molecular linkage map, in combination with 
powerful statistical methods, facilitates the genetic 
dissection of complex traits, and the chicken is ide-
ally suited for this task due to a relatively short life 
cycle and large number of progenies (Vallejo et al. 
1998). Two major approaches are employed to under-
stand genomic architecture underlying economically 
important traits: QTL mapping and, more recently, 
functional genomics.

QTL studies in chickens were started in the mid-
dle of 1990s using minisatellite markers and a tech-
nique known as genomic fingerprinting. In one of 
these studies, crosses of two genetically distinct 
lines of layer-type chickens and a single-trait animal 
model were used to identify genetic markers linked 
to QTL (Lamont et al. 1996). Analysis of associations 
of individual DNA fingerprint (DFP) bands of sires 
and their progeny phenotypic performance revealed 
QTL linked to specific traits of growth, reproduction, 
and egg quality QTL.

QTL have been identified for a variety of traits in 
chickens including growth (Groenen et al. 1997; van 
Kaam et al. 1998, 1999a; Tatsuda and Fujinaka 2001), 
feed efficiency (van Kaam et al. 1999a), carcass traits 
(van Kaam et al. 1999b), resistance to Marek’s dis-
ease (MD; Vallejo et al. 1998; Xu and Goodridge 1998; 
Yonash et al. 1999; Lipkin et al. 2002), fatness (Ikeobi 
et al. 2002), and egg quality (Tuiskula-Haavisto et al. 
2002; Wardecka et al. 2002), based on high-resolution 
genetic maps. Mapping information from QTL studies 
has enabled the further localization of 45 microsatel-
lites on the consensus map resulting in a total number 
of 2,306 markers (Schmid et al. 2005).

5.4.2
QTL: Growth, Meat Quality, and Productivity

To elucidate QTL that affect growth, genome-wide 
scans with microsatellite markers has been employed. 
For example, van Kaam et al. (1999a) performed a 
whole-genome scan for QTL affecting growth and 
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feed efficiency in chickens and detected four QTL on 
GGA1, GGA2, GGA4, and GGA23 that exceeded the 
significance thresholds. The same research group has 
carried out a whole-genome scan in chicken for QTL 
affecting carcass traits (van Kaam et al. 1999b). Two 
QTL were shown to be located on GGA1 and GGA2. 
These results were confirmed and refined using Baye-
sian analysis (van Kaam et al. 2002).

Tatsuda and Fujinaka (2002) detected QTL affect-
ing BW closely aligned with those reported using a 
reference population derived from a cross of a Satsu-
madori (slow-growing, light-weight Japanese native 
breed used as a meat chicken) sire and a White Ply-
mouth Rock (early maturing, heavy weight broiler) 
dam. Two QTL affecting BW at 13 and 16 weeks were 
mapped at 220 cM on GGA1 and at 60 cM on GGA2. 
The closest QTL markers were LEI0071 on GGA1 and 
LMU0013 and MCW0184 on GGA2.

QTL for BW at 3, 6, and 9 weeks of age were inves-
tigated by Sewalem et al. (2002) using a broiler × layer 
cross. A QTL on GGA13 influenced BW at all three 
ages and QTL significant at the genome-wide level 
that affected BW at two ages were found on chromo-
somes 1, 2, 4, 7, and 8.

Identification of QTL for meat quality and pro-
duction in a commercial population of broilers was 
done by de Koning et al. (2004). Using genotypes 
for 52 microsatellite loci spanning regions of nine 
chicken chromosomes and a half-sib analyses with 
a multiple QTL model, linkage between these nine 
regions and growth, carcass and feed intake traits 
was established.

QTL affecting fatness in the chicken were inves-
tigated and mapped by Ikeobi et al. (2002) in an F

2
 

population developed by crossing a broiler line with 
a layer line. Using within-family regression  analyses 

Table 13 Number of accessions in the NCBI GenBank (Nucleotide and Protein) and PubMed databases for avian species with 
more than 300 deposited nuclear and mitochondrial nucleotide sequencesa

Species/Order Nucleotide/Protein PubMed

Gallus gallus (chicken)/Galliformes 923,090/31,335 81,156

Taeniopygia guttata (zebra finch)/Passeriformes 67,726/263 275

Meleagris gallopavo (turkey)/Galliformes 18,052/411 299

Anas platyrhynchos (mallard)/Anseriformes 4,072/549 787

Gymnogyps californianus (California condor)/Ciconiiformes 970/4 8

Motacilla flava (yellow wagtail)/Passeriformes 890/91 4

Pygoscelis adeliae (Adelie penguin)/Sphenisciformes 671/17 55

Ficedula hypoleuca (European pied flycatcher)/Passeriformes 575/271 72

Ficedula albicollis (collared flycatcher)/Passeriformes 568/286 41

Coturnix japonica (Japanese quail)/Galliformes 538/425 4,093

Motacilla alba (white wagtail)/Passeriformes 498/259 5

Parus major (great tit)/Passeriformes 498/153 159

Luscinia svecica (bluethroat)/Passeriformes 422/200 10

Parus montanus (willow tit)/Passeriformes 416/168 18

Parus caeruleus (blue tit)/Passeriformes 411/84 74

Anas strepera (gadwall)/Anseriformes 409/47 9

Carpodacus erythrinus (common rosefinch)/Passeriformes 387/190 4

Columba livia (domestic pigeon)/Columbiformes 380/188 9,258

Strix aluco (tawny owl)/Strigiformes 328/175 42

Coturnix coturnix (common quail)/Galliformes 314/195 4,208

Dendrocopos major (great spotted woodpecker)/Piciformes 300/144 2

a As of May 7, 2007
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of 102 microsatellite loci in 27 linkage groups, the 
QTL for abdominal fat weight were identified on 
chromosomes 3, 7, 15, and 28; abdominal fat weight 
adjusted for carcass weight on chromosomes 1, 5, 
7, and 28; skin and subcutaneous fat on chromo-
somes 3, 7, and 13; skin fat weight adjusted for car-
cass weight on chromosomes 3 and 28; and skin fat 
weight adjusted for abdominal fat weight on chro-
mosomes 5, 7. and 15. Significant positive and nega-
tive QTL alleles were detected in both lines. Several 
QTL affecting fatness in broilers were detected by 
Jennen et al. (2004) using two genetically different 
outcross broiler dam lines, originating from the 
White Plymouth Rock breed.

Genetic architecture of growth and body compo-
sition was investigated in reference chicken popula-
tions obtained by crossing one modern broiler male 
from a commercial broiler breeder male line with 
females from two unrelated highly inbred lines (Deeb 
and Lamont 2003). Traditionally selected phenotypic 
traits in broilers were suggested to be controlled by 
a large number of genes with small epistatic effects, 
while fitness-related traits could be determined by a 
lower number of genes with major effects.

After simultaneous mapping epistatic QTL in a 
chicken F

2
 intercross, clusters of QTL pairs with simi-

lar genetic effects on growth were found by Carlborg 
et al. (2004). The authors used simultaneous mapping 
of interacting QTL pairs to study growth traits. This 
approach improved the number of detected QTL by 
30%. The genetic variance of growth was significantly 
influenced by epistasis, the largest impact being on 
early growth (before 6 weeks of age). Because early 
growth was shown to be associated with a discrete 
set of interacting loci involved in early growth, these 
results provided further insight into different genetic 
regulations in early and late growth in chicken found 
in other studies.

5.4.3
QTL: Egg Quality and Productivity

Genome-wide scans for egg quality and productiv-
ity QTL have been done using reference populations, 
while a line cross between two egg layer lines was 
used in the study by Tuiskula-Haavisto et al. (2002). 
The authors determined 14 genome-wide significant 
and six suggestive QTL located on chromosomes 2, 3, 

4, 5, 8, and Z. The most interesting area was found on 
GGA4, with QTL for BW, egg weight, and feed intake. 
A related investigation was done by Wardecka et al. 
(2002) to determine influence of genotypes of the 
Rhode Island Red (RIR) and Green-legged Partrig-
enous (GLP) breeds on egg production and quality 
traits based on analysis of 23 microsatellite markers. 
Significant effects were demonstrated for 16 traits.

Marker loci detected by QTL mapping can serve 
as multiple entry points into the physical BAC-con-
tig map and sequence of the chicken genome. For 
example, two QTL from the aforementioned study 
were selected for FISH mapping using microsatellite-
specific large-insert clones (Sazanov et al. 2005). This 
strategy helps to specify genes that might underlie 
QTL and is known as QTL positional cloning.

Genetic mapping of QTL affecting egg characters, 
egg production, and BW in F

2
 White Leghorn (WL) 

× RIR intercross chickens was done by Sasaki et al. 
(2004) using 123 microsatellite markers. The authors 
assigned 96 markers to 25 autosomal linkage groups 
and 13 markers to the Z chromosome, including eight 
previously unmapped markers. Significant QTL were 
discovered for BW on chromosomes 4 and 27, egg 
weight on GGA4, the short length of egg on GGA4, 
and redness of egg shell color on GGA11. A signif-
icant QTL on GGAZ was found for age at first egg. 
Overall, 6–19% of the phenotypic variance in the F

2
 

population may be explained by these QTL.

5.4.4
QTL: Disease Resistance

Immune response and disease resistance can be im-
proved by selection. Because these quantitative traits 
have low to moderate heritability, they may respond 
more efficiently to marker-assisted selection than to 
conventional selection (Yonash et al. 2001).

As an alternative to vaccination control, increased 
genetic resistance to Marek’s disease (MD) represents 
an attractive solution for lowering disease outbreaks. 
Genetic mapping of QTL affecting susceptibility to MD 
virus-induced tumors was performed by Vallejo et al. 
(1998) and was the first to report the mapping of non-
major histocompatibility complex (MHC) QTL involved 
in MD susceptibility in chickens. Two significant and two 
suggestive MD QTL were detected on four chromosomal 
regions. These loci explained 11–23% of the phenotypic 
MD variation, or 32–68% of the genetic variance.
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Another QTL for MD explaining 7.2% of the 
total disease variation was revealed on GGA4 by Xu 
et al. (1998) using a heterogeneous residual variance 
model, which is considered to be computationally 
much faster than the mixture model approach. These 
and other studies that used the same F

2
 cross between 

two experimental lines (Bumstead 1998; Yonash et al. 
1999; Liu et al. 2001, 2003a) identified QTL on chromo-
somes 1, 2, 4, 7, 8, 12, and 17 that affect MD resistance. 
QTL associated with MD resistance (defined as sur-
vival time following challenge) were tested in a cross 
between lines of commercial layer chickens (McElroy 
et al. 2005). In this study, genotyping was performed 
using 81 microsatellites selected based on prior results 
with selective DNA pooling, and several markers asso-
ciated with MD survival were identified. One of these 
markers corresponds to a QTL identified on GGA2 near 
the region identified for MD susceptibility by Vallejo 
et al. (1998) and Yonash et al. (1999), which is around 
90 cM on the consensus map.

A very important issue for poultry production 
and food safety is the contamination with Salmo-
nella enteritidis (SE). Kaiser et al. (2002) identified 
genetic markers of antibody (Ab) response to SE 
vaccine in broiler chicks and confirmed this linkage 
in broiler-cross offspring. Interactions of microsat-
ellite marker alleles with dam line and sex were also 
detected.

Several QTL for immune response to sheep red 
blood cells (SRBC) were detected by Siwek et al. 
(2003a) in laying hens using 170 microsatellite 
 markers, and F

2
 resource populations originated from 

a cross of two divergently selected lines for high and 
low primary Ab response to SRBC. A half-sib model 
and a line-cross model, both based on the regression 
interval method, were used to identify QTL. The QTL 
involved in the primary Ab response to keyhole lym-
pet hemocyanin and Mycobacterium butyricum were 
detected in two independent populations of laying 
hens (Siwek et al. 2003b). The genetic regulation of 
Ab responses to two different T- cell dependent anti-
gens was suggested to differ.

QTL affecting the immune response were investi-
gated using a linkage disequilibrium approach with 
microsatellites in hybrids of highly inbred males 
of two MHC-congenic Fayoumi chicken lines and 
highly inbred G-B1 Leghorn hens (Zhou et al. 2003). 
The QTL that affect Ab kinetics were localized on 
chromosomes 3, 5, 6, and Z.

A genome wide scan using 119 microsatellite loci 
allowed Zhu et al. (2003) to map QTL associated with 
disease resistance to avian coccidiosis to GGA1.

QTL associated with immune response to SRBC, 
Newcastle disease virus, and E. coli and with survival 
were investigated by Yonash et al. (2001). Three mark-
ers were shown to have significant association with 
these traits.

Besides its own economic importance, the chicken 
can be considered as a model object for human dis-
eases, e.g., for genetic susceptibility to form-depriva-
tion myopia (Guggenheim et al. 2002; Dodgson and 
Romanov 2004; Jensen 2005).

5.4.5
QTL: Behavior

Several QTL affecting feather pecking (FP) behav-
ior (which is a major problem in large group hous-
ing systems) and stress response in laying hens were 
detected by Buitenhuis et al. (2003) Using genotypes 
at 180 microsatellite loci, one significant QTL for 
severe FP was detected on GGA2, and suggestive QTL 
for gentle FP on GGA1, GGA2, and GGA10.

A genome-wide scan using 104 microsatellite 
markers was performed to identify QTL affecting for-
aging behavior and social motivation QTL in F

2
 prog-

eny from a WL × red junglefowl intercross (Schutz 
et al. 2002). Significant QTL were found for prefer-
ence of free food without social stimuli and low con-
tra-freeloading on GGA27 and GGA7, respectively. 
Interestingly, the location of the QTL coincided with 
known QTL for growth rate and BW.

QTL studies in the chicken have rapidly expanded, 
and a specialized chicken QTL database has been 
created (NAGRP, http://www.animalgenome.org/
QTLdb/chicken.html). With the availability of dense 
genetic linkage maps, QTL studies are becoming 
more  feasible in other poultry species (e.g., Minvielle 
et al. 2005; Beaumont et al. 2005; Huang et al. 2007).

5.4.6
Toward Functional Genomics of Poultry

The chicken has been an attractive model organism 
in the field of fundamental biology and medicine for 
at least 100 years, for instance with the discovery of B 
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cells and tumor viruses (Brown et al. 2003; Romanov 
et al. 2004). The avian embryo is an ideal system for 
studies of vertebrate development (e.g., limb bud) 
because of the ease of access and manipulation using 
incubated eggs (Stern 2004, 2005). Avian functional 
genomics is a new promising research area due to 
increased genetic resources and tools including EST 
programs, DNA microarrays, electroporation of 
chicken embryos, use of RNAi to knock down gene 
expression, and transgenic technologies (Brown et al. 
2003; Stern 2004; Burt 2005).

DNA microarrays have become a powerful tool for 
determining functional genes in several organisms 
including human, rodents, fruit fly, chicken, etc. An 
international, US-French consortium for systems-wide 
chicken gene expression profiling was established in 
2000 (Cogburn et al. 2003). The goal of the project was 
to provide genomic resources (ESTs and DNA micro-
arrays), examine global gene expression in target tis-
sues of chickens, and facilitate discovery of functional 
genes. Another chicken functional genomics initiative 
led by the UK consortium resulted in the collection of 
339,314 ESTs from 64 cDNA libraries derived from 21 
tissues of adult hens and chicken embryos (Boardman 
et al. 2002). These DNA sequences were organized in 
85,486 contigs corresponding to 89% of estimated 
total number of chicken genes. Around 180,000 of 
these ESTs represented novel coding sequences in 
the chicken, while 38% of them were orthologous to 
sequences in other species. Later on, the merging of 
the UK (300,000) and US (30,000) EST collections 
took place (reviewed by Romanov et al. 2004). Cur-
rently, there are 599,330 ESTs deposited in the NCBI 
dbEST database (as of May 7, 2007).

Affymetrix, Inc. has developed the first commer-
cially available GeneChip Chicken Genome Array 
(Affymetrix, http://www.affymetrix.com/products/
arrays/specific/chicken.affx). This array includes 25-
mer oligonucleotide probes for identifying 32,773 
transcripts corresponding to over 28,000 chicken 
genes, as well as 689 probe sets for 684 transcripts 
from 17 avian viruses. Other chicken whole-genome 
long oligo arrays include: (1) the Operon Biotechnol-
ogies, Inc. 70-mer array with 21,120 features designed 
by ARK-Genomics (Roslin, UK) and manufactured 
by the University of Arizona Genomics Research 
Lab (GRL, Tucson, AZ, USA); (2) the Chicken Con-
sortium cDNA array with 11,136 × 2 features also 

produced by GRL; and (3) the NimbleGen Systems, 
Inc. Chicken ChIP- chip that tiles every 100 bp across 
nonrepetitive regions. A new 44,000-element long oli-
gonucleotide chicken array was also made by Agilent 
Corp. A collaborative team from the Roslin Institute 
(Edinburgh, UK), University of Delaware (Newark, 
DE, USA), GSF Institute of Molecular Radiation Biol-
ogy (Neuherberg, Germany) and the Fred Hutch-
inson Cancer Research Center (Seattle, WA, USA) 
produced a publicly available microarray containing 
~13,000 chicken ESTs (Burnside et al. 2005). Addi-
tional chicken microarrays include four University 
of Delaware custom arrays (UD_Liver_3.2K, UD 7.4K 
Metabolic/Somatic Systems, Chicken Neuroendo-
crine System 5K, and the DEL- MAR 14K Integrated 
Systems), three ARK-Genomics arrays (an 1153 clone 
chicken embryo array, a 5,000 cDNA chicken immune 
array, and a 4,800 clone chicken neuroendocrine 
array) (US Poultry Genome Project, http://poultry.
mph.msu.edu/about/Poultry%20Coord%20report%
20for%2006.pdf; Smith et al. 2006).

These and other chicken microarray resources 
have been used for analyzing gene expression profiles 
in connection with immune responses to infectious 
diseases (e.g., Bliss et al. 2005; Smith et al. 2006; van 
Hemert et al. 2007), growth traits, lipid metabolism 
and fatness (Cogburn et al. 2003; Bourneuf et al. 2006; 
Wang et al. 2006), differentially expressed transcripts 
in shell glands (Yang et al. 2006), and embryonic 
development (Afrakhte and Schultheiss 2004; Ellestad 
et al. 2006) in experimental and  commercial strains.

5.5
Other Molecular Applications

5.5.1
Biodiversity Studies

Genetic resources refer to races or populations with 
unique genetic characteristics. Agricultural resources 
need to be conserved for genetic adaptation to 
changes in agricultural production conditions and 
consumer preferences as well as for preservation of 
native (sometimes called local or “heritage”) breeds. 
Thus, genetic resources in agricultural production 
systems require further identification, evaluation, 
and proper utilization for the welfare of  humanity 
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and nature. Although often underestimated, the 
need to conserve and utilize genetic resources as a 
safeguard against an unpredictable future is evident 
(FAO 1997–2004; El Bassam 1998; Romanov and 
 Weigend 2001a, b).

There is a growing loss of genetic diversity in 
all agriculturally used species, and poultry genetic 
resources are one of the most vulnerable (Scherf 2000; 
Weigend and Romanov 2001, 2002). The current mar-
ket-oriented breeding strategies in poultry concentrate 
on a few specialized breeds that may cause a significant 
erosion of local breeds, leading to the loss of valuable 
genetic variability and unique characteristics of these 
breeds (Weigend et al. 1995). For instance, few decades 
ago there were more than 50 chicken breeds in North 
America, while only two for meat production are left, 
the others being mainly lost (Scherf 2000).

On the whole, in the world poultry market a lim-
ited number of breeding companies dominate and 
use a similar gene pool. The economic importance of 
 single-purpose high-performance breeds is distort-
ing the perception of the value of multipurpose breeds 
that are adapted to local conditions, from the point of 
view of the broader gene pool. According to Sørensen 
(1997), there is concern by the general public and the 
poultry industry that “cage-adapted populations of 
laying hens seem to have lost some of their abilities 
when returned to the old floor/free range systems.” 
Due to a growing concentration of all components of 
the poultry production, less than ten world’s breed-
ing companies are the source of most egg laying hens. 
Until recently, these companies have little interest in 
improving genetic material for the West-European 
region, with noticeable consumer preferences for 
eggs produced in noncaged systems (Sørensen 1997). 
This situation could get worse under global epidemic 
challenges like avian influenza.

On the other hand, genetic studies (e.g., Dun-
nington et al. 1994; International Chicken Polymor-
phism Map Consortium 2004) showed that the pure 
lines of broiler and layer stocks in USA and other 
world regions still contain a considerable reservoir 
of genetic variation as estimated by DNA fingerprint 
(DFP) analysis and other molecular tools.

The evaluation of genetic diversity within and 
between both native and commercial chicken popu-
lations has been undertaken so far using the follow-
ing molecular markers and techniques:

● RFLP (e.g., Wakana et al. 1986; Akishinonomiya 
et al. 1994; Wang et al. 1994),

● DFP (e.g., Dawe et al. 1988; Siegel et al. 1992;  Hab-
erfeld et al. 1992; Wimmers et al. 1992;  Dunnington 
et al. 1994; Yamashita et al. 1994; Plotsky et al. 1995; 
Meng et al. 1996; Semyenova et al. 1996),

● RAPD (e.g., Plotsky et al. 1995; Romanov and 
 Weigend 2001a),

● AFLP (e.g., Lee et al. 2000),
● microsatellites (e.g., Romanov and Weigend 2001b; 

Hillel et al. 2003),
● sequencing and SNP (e.g., Akishinonomiya et al. 

1994; Schmid et al. 2005).

Multiple applications of molecular markers for bio-
diversity studies in poultry, mostly, in chickens, have 
been reviewed and listed elsewhere (e.g., Weigend 
and Romanov 2001, 2002; Soller et al. 2006; Michigan 
State University, http://www.msu.edu/ ~romanoff/ 
biodiversity/studiesdb.htm).

5.5.2
Molecular Sexing

Sex identification methods in domestic and wild 
birds have been developed to distinguish between 
males and females, when no or weak sexual dimor-
phism is evident either at hatch, maturity, or in ovo. 
The usefulness of DNA sex determination has been 
demonstrated for evolutionary studies, ecological and 
conservation problems, and management of endan-
gered species in the wild and captivity (e.g., Millar 
et al. 1996; Ellegren and Fridolfsson 1997; Kahn and 
Quinn 1999; Bermudez-Humaran et al. 2002).

Traditionally, sex linkage of external traits (auto-
sexing; e.g., Spillman 1908; Staško 1970; Lancaster 
1977; Romanov and Bondarenko 1988), vent sexing, 
surgical gonad examination and later, analyses of 
karyotype and the amount of DNA per cell (e.g., Wang 
and Shoffner 1974; Nakamura et al. 1990) have been 
applied for this purpose. With the advance of sophis-
ticated molecular tools, it is now possible to obtain 
gender-specific DNA fingerprints. Because in birds 
the homogametic sex is the male with two Z chromo-
somes, and the heterogametic sex is the female with 
one Z and one W chromosomes, the molecular sex-
ing techniques in avian species are principally based 
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on targeting the repetitive (e.g., Kagami et al. 1990; 
D’Costa and Petitte 1998; Cassar et al. 1998; Trefil 
et al. 1999), nonrepetitive (Ogawa et al. 1997), or cod-
ing regions in the W chromosome that are absent or 
different from their homologs in the Z chromosome.

PCR-amplified molecular markers make it possi-
ble to discriminate bird sexes based on Z- and W-chro-
mosome-specific homologous sequences. Most known 
avian sexing markers are derivatives of two conserved 
gene homologs, CHD1Z and CHD1W, which encodes 
chromodomain helicase DNA-binding protein 1 that 
plays an important role in gene regulation (Ellegren 
1996; Griffiths et al. 1996, 1998; Griffiths and Korn 
1997; Kahn et al. 1998; Fridolfsson and Ellegren 1999).

5.6
Conclusions

In conclusion, contemporary avian genetics addresses 
biological questions at the genome-wide level. In the 
course of the last century, an enormous wealth of 
information has been accumulated regarding genet-
ics, physiology, and biochemistry of poultry species. 
The chicken exemplifies both an important  agricultural 
species and a model organism for studying the evolu-
tion of vertebrate genomes and developmental mecha-
nisms. The success of the chicken genome project has 
been preceded by decades of genetic  linkage  mapping.

As a prominent experimental model in the last 
century for various fundamental and applied biologic 
disciplines, the chicken will keep its significance in the 
twenty-first century. The chicken genome sequence 
annotated with gene functions will pave the way for 
improving traits of economic importance and value 
in poultry (Romanov et al. 2004). The recent draft of 
the chicken genome sequence can also be used as a 
reference in comparative mapping, making up for the 
lack of knowledge in genetics and genomics of other 
domestic and wild birds and addressing global ques-
tions in biology of avian and vertebrate genomes.
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