А.П. Кислицын канд. техн. наук, А.А. Таран канд. физ.-мат. наук, С.И. Планковский канд. техн. наук, Д.Д. Несмелов

#### ЭНЕРГЕТИЧЕСКАЯ СТРУКТУРА ЭЛЕКТРОНОВ В ВЫСОКОТЕМПЕРАТУРНЫХ КАТОДНЫХ МАТЕРИАЛАХ НА ОСНОВЕ ГАФНАТА БАРИЯ

Общая постановка проблемы и ее связь с научно-практическими задачами. Простые оксиды щелочноземельных металлов *BaO*, *CaO*, *SrO*, а также твердые растворы простых оксидов (*Ba*, *Ca*, *Sr*)*O* и смешанные оксиды  $Ba_xMe_yO_z$  широко используются в эмиссионной электронике в качестве материалов термоэлектронных катодов [1]. Эти материалы являются типичными полупроводниками, термоэмиссионные свойства которых определяются энергетической структурой электронных состояний [2]. Сама структура и элементарные процессы, протекающие как на эмитирующей поверхности, так и в объеме материала катода, обусловливают его эмиссионную активность и эксплуатационные характеристики.

Обзор публикаций и анализ нерешенных проблем. В результате экспериментальных исследований катодных материалов на основе гафната бария [3] установлено, что эмиссионная активность таких материалов, изготовленных методом прессования и последующего спекания в инертной среде, зависит от массового соотношения в образцах рабочих компонент: порошка гафната бария и мелкодисперсного вольфрама. При этом образцы состава 63 мас. %  $BaHfO_3$  – 37 мас. % W обладают заметно лучшими эмиссионных свойств от концентрации мелкодисперсного вольфрама установлено не было. Наряду с этим, традиционно считается, что оксидные катоды, содержащие оксид бария, относятся к полупроводникам донорного типа [2], хотя имеется мнение, что в некоторых условиях они могут представлять собой полупроводники акцепторного типа [4].

Теоретические исследования влияния энергетической структуры электронных состояний на эмиссионные свойства полупроводников донорного типа [5,6] показали существенную зависимость этих свойств от глубины залегания «работающего» донорного уровня и концентрации примесных атомов, обеспечивающих энергетическое состояние электронов, соответствующее «работающему» донорному уровню. Но эти исследования носили общий характер для достаточно широкой группы эмиссионных материалов.

#### Цель исследований

Целью работы являлось определение энергетической структуры электронных состояний, обеспечивающей наблюдаемую эмиссионную активность термоэлектронных катодов, изготовленных из материалов на основе гафната бария, и объяснение различий в эмиссионных свойствах для различных составов образцов.

#### Результаты исследований

К теоретическому анализу, направленному на установление энергетической структуры эмиссионных материалов на основе гафната бария, были взяты экспериментальные данные: для образцов – индивидуальный  $BaHfO_3$ ; 80мас.%  $BaHfO_3$  –20мас.% W; 63мас.%  $BaHfO_3$  –37мас.% W; 13мас.%  $BaHfO_3$  – 87мас.% W из [3] и для  $2BaO \cdot HfO_2$  из [7].

Началу анализа предшествовала традиционная обработка экспериментальных температурных зависимостей плотности термоэмиссионного тока, состоящая в построении зависимостей  $lg(j/T^{5/4}) = f(1/T)$  и  $lg(j/T^{1/2}) = f(1/T)$ , на основании которых удается получить оценочные значения величин, характеризующих энергетическую структуру электронных состояний:  $\chi$  - глубину зоны проводимости (внешнюю часть работы выхода),  $E_d$  – глубину



залегания донорного уровня и  $n_d$  – концентрацию доноров. На рис. 1 приведены зависимости, позволившие установить следующие ориентировочные значения характеристик электронных состояний образца 63 мас.%*BaHfO*<sub>3</sub> – 37мас.% *W*:  $\chi = 0.90$  эВ;  $E_d = 2.13$  эВ; концентрация доноров для области низких температур  $n_d = 5.05 \cdot 10^{24}$  м<sup>-3</sup>, а для области высоких температур  $n_d = 3.99 \cdot 10^{22}$  м<sup>-3</sup>. Обработка результатов по термоэмиссии индивидуального BaHfO<sub>3</sub>, образца 2BaO·HfO<sub>2</sub> и других образцов показала, что значение  $\chi$  и  $E_d$  для них практически совпадают с приведенными выше значениями. При этом величины концентраций доноров не совпадают с таковыми для катода 63мас.% *BaHfO*<sub>3</sub> – 37 мас. % *W*.

Сопоставляя полученные значения  $\chi$  и  $E_d$  со значениями, характерными для классического оксидного катода на основе BaO ( $\chi = 0,7$  эB,  $E_d = 0,3; 0,7; 1,3$  и 1,9 эB), следует отметить, что в образцах на основе гафната бария донорные центры, как и в случае BaO, скорее всего связаны со свободным барием, но только находящимся в энергетическом состоянии с  $E_d = 1,9$  эB. Внешняя часть работы выхода, определяемая составом и структурой поверхности эмиттера, однако, для образцов на основе гафната бария отличается от  $\chi$  для BaO и имеет значение вблизи 0,9 эB.

Теоретический расчет зависимостей j(T) и  $\phi(T)$  при варьировании  $\chi$  и  $E_d$ , вблизи полученных ранее значений в предположении того, что материалы на



Рис. 2. Сравнение экспериментальных и теоретических температурных зависимостей: а) – плотности термоэмиссионного тока, б) – работы выхода электрона для катодов на основе гафната бария; эксперимент: □ – BaHfO<sub>3</sub>; ◇ – 2BaO·HfO<sub>2</sub>; ○ – 63мас.% BaHfO<sub>3</sub> – 37 мас. % W; теория : 1, 2, 4 – E<sub>d</sub> = 1,9 эВ; 3, 5 – E<sub>d</sub> = 0,7 эВ

основы гафната бария являются полупроводниками донор- ного типа, был сопоставлен с экспериментальными зависимостями (см. рис. 2).

Наилучшее совпадение теоретических и экспериментальных данных для всех катодов имеет место при  $\chi = 0,86$  эВ (см. рис. 2), причем для *BaHfO*<sub>3</sub> во всем температурном диапазоне  $E_d = 1,9$  эВ и  $n_d = 6 \cdot 10^{21}$  м<sup>-3</sup>. Для катода 2*BaO*·*HfO*<sub>2</sub> при  $T \le 1250$  К теория совпадает с экспериментом при  $E_d = 1,9$  эВ и  $n_d = 1,3 \cdot 10^{23}$  м<sup>-3</sup>, а в области температур T > 1250 К – при  $E_d = 0,7$  эВ и  $n_d = 8,0 \cdot 10^{20}$  м<sup>-3</sup>, В то же время, для катода 63 мас. % *BaHfO*<sub>3</sub> – 37 мас. % W совпадение теории и эксперимента имеет место в области температур Т  $\leq$  1700 К при  $E_d =$  1,9  $_{3}$ В и  $n_d = 8,0\cdot10^{23}$  м<sup>-3</sup>, а в области температур Т > 1700 К при  $E_d =$  0,7  $_{3}$ В и  $n_d = 3,0\cdot10^{22}$  м<sup>-3</sup>.

Такое изменение энергетической структуры донорных уровней - переход «работающего» донорного уровня из состояния с 1,9 эВ в состояние 0,7 эВ и скачкообразное достаточно большое изменение концентраций донорных уровней скорее всего маловероятно.

Действительно, как показывают расчеты, проведенные по методике, описанной в [6], для полупроводникового катода донорного типа при  $n_d = 3 \cdot 10^{22} \text{ м}^{-3}$  энергетический уровень доноров  $E_d = 0,7$  эВ опустошается при Т  $\geq 1300 \text{ K}$  и не оказывает заметного влияния на работу выхода электрона.

Более вероятное на наш взгляд объяснение наблюдаемых температурных зависимостей плотности термоэмиссионного тока и работы выхода электрона может быть дано в предположении изменяемости величины концентрации доноров при изменении температуры эмиттера и неизменных значениях  $\chi = 0,86$  эВ и  $E_d = 1,9$  эВ.

На рис. 3. представлены расчетные зависимости концентрации донорных уровней в изученных катодных материалах на основе гафната бария в предположении неизменных значений  $\chi = 0,86$  эВ и  $E_d = 1,9$  эВ. Достаточно хорошее объяснение полученным результатам дают представления о том, что концентрация доноров (донорных уровней) определяется концентрацией бария в объеме эмиттера и на эмитирующей поверхности.

Образец  $2BaO \cdot HfO_2$  (зависимость 2 на рис. 3.) обладает большей концентрацией бария (доноров) по сравнению с образцом индивидуального  $BaHfO_3$  (зависимость 1) из-за наличия свободного BaO в его объеме, что обеспечивает ему лучшую эмиссионную способность.



Рис. 3. Расчетные зависимости концентрациио донорных уровней от температуры при неизменной энергетической структуре электронных состояний (χ = 0,86 эВ, E<sub>d</sub> = 1,9 эВ).

1 – BaHfO<sub>3</sub>; 2 – 2BaO·HfO<sub>2</sub>; 3 – 63 мас.% BaHfO<sub>3</sub> – 37 мас.% W; 4 – 80 мас.% BaHfO<sub>3</sub> – 20 мас. % W; 5 – 13 мас.% BaHfO<sub>3</sub> – 87 мас. % W.

Наибольшая концентрации бария имеет место в наиболее эмиссионно активном катодном материале на основе  $BaHfO_3$ , а именно – в образце с 37 мас. % W (зависимость 3). Это связано с тем, что в данном материале реализуются наиболее выгодные условия протекания твердофазных химических реакций восстановления бария. Если в образце  $2BaO \cdot HfO_2$  свободный барий появляется в результате термической диссоциации избыточного BaO, то в образцах с мелкодисперсным вольфрамом скорость генерации свободного бария может оказаться выше из-за высокой восстанавливающей способности последнего (барий восстанавливается вольфрамом из оксида бария). Обратим внимание, что концентрация доноров в  $BaHfO_3$  с 20 мас. % W (зависимость 4) также превышает концентрацию доноров в индивидуальном  $BaHfO_3$ . Однако в гафнате бария с 87 мас. % W (зависимость 5) концентрация доноров оказывается наименьшей, что, скорее всего, обусловлено, наименьшей площадью контакта частиц W с зернами  $BaHfO_3$  (образуются конгломераты из W) и пониженной скоростью генерации свободного бария в объеме образца. Кроме того, значительно увеличивается доля эмитирующей поверхности, занятой этими конгломератами из вольфрама.

Численные значения концентраций доноров (см. рис. 3.) вполне согласуются с результатами непосредственных измерений [8], проведенных на традиционных оксидных катодах ( $n_d = (1,0 \div 3,0) \cdot 10^{23} \text{ м}^{-3}$ ).

Как уже было отмечено, концентрация доноров определяется не только концентрацией бария в объеме эмиттера, но и концентрацией адатомов бария на самой поверхности. При этом концентрация адатомов определяется соотношением скоростей процессов диффузионной доставки их к поверхности и десорбции и в общем случае должна зависеть от температуры катода. В установившихся состояниях поверхности катода, при которых осуществлялись измерения эмиссионных параметров, плотность потока атомов бария, подводимых к поверхности, равна плотности потока испаряющихся атомов:

$$\dot{J}_{\partial u \phi} = \dot{J}_{u c \pi}.$$
 (1)

Предполагая, что диффузионный поток, обеспечивающий доставку атомов бария к поверхности, идет вдоль оси x, перпендикулярной поверхности, в однородной среде, для плотности диффузионного потока  $j_{\partial u \phi}$  можем записать

$$j_{\partial u\phi} = D \frac{\partial n}{\partial x} \approx D \frac{n_0 - n_{\Pi O B}}{\Delta x} = D_0 \exp\left(-\frac{Q_{\partial u\phi}}{kT}\right) \frac{n_0 - n_{\Pi O B}}{\Delta x}, \quad (2)$$

где  $D = D_0 \exp\left(-\frac{Q_{\partial u\phi}}{kT}\right)$  – коэффициент диффузии;  $Q_{\partial u\phi}$  – энергия актива-

ции диффузии атома;  $n_0$  – концентрация атомов бария в объеме образца;  $n_{nob}$  – концентрация атомов бария в слое, прилегающем к поверхности;  $\Delta x$  – толщина слоя, через который осуществляется диффузия бария к поверхности.

Для плотности потока  $j_{ucn}$  атомов бария, испаряющихся с поверхности в вакуум, т.е. отводимых от поверхности, теория позволяет записать следующее выражение

$$j_{ucn} = C \cdot \Delta x \cdot n_{noe} \exp\left(-\frac{E_{\partial ec}}{kT}\right), \tag{3}$$

где *С* – некоторая константа; *Е*<sub>дес</sub> – энергия десорбции.

С учетом (2) и (3) из (1) получается соотношение

$$D_0 \exp\left(-\frac{Q_{\partial u\phi}}{kT}\right) \frac{n_0 - n_{\Pi O \Theta}}{\Delta x} = C \cdot \Delta x \cdot n_{\Pi O \Theta} \exp\left(-\frac{E_{\partial e c}}{kT}\right), \tag{4}$$

из которого следует, что равновесная концентрация атомов бария на поверхности равна

$$n_{\Pi O B} = n_0 \frac{1}{\frac{C(\Delta x)^2}{D_0} \exp\left(\frac{Q_{\partial u \phi} - E_{\partial e c}}{kT}\right) + 1}.$$
(5)

Если предположить, что в активированном состоянии образцов в приповерхностном слое концентрация атомов много меньше, чем в объеме образцов ( $n_{noe} << n_0$ ), то единицей в знаменателе выражения (5) можно пренебречь, и записать упрощенное соотношение

$$n_{\Pi OB} = n_0 \frac{D_0}{C(\Delta x)^2} \exp\left(\frac{E_{\partial ec} - Q_{\partial u}\phi}{kT}\right).$$
(6)

Из него следует, что если  $E_{dec} > Q_{du\phi}$ , то при увеличении температуры концентрация атомов бария на поверхности будет уменьшаться, при выполнении равенства  $E_{dec} = Q_{du\phi}$  концентрация атомов бария на поверхности не должна зависеть от температуры, а при  $E_{dec} < Q_{du\phi}$  концентрация атомов будет увеличиваться.

Если считать, что концентрация донорных уровней  $n_d$  определяется концентрацией бария  $n_{nos}$  в приповерхностном слое (в предположении, что  $n_0$  = const при различных температурах), представляется возможным оценить значения эффективной энергии процесса диффузии – десорбции:

 $E_{g\phi} = E_{\partial ec} - Q_{\partial u\phi}.$  (7) Как следует из (6), угловые коэффициенты зависимостей  $\ln(n_{nob}) = f(1/T)$  равны  $E_{g\phi}/k$ . Приведенные оценки позволили установить, что  $E_{g\phi}$  изменяется с ростом температуры для изученных систем:

63 мас. %  $BaHfO_3 - 37$  мас. % W -от - 0,6 до + 2,2 эВ;  $2BaO \cdot HfO_2 -$ от - 0,4 до + 2,5 эВ;  $BaHfO_3 -$ от - 0,9 до + 0,9 эВ.

Полученные в результате обработки значения  $E_{3\phi}$  не противоречат известным экспериментальным данным. Так, например, энергия десорбции  $E_{dec}$  (активации десорбции) *Ba* с поверхности *W* составляет ~ 3,7 эВ [2], *Ba* с *Ir* – 5,7 эВ [9]. Энергия активации диффузии бария в оксиде бария по данным [10] при T > 1350 К равна (0,3±0,05) эВ, а при T < 1350 К  $Q_{du\phi} \approx 12$  эВ.

Таким образом, проведенная теоретическая обработка экспериментальных результатов по термоэмиссии катодных материалов на основе гафната бария позволила определить следующие параметры энергетической структуры: глубина зоны проводимости  $\chi = 0,86$  эВ, энергия донорного уровня  $E_d = 1,9$  эВ, а также позволила рассчитать величины концентраций атомов бария в приповерхностном слое и их зависимости от температуры. Изменение концентрации донорных уровней обусловлено конкуренцией между процессами диффузионной доставки атомов бария на эмитирующую поверхность (в первую очередь, через развитую систему пор) и десорбции их с поверхности.

#### выводы

Сопоставление теоретических и экспериментальных данных свидетельствует о том, что композиционные материалы термоэлектронных эмиттеров на основе гафната бария с вольфрамом являются полупроводниковыми материалами донорного типа.

Энергетическая структура электронных состояний для всех исследуемых материалов на основе гафната бария оказывается единой со следующими параметрами:  $\chi = 0.86$  эB;  $E_d = 1.9$  эB при T > 1100 К.

Донорные уровни в этих материалах обусловлены главным образом свободным барием, адсорбированным на эмитирующей поверхности.

Равновесная концентрация адсорбированного бария на эмитирующей поверхности (концентрация донорных уровней) исследованных образцов различна, существенным образом зависит от рабочей температуры и содержания вольфрама в образцах, и определяется соотношением скоростей процессов диффузионной доставки бария к поверхности и десорбции его с поверхности.

Вольфрам, обладая высокой восстанавливающей способностью бария из оксидов, обеспечивает наиболее высокую скорость его генерации в тех случаях, когда имеет место максимальная площадь контакта между зернами вольфрама и *BaHfO*<sub>3</sub>, что наблюдается в образцах состава 63 мас. % *BaHfO*<sub>3</sub> – 37 мас. % *W*.

#### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Киселев А.Б. Металлооксидные катоды электронных приборов. – М.: Изд-во МФТИ, 2001. – 240 с.

2. Мойжес Б.Я. Физические процессы в оксидном катоде. – М.: Наука, 1968. – 479 с.

3. Высокоэффективный горячепрессованный эмиттер на основе гафната бария с вольфрамом и перспективы его использования в полом катоде / А.А. Таран, Е.К. Островский, Н.В. Белан, А.И. Оранский // Авиационно-космическая техника и технология. – 2004. – № 8 (16). – С. 202 – 206.

4. Белл Р.Л. Эмиттеры с отрицательным электронным сродством. : Пер. с англ. – М.: Энергия, 1978. – 192 с.

5. Кислицын А.П., Островский Е.К., Таран А.А. Температурная зависимость химического потенциала катодных материалов (на примере BaO) // Авиационно-космическая техника и технология. – 2003. – Вып. 2. – С. 56 – 59.

6. Кислицын А.П., Таран А.А., Островский Е.К.. Перераспределение электронов по энергетическим состояниям и работа выхода электрона полупроводниковых катодов донорного типа // Вісті академії інженерних наук України. Машинобудування та прогресивні технології. – 2005. - № 3 (26). – С. 144 – 149.

7. Бондаренко Б.В., Ермаков С.В., Царев Б.М. Термоэлектронные свойства гафнатов и ренатов бария // Радиотехника и электроника. – 1961. – Т. 6, №10. – С. 1773 – 1775. 8. Металлы и сплавы для электровакуумных приборов / А.С. Гладков, В.М. Амосов, И.В. Конецкий, А.М. Левин. – М.: Энергия, 1969. – 600 с.

9. Тонтегоде А.Я., Рутьков Е.В. Интеркалирование атомами двумерной графитовой пленки на металлах // Успехи физ. наук. – 1993. – Т. 163, №11. – С. 57 – 74.

10. Redington R.W. Diffusion of Barium in Barium Oxide // Phys. Rev. – 1952. – V. 87,  $N_{26}$ . – P. 1066 – 1073.

#### МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

## Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

ISSN 1818-8052

# ВОПРОСЫ ПРОЕКТИРОВАНИЯ И ПРОИЗВОДСТВА КОНСТРУКЦИЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ Специальный выпуск «новые технологии в машиностроении»

4(55) октябрь-декабрь 2008

### СБОРНИК НАУЧНЫХ ТРУДОВ

Издается с января 1984 г.

Выходит 4 раза в год

Харьков «ХАИ» 2008