# Research Article ISSN: 0974-6943

Available online through



# www.jpronline.info

# Synthesis and Insilico biological activity evaluation of some 1,3,5-Trisubstituted -2-pyrazolines

Y. Rajendra Prasad<sup>1</sup>,K. K. Raja Sekhar\*,V. Shankarananth<sup>2</sup>,G.Sireesha<sup>2</sup>,K. Swetha Harika<sup>2</sup> and V. Poroikov<sup>3</sup>.

<sup>1</sup>Professor and Head, Department of Pharmaceutical Chemistry, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam-530003, AP, India. <sup>2</sup>Department of Pharmaceutical Chemistry, Sri Padmavathi School of Pharmacy, Tiruchanoor, Tirupati-517503, AP, India.

<sup>3</sup>Professor and Head, Department for Bioinformatics and Laboratory for Structure-Function Based Drug Design, Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya Str., 10., Moscow-119121, Russia.

# Received on: 16-10-2010; Revised on: 17-12-2010; Accepted on: 06-01-2011

## ABSTRACT

The objective of the present work was to synthesize and estimate mechanism of action, pharmacological activity and toxic or side effects of some 1,3,5-Trisubstituted-2-Pyrazoline derivatives. Substituted chalcones were used as starting material. Chalcones comprising aryl moiety have been prepared by Claisen-Schmidt condensation of aromatic aldehydes with 4-Hydroxy acetophenone. All these pyrazoline derivativatives are characterised by IR, <sup>1</sup>H-NMR and MS analysis. Prediction of Activity Spectra for Substances(PASS) is the computer program used in this work. Antifungal and antibacterial activities predicted by PASS was confirmed by experimental evaluation.

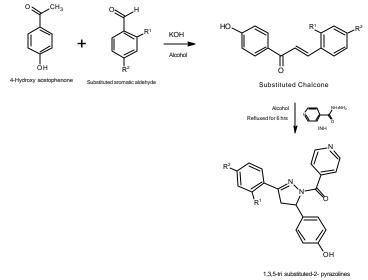
Key words: Pyrazolines, PASS computer program, Insilico biological activity, Antifungal activity and Antibacterial activity.

## INTRODUCTION

Pyrazolines and their derivatives, a class of heterocyclic compounds containing the N-N bond exhibit a wide range of biological activities such as antimicrobial<sup>1</sup>, antiinflammatory<sup>2</sup>, antidiabetic<sup>3</sup>, antirheumatic<sup>4</sup>, anticancer<sup>5</sup>, antiviral<sup>6</sup>, antimycobacterial<sup>7</sup> and antiallergic activities8. Living organisms find difficulty in construction of N-N bonds which limits the natural abundance of pyrazolines. Therefore, synthesis and investigation of their chemical and biological behaviour have gained more importance in recent decades for biological, medicinal and agricultural reasons. Various methods have been worked out for their synthesis and the reaction of a, ß-unsaturated aldehydes and ketones with hydrazines and hydrazine derivatives became one of the most popular methods for the synthesis of pyrazolines<sup>9-10</sup>. Chalcone is a unique template that is associated with several biological activities and is a well known intermediate for synthesizing various heterocyclic compounds. The compounds with chalcone as backbone have been reported to possess varied biological and pharmacological activities, including antimicrobial, anti-inflammatory, analgesic, cytotoxic, antitumor, antimalarial, antitubercular, antiviral, anti-HIV and etc activities<sup>11</sup>. In view of the proven potentiality of chalcones and pyrazolines, we felt worthwhile to get them incorporated with a potent antitubercular agent INH(Isonicotinic acid hydrazide-Hydrazine derivative) by molecular conjunction method. The starting material chalcone was obtained by Claisen-Schmidt condensation which on further reflux condensation with INH, rectified spirit and potassium hydroxide yielded 1,3,5-Trisubstituted-2-pyrazoline derivatives (1a-1f).

*In silico* prediction of biological activity in relation to the chemical structure of a compound is now a commonly used technique in drug discovery and development. It is possible with computer program PASS, to predict the biological activity spectrum for a compound on the basis of its structural formula. It helps in finding most probable new leads with required activity spectra among the compounds from in-house and commercial data bases<sup>12-16</sup>. All the synthesized compounds were screened for antifungal activity, as predicted by PASS computer program. Interestingly, all the compounds exhibited significant antifungal activity when compared with reference standard.

### MATERIALS AND METHODS


### **Chemicals and equipments:**

4-Hydroxyacetophenone, Substituted aromatic aldehydes, Isonicotinic acid hydrazide, potassium hydroxide, Rectified spirit, Reflux condenser, Heating mantle, Dimethyl Sulfoxide, *Candida albicans, Aspergillus flavus*, Potato dextrose agar, *Streptococcus mutans, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli*, Dimethyl formamide, Procaine penicillin, Streptomycin and nutrient agar. Thermonik melting and boiling point apparatus (C-PMB-2 model), SHIMADZU FT-IR 8000 series spectrophotometer, JEOL FX-909 200 MHz NMR spectrophotometer and JEOL D-300 EIMS 70 ev mass spectrometer.

### **METHODS:**

Preparation of chalcones: A mixture of 4-Hydroxyacetophenone(0.01M),substituted aromatic aldehyde(0.01M) in

\*Corresponding author. K.K.Rajasekhar,M.Pharm,(Ph.D), HOD, Department of Pharmaceutical Chemistry, Sri Padmavathi School of Pharmacy, Tiruchanoor, Tirupathi. Tel.: +91-9440592854 E-mail:komarlakrs@gmail.com



#### Scheme:1

rectified spirit(30 ml),aqueous potassium hydroxide(15 gm in 15 ml) was stirred for 3hrs at 15-20<sup>o</sup> C. Filtered and washed the residue with ice cold water until the washings were neutral to litmus.Dried and again washed with ice cold rectified spirit(20ml). The obtained chalcone was used in next step without further purification.

### Preparation of pyrazolines:

To a solution of chalcone (1 millimolar) and INH(500mg) in rectified spirit (20ml),pyridine(0.3ml) was added as a catalyst. The mixture was refluxed for 4-6 hrs and the solvet is evaporated completely. The reaction mixture was poured into crushed ice. The resulting precipitate was recrystallized from suitable solvent.

### Prediction of Biological activity spectra:

Novel pharmacological actions can be found for title compounds on the basis of computer program PASS. Its application to the title compounds was done in order to identify prospective pharmacological properties that could be confirmed by experimental studies. PASS compares the structure of a new compound with structures of well known biologically active substance and therefore it is possible to estimate if a new compound may have a particular effect. It operates with many thousands of substances from the training set, and provides more objective estimation. Since only the structural formula of chemical compound is necessary to obtain PASS predictions, this approach can be used at the earliest stage of investigation. Structures of the title compounds were drawn through Chem Sketch softwar<sup>17</sup>, submitted to the PASS computer program and predicted the possible mechanisms of action as well as biological activities.

Anti-fungal activity<sup>18</sup>:

The synthesized compounds were screened for antifungal activity against Candida albicans

Journal of Pharmacy Research Vol.4.Issue 2. February 2011

# Y. Rajendra Prasad et al. / Journal of Pharmacy Research 2011,4(2),558-560

### Table 1: Structural details and Analytical data of title compounds (1a-1f):

| Compd<br>Code | Molecular<br>Formula                                           | R <sup>1</sup> | $\mathbf{R}^2$                     | Molecular<br>Weight | MP<br>(°C) | Yield<br>(%) | IR<br>(KBr, v <sub>max</sub> , cm-1)                            | <sup>1</sup> H NMR<br>(CDCl <sub>3</sub> , <b>d</b> ppm)                           | Mass<br>spectra<br>(m/z) |
|---------------|----------------------------------------------------------------|----------------|------------------------------------|---------------------|------------|--------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------|
| 1a            | C <sub>21</sub> H <sub>16</sub> FN <sub>3</sub> O <sub>2</sub> | -H             | -F                                 | 361                 | 134-136    | 65           | (C=O str)1673, (C=N str)1598,(OH str)3611,(C-F str) 1056.       | 8.6(1H,OH),6.9-7.7(12H,Aromatic)                                                   | -                        |
| 1b            | C, H, CIN, Ó,                                                  | -H             | -Cl                                | 378                 | 110-113    | 76           | (C=O str)1652, (C=N str)1621, (OH str)3634, (C-Cl str) 670.     | 5.3(1H,OH),7.07-7.5(12H,Aromatic).                                                 | -                        |
| 1c            | $C_{21}^{21}H_{15}^{10}Cl_{2}\dot{N}_{2}\dot{O}_{2}$           | -Cl            | -Cl                                | 412                 | 103-105    | 85           | (C=O str)1591, (C=N str)1652, (OH str)3594, (C-Cl str) 588.     | 7.8(1H,OH),7.76-8.5(11H,Aromatic).                                                 | -                        |
| 1d            | $C_{21}^{21}H_{16}^{15}N_4O_4^{20}$                            | -H             | -NO <sub>2</sub>                   | 388                 | 140-144    | 72           | (C=O str)1644, (C=N str)1618,(OH str)3632,(C-NO 2 str)<br>1488. | 6.75(1H,OH),7.12-7.65(12H,Aromatic).                                               |                          |
| 1e            | ${\rm C}_{23}{\rm H}_{22}{\rm N}_{4}{\rm O}_{2}$               | -H             | -N.(CH <sub>3</sub> ) <sub>2</sub> | 386                 | 210-212    | 81           | (C=O str)1608, (C=N str)1688,(OH str)3629,(C-N str) 1336.       | 7.9(1H,OH),6.92-7.4(12H,Aromatic).<br>2.28(s,6H,N(CH <sub>2</sub> ) <sub>2</sub> ) | 386[M]                   |
| 1f            | ${\rm C}^{}_{22}{\rm H}^{}_{19}{\rm N}^{}_{3}{\rm O}^{}_{2}$   | -H             | -CH <sub>3</sub>                   | 357                 | 127-129    | 68           | (C=O str)1649, (C=N str)1637,(OH str)3615,(C-H str) 2968.       | 6.88(1H,OH),7.2-7.9(12H,Aromatic),<br>2.34(3H, CH <sub>3</sub> ).                  | -                        |

### Table:2. Predicted Biological Activity Spectrum of title compounds(1a-1f).

1a-[3-(4-fluorophenyl)-5-(4-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl](pyridin-4yl)methanone

| 1e—[5<br>4-yl)m |    |                | )-3-(4-dimethy | laminophenyl)-4,5-dihydro-1 <i>H</i> -pyrazol-1-yl](pyridin- |
|-----------------|----|----------------|----------------|--------------------------------------------------------------|
| S.NO            | Pa | P <sub>i</sub> | Activity       |                                                              |

| S.NO | Pa    | P <sub>i</sub> | Activity                                |
|------|-------|----------------|-----------------------------------------|
| 1.   | 0.584 | 0.004          | Antibacterial                           |
| 2.   | 0.562 | 0.025          | Neurotransmitter agonist                |
| 3.   | 0.465 | 0.012          | Vascular disease treatment              |
| 4.   | 0.465 | 0.154          | Amyotrophic lateral sclerosis treatment |
| 5.   | 0.403 | 0.208          | Hypoglycemic                            |
| 6.   | 0.370 | 0.068          | Interleukin 5 antagonist                |
| 7.   | 0.350 | 0.072          | T cell inhibitor                        |
| 8.   | 0.330 | 0.004          | Antifungal                              |
| 9.   | 0.328 | 0.012          | Vasoprotector                           |
| 10.  | 0.212 | 0.013          | Contraceptive                           |

1b-[3-(4-chlorophenyl)-5-(4-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl](pyridin-4yl)methanone

| S.NO | P <sub>a</sub> | P <sub>i</sub> | Activity                              |
|------|----------------|----------------|---------------------------------------|
| 1.   | 0.634          | 0.005          | Alzheimer's disease treatment         |
| 2.   | 0.634          | 0.006          | Heart failure treatment               |
| 3.   | 0.617          | 0.005          | Analgesic                             |
| 4.   | 0.515          | 0.005          | Antineoplastic                        |
| 5.   | 0.443          | 0.045          | Antineoplastic (hematological cancer) |
| 6.   | 0.426          | 0.133          | Antineoplastic (multiple myeloma)     |
| 7.   | 0.406          | 0.010          | Antineoplastic (lung cancer)          |
| 8.   | 0.377          | 0.082          | Antitussive                           |
| 9.   | 0.365          | 0.010          | Antifungal                            |
| 10.  | 0.354          | 0.024          | Antibacterial                         |

1c-[3-(2,4-dichlorophenyl)-5-(4-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl](pyridin-4vl)methanone

| S.NO | Pa    | P <sub>i</sub> | Activity                                       |
|------|-------|----------------|------------------------------------------------|
| 1.   | 0.681 | 0.059          | Antiseborrheic                                 |
| 2.   | 0.650 | 0.094          | Gluconate 2-dehydrogenase (acceptor) inhibitor |
| 3.   | 0.556 | 0.008          | Antimigraine                                   |
| 4.   | 0.450 | 0.115          | Antidiarrheal                                  |
| 5.   | 0.405 | 0.008          | Male reproductive disfunction treatment        |
| 6.   | 0.405 | 0.013          | Antiarrhythmic                                 |
| 7.   | 0.351 | 0.017          | Antibacterial                                  |
| 8.   | 0.320 | 0.017          | Antifungal                                     |
| 9.   | 0.304 | 0.261          | Insulin like growth factor 1 agonist           |
| 10.  | 0.259 | 0.020          | Bronchodilator                                 |

1d-[5-(4-hydroxyphenyl)-3-(4-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl](pyridin-4- Table:4 Antibacterial activity of synthesized compounds:(1a-f) vl)methanone

| S.NO | Pa    | P <sub>i</sub> | Activity                              |
|------|-------|----------------|---------------------------------------|
| 1.   | 0.685 | 0.039          | Chloride channel antagonist           |
| 2.   | 0.673 | 0.006          | Heart failure treatment               |
| 3.   | 0.548 | 0.103          | Antineoplastic (ovarian cancer)       |
| 4.   | 0.481 | 0.142          | Interleukin antagonist                |
| 5.   | 0.479 | 0.014          | Antibacterial                         |
| 6.   | 0.444 | 0.156          | Antineoplastic (gastric cancer)       |
| 7.   | 0.421 | 0.088          | Antineoplastic (lung cancer)          |
| 8.   | 0.391 | 0.132          | Antineoplastic (hematological cancer) |
| 9.   | 0.326 | 0.005          | Alzheimer's disease treatment         |
| 10.  | 0.317 | 0.048          | Antifungal                            |

and Aspergillus flavus by cup plate method. Dimethyl sulfoxide was used as solvent control. Griseofulvin was used as standard drug. The culture medium used was potato dextrose agar medium.

### Anti-bacterial activity<sup>19</sup>:

The synthesized compounds were screened for antibacterial activities against the Gram positive organisms such as Streptococcus mutans and Staphylococcus aureus and Gram negative organisms such as Pseudomonas aeruginosa and Escherichia coli by agar diffusion method. Dimethyl formamide was used as solvent control. Procaine penicillin and streptomycin were used as standards for antibacterial screening. The culture medium used was nutrient agar.

| S.NO | Pa    | P <sub>i</sub> | Activity                        |
|------|-------|----------------|---------------------------------|
| 1.   | 0.763 | 0.023          | Taurine dehydrogenase inhibitor |
| 2.   | 0.616 | 0.006          | Antiinflammatory                |
| 3.   | 0.616 | 0.007          | Heart failure treatment         |
| 4.   | 0.568 | 0.006          | Antimigraine                    |
| 5.   | 0.528 | 0.007          | Antimitotic                     |
| 6.   | 0.455 | 0.009          | Alzheimer's disease treatment   |
| 7.   | 0.369 | 0.182          | Acetylcholine release stimulant |
| 8.   | 0.355 | 0.007          | Antifungal                      |
| 9.   | 0.346 | 0.039          | Antimycobacterial               |
| 10.  | 0.333 | 0.045          | Antidote(cyanide)               |

1f-[5-(4-hydroxyphenyl)-3-(4-methylphenyl)-4,5-dihydro-1H-pyrazol-1-yl](pyridin-4vl)methanone

| S.NO | P     | P,    | Activity                         |
|------|-------|-------|----------------------------------|
| 1.   | 0.679 | 0.007 | Heart failure treatment          |
|      |       |       |                                  |
| 2.   | 0.578 | 0.078 | Chloride channel antagonist      |
| 3.   | 0.578 | 0.110 | Ankylosing spondylitis treatment |
| 4.   | 0.561 | 0.081 | Nerve growth factor agonist      |
| 5.   | 0.487 | 0.045 | Menstruation disorders treatment |
| 6.   | 0.377 | 0.030 | Antibacterial                    |
| 7.   | 0.374 | 0.007 | Antifungal                       |
| 8.   | 0.359 | 0.128 | Antiseborrheic                   |
| 9.   | 0.328 | 0.210 | Fibrinolytic                     |
| 10.  | 0.203 | 0.112 | Antipyretic                      |

#### Table:3 Antifungal activity of synthesized compounds:(1a-f)

| S.No | Compound<br>Code | Zone of in<br><i>Candida d</i><br>50µg/ml | hibition(mm)<br>albicans<br>100µg/ml | А.<br>50µg/ml | spergillus flavus<br>100µg/ml |
|------|------------------|-------------------------------------------|--------------------------------------|---------------|-------------------------------|
| 1    | 1a               | 20                                        | 27                                   | 12            | 17                            |
| 2    | 1b               | 23                                        | 29                                   | 18            | 23                            |
| 3    | 1c               | 19                                        | 30                                   | 15            | 19                            |
| 4    | 1d               | 21                                        | 32                                   | 19            | 25                            |
| 5    | 1e               | 26                                        | 38                                   | 25            | 30                            |
| 6    | 1f               | 24                                        | 35                                   | 22            | 29                            |
| 7    | Griseofulvin     | 30                                        | 43                                   | 28            | 35                            |
| 8    | Control          | -                                         | -                                    | -             | -                             |

| S.No | Compound Co             | de      | Zone of inhibition(mm) |          |          |         |              |         |          |  |
|------|-------------------------|---------|------------------------|----------|----------|---------|--------------|---------|----------|--|
|      |                         | S.m     | utans                  | S.aureus |          | P.aeri  | P.aerugenosa |         | E.coli   |  |
|      |                         | 50µg/ml | 100µg/ml               | 50µg/ml  | 100µg/ml | 50µg/ml | 100µg/ml     | 50µg/ml | 100µg/ml |  |
| 1    | 1a                      | 10      | 13                     | 11       | 13       | 9       | 12           | 10      | 13       |  |
| 2    | 1b                      | 15      | 19                     | 17       | 20       | 14      | 16           | 13      | 18       |  |
| 3    | 1c                      | 12      | 15                     | 13       | 16       | 12      | 15           | 12      | 16       |  |
| 4    | 1d                      | 14      | 17                     | 18       | 23       | 15      | 19           | 16      | 20       |  |
| 5    | 1e                      | 18      | 22                     | 21       | 25       | 17      | 22           | 20      | 23       |  |
| 6    | 1f                      | 17      | 20                     | 19       | 23       | 15      | 20           | 18      | 21       |  |
| 7    | Procainepenici          | llin 22 | 27                     | 24       | 30       | -       | -            | -       | -        |  |
| 8    | Streptomycin<br>Control | -       | -                      | -        | -        | 21      | 26           | 24      | 28       |  |

### **RESULTS AND DISCUSSION:**

All the pyrazoline derivativatives are synthesized by proposed method and characterised by IR, <sup>1</sup>H-NMR and MS analysis(Tab no-1).Biological activity spectra were predicted for title compounds with PASS computer program. The result of prediction is presented in table no-2 as the list of activities with appropriate Pa and Pi sorted in descending order of difference(Pa-Pi)>0. PASS is based on a robust analysis of structure-activity relationships in a heterogenous training set currently including about sixty thousand of biologically active compounds from different chemical series with about four thousand five hundred types of biological activity. Biological activity spectrum for a substance is a list of biological activity types for which the probability to be revealed(Pa) and the probability not tobe revealed(Pi) are calculated. Pa and Pi values are independent and their values vary

# Y. Rajendra Prasad et al. / Journal of Pharmacy Research 2011,4(2),558-560

from 0.000-1.000.It is reasonable that only those types of activities may be revealed by the compound , where Pa>Pi and so they are put into the biological activity spectrum. If Pa>0.7, the compound is likely to reveal its activity in experiments, but in this case, the chance of being the analogue of the known pharmaceutical agent is high. If 0.5<Pa>0.7, the compound is likely to reveal this activity in experiments, but this is less and the compound is not so similar to the known pharmaceutical agent. If Pa <0.5, the compound is unlikely to reveal this activity in experiments, but if the presence of this activity is confirmed in the experiment, the compound might be a new chemical entity.

The antifungal activity of title compounds have been evaluated against C.albicans and A.flavus and griseofulvin employed as reference standard, by using cup plate method. Table no-3 shows antifungal activity data. Examination of antifungal data of title compounds revealed that all the compounds in this series have been found effective against both fungi at 50µg/ml and 100µg/ml dose level when compared with reference standard griseofulvin. Compounds 1e and 1f possessed maximum activity and this reveals the importance of the +I effects of the substituents present on the aryl rings in enhancing the antifungal activity. All the compounds have been found to be active against C. albicans than A.flavus.

All the title compounds have been evaluated for their antibacterial activity against S.mutans and S. aureus (Gram positive ) and P. aeruginosa and E. Coli (Gram negative) by agar diffusion method. Procaine penicillin and Streptomycin were employed as reference standards. Table no-4 shows antibacterial activity data.All the title compounds showed antibacterial activity at 50µg/ml and 100µg/ml dose level when compared with standard drugs. Among all the compounds tested , compounds 1e and 1f possessed maximum activity which is probably due to electron releasing substituents such as dimethyl amino and methyl moieties at fourth position of aryl ring. This reveals the importance of such groups for favourable antibacterial activity. Intrestingly all compounds showed inhibitory activity.

### **CONCLUSION:**

The proposed method for the synthesis of 1,3,5-trisubstituted -2-pyrazolines was simple and all the synthesized compounds obtained in good yield. This present study showed that all the title compounds were exhibiting antifungal and antibacterial activities. The contributing physico-chemical properties for the antifungal and antibacterial activity need to be established by detailed QSAR studies, which may provide insights into the structural requirements of this class of molecules.

### **ACKNOWLEDGEMENTS:**

The authors are thankful to Mr.K.Ramesh, H.O.D , Department of Microbiology, Gapes PG college, Tirupati, Mr. V. Taranath, Sr. Research fellow, Dept. of Microbiology, SVU veterinary college, Tirupati and Smt.P.Sulochana, M.A., B.Ed., L.L.B., Chairperson, Dr.D.Ranganayakulu, M.Pharm, Ph.D, Principal, Sri Padmavathi school of pharmacy, Tiruchanoor, Tirupati for providing facilities to carry out this work. We extend our thanks to Murthy, Praveen, Harika, Rohini and Divyabharathi for their help during this work.

## REFERENCES

- Novinson.T,Okabe.T.,J. Med. Chem, 19,517-520(1976). Bansal.E,Srivastava.V.K., Eur.J. Med. Chem, 36,81-92(2001).
- Ahn J.H., Kim H.M., *Biorg. Med. Chem. lett*, 14, 4461-4465(2004). Jung J.C., Watkins E.B., *Heterocyclics* 65, 77-94(2005). 3. 4.
- Jung, J. C., Makma, D., Piterov, Orth, S.J., 79 (2007).
  Berta, D., Felder, E., Vulpetti, A., Villa, M., Chem, Abstr, 137 (2002), 1695179.
  Bhardwaj, S. D. Jolly, V. S., Orient, J. Chem, 12(1996).
  Shaharyar, M., Siddiqui, A. A., Biorg, Med. Chem.lett, 16,3947, (2006).
  Roman, B., Pharmazie, 45,214 (1990). 5
- 6. 7.

- Elguero.J., Compre.Hetercyclic Chemistry.3,1,(1996). Levai.A., J.Heterocycl.Chem,39,1,(2002). 10
- 11. Dhar, D.N., in: The chemistry of chalcones and related compounds, Wiley Interscience, New York (1981). LaguninA.A., StepanchikovaA.V, Filimonov D. and Poroikov V., PASS: prediction of activity spec-
- 12
- LaguintA: A., stepancinkovaA: v, Fininov D. and Porokov V., PASS, prediction of activity spectra for biologically active substances. *Bioinformatics*, 16(8), 2000, 747-748.
  Porokov V, Akimov D, Shabelnikova E and Filimonov D, Top 200 medicines: can new actions be discovered through computer-aided prediction?, *SAR and QSAR in Environmental Research*, 12(4), 2001, 327-344. 13.
- 14 Geronikaki A,Lagunin A,Poroikov V,Filimonov D,Hadjipavlou-Litina D and Vicini P,Computer aided prediction of biological activity spectra:evaluating versus known and predicting of new activities for thiazole derivative, SAR and QSAR in Environmental Research, 13 (3/4), 2001,,457-
- Oruc E.Rollas S.Kandemirili F.Shvets N and Dimoglo A.S. 1.3.4-Thiadiazole derivatives. 15. synthesis, structure elucidation, and structure-antituberculosis activity relationship investigation. J. Med. Chem. 47, 2004 6760-6767
- 16. Http:// www.ibmc.msk.ru/PASS.
- ACD/Chemsketch ver 12.0.Advanced Chemistry Development.Inc.Toronto.Canada.2009. 17. Seely H.W. and Van Demark., A Laboratory Manual of Microbiology, Taraporewala sons and Co., Mumbai, (1975)55. 18.
- 19 Phillips I and Williams D., Laboratory Method in Antimicrobial Chemotherapy, (1978).

### Source of support: Nil, Conflict of interest: None Declared