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Toxicity of chemical compound is a complex phenomenon that may be caused by its interaction
with different targets in the organism. Two distinct types of toxicity can be broadly specified:
the first one is caused by the strong compound’s interaction with a single target (e.g. AChE
inhibition); while the second one is caused by the moderate compound’s interaction with many
various targets. Computer program PASS predicts about 2500 kinds of biological activities
based on the structural formula of chemical compounds. Prediction is based on the robust
analysis of structure-activity relationships for about 60,000 biologically active compounds.
Mean accuracy exceeds 90% in leave-one-out cross-validation. In addition to some kinds of
adverse effects and specific toxicity (e.g. carcinogenicity, mutagenicity, etc.), PASS predicts
�2000 kinds of biological activities at the molecular level, that providing an estimated profile
of compound’s action in biological space. Such profiles can be used to recognize the
most probable targets, interaction with which might be a reason of compound’s
toxicity. Applications of PASS predictions for analysis of probable targets and mechanisms
of toxicity are discussed.

Keywords: PASS; Biological activity spectra; Specific toxicity; Targets and mechanisms of
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1. Introduction

Toxicity of chemical compound is a complex phenomenon that may be caused by its
interaction with different targets in the organism.

Sometimes, it is possible to identify a single target, interaction with which may be
a cause for the compound’s toxicity. For example, well-known chemical weapon sarin
(O-isopropylmethylphosphonofluoridate) is an extremely potent acetylcholinesterase
(AChE) inhibitor with high specificity and affinity for the enzyme [1]. Sarin is a highly
toxic nerve agent that causes human death due to anoxia resulting from airway
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obstruction, weakness of the muscles of respiration, convulsions and respiratory failure.
A second example came from pharmacology and is present by matrix metalloproteinase
inhibitors that act as strong zinc binding agents and, due to the lack of selectivity,
exhibit unacceptable toxicities shown in clinical trials [2]. A third example (also from
pharmacology) is a toxicity of barbituric acid derivatives that in moderate
amounts mimics the alcohol intoxication inhibiting the alcoholdehydrogenase in the
organism [3].

There exist, of course, a lot of additional examples when inhibition/blockage of a
d’une importance vitale biomacromolecular target leads to toxicity that may cause severe
injuries and even death of a human being [4]. However, in many cases compound’s
toxicity is not caused by a strong interaction with a single biological macromolecule;
instead of that compound demonstrates a moderate interaction with many different
targets. As a result, more complex toxicity phenomena are observed, when no one
unique mechanism of toxicity can be identified.

To describe a toxicity when a single molecular target is unknown, more general terms
are widely used. Such terms describe either particular effects of compounds’ action,
e.g. arrhythmogenicity, ulcerogenicity, carcinogenicity, etc.; and/or specific organ/issue
where a toxic effect is exhibited, e.g. cardiotoxicity, hepatotoxicity, nephrotoxicity, etc.

It is necessary to establish priorities of chemical compounds testing as well as
‘‘filtering out’’ the leads with high probability of adverse/toxic effects at the early stages
of research and development. To achieve these purposes, computer methods are widely
used [5–8]. One of such methods entitled PASS (Prediction of Activity Spectra for
Substances) is developed for structure-activity relationships (SAR) analysis in diverse
sets of chemical compounds with many different types of biological activities [9].
Here we present the possibilities of PASS application for computer-aided prediction
of targets and mechanisms of toxicity.

2. Methods

2.1 General description of PASS

Contrary to many other existing methods of SAR/QSAR/QSPR analysis focused on the
prediction of a single type of biological activity within the same chemical series, PASS
predicts the whole biological activity spectra of a molecule under study. The biological
activity spectrum of the compound reflects all kinds of its biological activities, which
can be found in the compound’s interaction with biological entities [9].

PASS approach is based on the analysis of structure-activity relationships for the
training set currently including about 60,000 drugs, drug-candidates, leads and toxic
compounds whose biological activity is determined experimentally [10]. These SAR are
obtained during the training procedure and are stored in the knowledge base called
SAR Base. New biologically active compounds and new types of biological activity can
be added to the PASS training set upon appearance in literature. Re-training of the
program gives an updated SAR Base with the improved quality of prediction.

Used in PASS chemical descriptors are the so-called Multilevel Neighbourhoods
of Atoms (MNA) published elsewhere [11]. The set of MNA descriptors is generated
on the basis of structural formula (formulas) presented in MOL-file (SDF-file)
form [12], which are used as PASS input. Since MNA descriptors are generated for each
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compound de novo, new descriptors can be obtained upon presentation of a novel

structural feature in the compound under study.
A detailed description of the mathematical algorithm used in the current version of

PASS was published earlier [9, 10] and is also available on the web site [13].
The user obtains the results of prediction as a list of activity types, with the

probabilities of presence (Pa) and absence (Pi) for each particular activity. By definition

the probabilities Pa and Pi can be also interpreted as the measures of belonging to fuzzy

subsets of ‘‘active’’ and ‘‘inactive’’ compounds, or as the probabilities of the 1st and

2nd kinds of errors of prediction. Both interpretations of probabilities Pa and Pi are

equivalent and can be used for interpreting the results of prediction. Interpretation of

the prediction results and criteria of activity/inactivity is rather flexible, and depends on

the purpose of a particular investigation. By default, Pa>Pi value is used as

a threshold that provides the mean accuracy of prediction about 90% in leave-one-out

cross-validation for all approximately 60,000 compounds and 2500 activities from the

PASS training set.
PASS (version 2005) predicts 369 pharmacotherapeutic effects, 2055 biochemical

mechanisms of action, 39 adverse effects and toxicities, 66 metabolic terms. Complete

list of biological activities predicted by PASS is available at the web-site [13].
It is important to mention that, to estimate how robust is PASS approach, special

experiments were performed with MDDR database [14]. It was shown that despite the

incompleteness of the training set SAR analysis provided by PASS, it has a reasonable

accuracy [14]. Thus, PASS can be applied for predicting of biological activity spectra for

new compounds.
PASS is successfully applied in the pharmacological field, where a dozen of

predictions were afterwards confirmed by the experiment. For example, new

angiogenesis inhibitors [15], cognition enhancers [16], anxiolytics [17, 18], antileishma-

nial agents [19, 20] were discovered on the basis of PASS predictions. These provide

additional evidences that PASS could be also used for prediction of adverse and toxic

effects in chemical compounds under study.

3. Results and discussion

3.1 Prediction of specific toxicity with PASS

The list of adverse and toxic effects predicted by PASS with the results of leave-one-out

cross-validation are given in table 1. The number of compounds per one adverse

and toxic effects varies from 8 (Bradycardic) to 1531 (Teratogen), with an average of

�285. Independent Error of Prediction (IEP) varies from 4.6% (Bradycardic) to 30.9%

(Hematotoxic), with average IEP� 13.8%.
It is necessary to emphasize that PASS training set was created initially with a goal to

find new compounds with useful pharmacotherapeutic action; therefore information

about adverse and toxic effects may be incomplete for some types of activity. However,

as was mentioned above, due to the robustness of PASS approach [14] one may rely on

the positive results of prediction (if any type of activity is predicted with reasonable

probability it has a good chance to be confirmed by the experiment). Moreover, since

PASS is open for addition of new compounds and new types of activity to the training
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set, the quality of prediction can be increased through the updating and re-training
the vs program.

PASS abilities to predict carcinogenicity of chemical compounds was studied in
details [21]. The data on structures and experimental results of two-year carcinogenicity
assays for 412 chemicals from NTP (National Toxicological Program) and 1190
chemicals from CPDB (Carcinogenic Potency Database) were used for training and
validation of the program. Quality of predictions, when information about species and
sex of animals is taken into consideration, was also analyzed. Two procedures were used
for evaluation of the accuracy of prediction: leave-one-out cross-validation (LOO CV)
and leave 20% out cross-validation. In the last case we divided the studied set 20 times
at random into two subsets. The data from the first subset containing 80% compounds

Table 1. List of adverse and toxic effects predicted by PASS version 2005.

N IEP (%) Types of activity

49 28.944 Arrhythmogenic
8 4.451 Bradycardic

1211 10.598 Carcinogenic
284 13.845 Carcinogenic, female mice
321 14.109 Carcinogenic, female rats
16 22.087 Carcinogenic, group 1
30 13.401 Carcinogenic, group 2A

184 7.973 Carcinogenic, group 2B
383 11.069 Carcinogenic, group 3
254 12.238 Carcinogenic, male mice
360 15.608 Carcinogenic, male rats
73 26.404 Cardiotoxic

137 25.329 Convulsant
234 6.875 Cytotoxic
741 14.940 Embryotoxic
451 8.160 Eye irritation, high
229 10.246 Eye irritation, moderate
44 8.405 Hallucinogen
25 30.948 Hematotoxic
10 21.367 Hypercalcaemic

232 12.687 Hypertensive
17 13.711 Hyperthermic

392 9.546 Hypnotic
24 15.145 Hypocalcaemic

804 6.530 Mutagenic
616 6.275 Mutagenic, Salmonella
102 9.860 Narcotic
22 18.566 Nephrotoxic
87 17.124 QT interval prolongation

295 6.084 Skin irritation, high
269 7.538 Skin irritation, moderate
19 9.124 Skin irritative effect

234 11.553 Spasmogenic
1531 17.631 Teratogen

37 24.219 Torsades de pointes
1239 17.985 Toxic

15 7.919 Toxic, respiratory center
27 10.314 Ulcerogenic
95 8.131 Vasopressor

N, the number of compounds in the training set; IEP, Independent Error of Prediction
obtained in LOO CV.
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were added to the PASS training set, the second subset with 20% compounds was used
as an evaluation set. The mean accuracy of prediction calculated by LOO CV is about
73% for NTP compounds in the equivocal category of carcinogenic activity and 80%
for NTP compounds in the evidence category of carcinogenicity. The mean accuracy
of prediction for the CPDB database is 89.9% calculated by LOO CV and 63.4%
calculated by leave 20% out cross-validation. Influence of incorporation of species and
sex data on the accuracy of carcinogenicity prediction was also investigated.

It was shown that the PASS algorithm can be successfully applied for prediction of
carcinogenicity. Analysis of prediction results of rodent carcinogenicity showed that use
of data on carcinogenicity together with data for drug-like compounds from the PASS
training set, which are represented as possible non-carcinogens, increases accuracy
of carcinogenicity prediction. Changing of ‘‘Pa–Pi’’ threshold leads to variation of
sensitivity and specificity of carcinogenicity prediction that can be used to increase the
number of correctly predicted carcinogens/non-carcinogens. The mean prediction
accuracy calculated by LOO CV was 78.9% for ‘‘equivocal’’ and 86.7% for ‘‘evident’’
carcinogens. It was also shown that using more specific NTP data on species and sex did
not increase the accuracy of carcinogenicity prediction. It is necessary to emphasize that
such accuracy was achieved without expert evaluation of the prediction results and
was comparable with the best currently available methods of carcinogenicity prediction
[22, 23]. Example of carcinogenicity prediction for 4,6-dimethyl-2-(5-nitro-furan-2-Yl)-
pyrimidine is given in figure 1. Predicted carcinogenicity in female rats coincide with the
experimental data [24].

Based on this analysis of carcinogenicity prediction, one may extrapolate the abilities
of PASS to predict any other adverse effect or specific toxicity. An expected quality
of such predictions, which can be done by PASS version 2005, was estimated
by LOO CV. These results are presented in table 1.

3.2 Prediction of targets and mechanisms of toxicity

From a mechanistic point of view, mechanisms of chemical compounds toxicity might
be associated either with a strong action on a single target or with a moderate action on
many different macromolecules in the organism. Since PASS predicts with reasonable
accuracy more than 2000 types of activities at the molecular level it can be used for
identification of potential targets that might cause the toxicity of compounds.

3.2.1 Predicted biological activity spectrum of sarin. Let us consider the results
of biological activity spectrum predicted for sarin, well-known inhibitor of AChE
(figure 2). From the data presented in figure 2, it is clear that 111 of 2413 possible
activities are predicted for sarin with Pa>40%. Acetylcholinesterase inhibitory activity
has Pa¼ 0.477 and Pi¼ 0.007, which does not provide the top positions for this activity
in the predicted activity list. Such result is not surprising because Pa value is an estimate
of probability that the compound belongs to a particular class of ‘‘active agents’’, but
Pa is not proportional to the appropriate potency. Since in the PASS training set AChE
inhibitory activity is presented by 293 compounds, mostly used as pharmacological
agents, Pa value 0.477 obtained for sarin means that this molecule does not resemble
very close the most typical AChE inhibitors.

There are many other probable macromolecular targets in the predicted activity
spectrum of sarin, including aryldialkylphosphatase inhibitor (Pa¼ 99.5%), cutinase
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inhibitor (Pa¼ 99.3%), cathepsin G inhibitor (Pa¼ 98.6%), creatinase inhibitor
(Pa¼ 98.4%), n-carbamoyl-L-amino-acid hydrolase inhibitor (Pa¼ 98.3%), phospholi-
pase A2 inhibitor (Pa¼ 98.2%), etc. Despite many experimental studies of sarin
biological action [1], due to its high toxicity, sarin was probably never tested in vitro
against all these targets.

Based on this example one may speculate that AChE might be not the only target of
sarin in the organism as widely accepted [1], but sarin’s action on other target was never
studied because of acute effects caused by its AChE inhibitory activity. More general
conclusion is that, on the basis of PASS predictions, it is not always easy to identify
a single target that is currently considered as the most important because this target can
be overlapped by many others that were never tested. However, even in such case PASS
predictions significantly reduces the ‘‘biological space’’ providing the list of hints that
might be considered as the most probable molecular targets. In the case of sarin only
108 molecular mechanisms (targets) from 2055 that can be predicted by PASS version
2005, that reduces the biological space for more than 20 times.

It is interesting to mention that there is also carcinogenic effect predicted for sarin
with Pa¼ 0.987, however to exhibit such effect, the species should survive after the
exposition to sarin, but this is not the case.

3.2.2 Biological activity spectrum predicted for barbituric acid. Barbiturates were very
popular in the first half of the 20th century as sedative/hypnotic agents.

Figure 1. PASS interface and carcinogenicity prediction for 4,6-dimethyl-2-(5-nitro-furan-2-yl)-pyrimidine.

106 V. Poroikov et al.



Amobarbital, butabarbital, butalbital, hexobarbital, methyl phenobarbital, pentobar-
bital, phenobarbital are just a few examples of launched drugs. However, less than 10%
of all sedative/hypnotic prescriptions in the United States are for barbiturates today;
barbiturates are also used as anticonvulsants and for the induction of anesthesia.
Decrease of popularity of these drugs is due to the toxicity and addiction potential of
barbiturates. It is known that in moderate amounts these drugs produce a state of
intoxication that is remarkably similar to alcohol intoxication [3].

O

P

O

F

111 of 2497 Possible Activities at Pa > 0.400

  Pa     Pi        for Activity:
0.995  0.000  Aryldialkylphosphatase inhibitor
0.993  0.000  Cutinase inhibitor
0.987  0.001  Carcinogenic
0.986  0.001  Cathepsin G inhibitor
0.984  0.000  Creatinase inhibitor
0.983  0.001  N-carbamoyl-L-amino-acid hydrolase inhibitor
0.982  0.002  Phospholipase A2 inhibitor
0.980  0.002  Phospholipase inhibitor
0.979  0.003  Pyroglutamyl-peptidase I inhibitor
0.978  0.001  Poly(3-hydroxybutyrate) depolymerase inhibitor

. . .
0.477  0.007  Acetylcholinesterase inhibitor
0.464  0.010  Insecticide
0.498  0.060  Rhamnulose-1-phosphate aldolase inhibitor
0.443  0.008  Hypocalcaemic
0.457  0.036  Inositol-1(or 4)-monophosphatase inhibitor
0.567  0.155  (-)-(4S)-limonene synthase inhibitor
0.418  0.009  Tubulin GTPase inhibitor
0.471  0.071  H+-transporting two-sector ATPase inhibitor
0.459  0.062  Undecaprenyl-phosphate mannosyltransferase inhibitor
0.511  0.117  N-acetyllactosamine synthase inhibitor
0.441  0.066  Sphinganine-1-phosphate aldolase inhibitor
0.439  0.069  Transketolase inhibitor
0.442  0.074  ATP adenylyltransferase inhibitor
0.402  0.052  2-Dehydropantoate aldolase inhibitor
0.425  0.087  Aspartyl aminopeptidase inhibitor
0.415  0.084  Ethanolamine-phosphate cytidylyltransferase inhibitor
0.417  0.106  Sulfate adenylyltransferase (ADP) inhibitor
0.409  0.163  Mannotetraose 2-alpha-N-acetylglucosaminyltransferase inhibitor

Figure 2. Structural formula and biological activity spectrum predicted for sarin (known activity is given
in bold).
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It was interesting to analyze if we can identify the mechanisms of alcohol-like toxicity
in biological activity spectra predicted for barbiturates. Predicted biological activity
spectrum for barbituric acid is shown in figure 3. It is remarkable to note that in the
biological activity spectrum of barbituric acid, in addition to well-known pharmaco-
therapeutic effects (sedative, hypnotic, anticonvulsant, etc.), alcohol dehydrogenase
inhibitory activity is predicted with probability Pa¼ 71.9% (eight position in the
predicted biological activity list), that provides the ‘‘proof-of-the-concept’’.

3.2.3 Biological activity spectrum predicted for 5,8-isoquinolinedione. This is rather
toxic compound with a LD50¼ 25mgKg�1 (mice, i.p.). It was interesting to see if there
is any particular target, interaction with which might be a cause of 5,8-isoquinoline-
dione toxicity. With this purpose we predicted biological activity spectrum of
5,8-isoquinolinedione (figure 4). It appears that in the top part of predicted biological
activity spectrum (17 types of activity are predicted with Pa>70%), there is no single
target action on which might cause such high toxicity. Instead of that, we have a
probable action on many molecular targets, including NAD(P)þ-arginine ADP-ribosyl-
transferase inhibitor (Pa¼ 89.1%), phosphatase inhibitor (Pa¼ 86.4%), kinase
inhibitor (Pa¼ 80.7%), trans-cinnamate 4-monooxygenase inhibitor (Pa¼ 75.4%),
ecdysone 20-monooxygenase inhibitor (Pa¼ 74.7%), interleukin 1 antagonist
(Pa¼ 73.8%), etc. So, it seems that in case of 5,8-isoquinolinedione mechanism of
toxicity is rather complex and associated with action on many different targets.

4. Conclusions

(1) Based on PASS predictions, specific adverse effects and/or toxicity of chemical
compounds can be identified.

10 of 2497 Possible Activities at Pa > 0.700

Pa       Pi        for Activity:
0.933  0.003  (R)-Pantolactone dehydrogenase (flavin) inhibitor
0.912  0.004  Sedative
0.853  0.003  Hypnotic
0.835  0.013  Convulsant
0.823  0.003  Narcotic
0.799  0.008  Antiepileptic
0.737  0.013  Oxidoreductase inhibitor
0.719  0.007  Alcohol dehydrogenase (NADP+) inhibitor
0.704  0.005  1,5-Anhydro-D-fructose reductase inhibitor
0.700  0.015  Carbonyl reductase (NADPH) inhibitor

HN H

O

OO

Figure 3. Structural formula and biological activity spectrum predicted for barbituric acid (known activity is
given in bold).
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(2) Biological activity spectra predicted by PASS significantly reduce the biological
space due to the prioritization of the most probable targets, interaction with which
may cause a toxicity.

(3) Currently, PASS approach cannot be applied for prediction of biological activity
of inorganic compounds, coordinative compounds, multicomponent compounds
or mixtures and polymers.
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