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The computer system PASS provides simultaneous prediction of several hundreds of biological activity
types for any drug-like compound. The prediction is based on the analysis of structure-activity relationships
of the training set including more than 30000 known biologically active compounds. In this paper we
investigate the influence on the accuracy of predicting the types of activity with PASS by (a) reduction of
the number of structures in the training set and (b) reduction of the number of known activities in the
training set. The compounds from the MDDR database are used to create heterogeneous training and evaluation
sets. We demonstrate that predictions are robust despite the exclusion of up to 60% of information.

INTRODUCTION

Traditional QSAR and 3D molecular modeling are suc-
cessful at predicting the biological activities for chemical
structures, provided they work with small number of types
of activity and usually stay in the same chemical series.1-5

Similarity searching6,7 and clustering methods7,8 can be used
to separate compounds into structural groups9 and for the
prediction of biological activities and compound selection.10

In reality many biologically active compounds possess
several types of activity. The computer system PASS
(Prediction of ActiVity Spectra for Substances)11-14 predicts
simultaneously several hundred various biological activities.
These are pharmacological effects, mechanisms of action,
mutagenicity, carcinogenicity, teratogenicity, and embryo-
toxicity. PASS prediction is based on the analysis of
structure-activity relationships of the training set including
a great number of noncongeneric compounds with different
biological activities. PASS once trained is able to predict
many types of activity for a new substance. The example of
prediction for known cerebrotonic drug Cavinton (Vinpo-
cetin) is shown in Table 1. Many types of activity known
for this drug are predicted. Some new ones (Multiple
sclerosis treatment, Antineoplastic enhancer, etc.) display the
directions for further study of Cavinton.

We had a long-term experience with PASS applications
to select probable biologically active substances from
databases of available samples and to arrange the experi-
mental testing of compounds under study. It was shown that
the mean accuracy of prediction with PASS is about 86% in
leave-one-out cross-validation.14 PASS prediction accuracy
exceeds more than 3 times the expert’s guess-work for an
independent set of 33 different compounds studied as
pharmacological agents.15 Recently PASS was tested in blind
mode by 9 scientists from 8 countries. The mean accuracy
of prediction was shown to be 82.6%.16

The accuracy of PASS prediction depends on several
factors:12 1. description of the chemical structure, 2. descrip-
tion of the biological activity, 3. mathematical methods, 4.
quality of the training set, 4.1. activity data, 4.2. structure
data, and 5. errors in the data.

Quality of the training set seems to be the most critical
factor in PASS approach. Really, the training set includes
various compounds, which are investigated on various types
of activity. Information abouteachcompound is taken into
account to predicteachtype of activity. If a compound from
the training set was not investigated on a given type of
activity, it is considered as inactive. However, we cannot be
sure that all these compounds are really inactive. Therefore,
there is the incompleteness of activity data in the training
set. On the other hand, only part of known compounds is
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Table 1. Some Predicted Biological Activities for Cavintona

no. Pa Pi activity expt

1 0.929 0.004 peripheral vasodilator
2 0.900 0.000 multiple sclerosis treatment
3 0.855 0.005 vasodilator +
4 0.844 0.003 abortion inducer +
5 0.812 0.001 antineoplastic enhancer
6 0.760 0.006 coronary vasodilator +
7 0.732 0.007 spasmogenic
8 0.700 0.036 antihypoxic +
9 0.650 0.004 lipid peroxidase inhibitor +

10 0.648 0.008 cognition disorders treatment +
11 0.656 0.021 antiischemic +
12 0.577 0.013 acute neurologic disorders treatment+
13 0.540 0.039 spasmolytic +
14 0.519 0.026 antianginal agent
15 0.486 0.037 antihypertensive +
16 0.449 0.035 antiarrhythmic +
17 0.432 0.063 sympatholytic
18 0.438 0.077 sedative +
19 0.500 0.152 antiinflammatory, pancreatic
20 0.328 0.020 antidepressant, imipramin-like
21 0.300 0.010 thrombolytic +
22 0.342 0.075 psychotropic +
23 0.276 0.023 alpha 2 adrenoreceptor antagonist +

a Pa and Pi are the probabilities of belonging to the classes of active
and inactive compounds, respectively.
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included into training set. This is incompleteness of structural
data. Is able PASS to cope with such incomplete data in the
training set and to give a reasonable prediction for a new
compound without retraining? Should the completespectrum
of actiVity for each compound in the training set be known
for providing accurate prediction, or a partial knowledge is
quite enough?

The purpose of the present work is to determine how
robust are the results of prediction depending on the
incompleteness of the training set. We investigate the
influence on the accuracy of predicting types of activity with
PASS by (a) reduction of the number of structures in the
training set and (b) reduction of the number of known
activities in the training set.

GENERAL DESCRIPTION OF PASS METHOD

Basic elements of PASS include the following: presenta-
tion of biological activity, description of chemical structure,
training set of compounds, training procedure, and prediction
procedure. The current version of PASS differs essentially
from the previous.11

Biological Activity. Biological activities in PASS are
described qualitatively: presence or absence. List of activity
types that have been found for each compound represents
the biological activity data in the training set. This list for
current version of PASS is available via Internet.14

Chemical Structure Description. In our paper published
recently17 we described the substructure descriptors called
“Multilevel Neighborhoods of Atoms” (MNA). MNA de-
scriptors are based on structure representation, which does
not specify the bond types and includes hydrogens according
to valence and partial charge of atoms. MNA descriptors
are generated as a recursively defined sequence: 1. zero-
level MNA descriptor for each atom is the markA of the
atom itself and 2. any next-level MNA descriptor for each
atom is the substructure notationA(D1D2. . . Di. . .), whereDi
is the previous-level MNA descriptor for thei-th immediate
neighbors of the atom.

This iterative process can be continued enclosing second,
third, etc. neighborhoods of each atom. It is important to
emphasize that the atom mark may include not only the atom
type but also any additional information about the atom, for
example, its belonging to a cycle or a chain. A structure of
molecule is represented in PASS as a set of the first- and
second-level MNA descriptors. In second-level MNA de-
scriptors we use the mark “-” of belonging to a chain. Figure
1 shows the structure and MNA descriptors of Cavinton.

Structure equiValenceis the important feature of PASS
concept. The structures are considered as equivalent if they
have the same molecular formulas and the same MNA
descriptors set. Only unique structures are included in the
training set. Since MNA descriptors do not represent the
stereochemical peculiarities of a molecule, the compounds,
which have only stereochemical differences in the structure,
are formally considered as the equivalent.

Training Set. The prediction is based on the analysis of
the training set of biologically active compounds. For each
compound from the training set we store MNA descriptors
and a list of activity types. Every unique MNA descriptor is
included into the descriptors dictionary.

In the current version of PASS the training set consists of
about 35000 biologically active compounds compiled from
scientific literature, in-house and commercial databases. The
descriptor’s dictionary contains about 36000 MNA descrip-
tors. In different published sources biological activities are
named by different terms. In PASS this information is
represented in a standard form that combines all biological
activity data about equivalent compounds collected from
many sources. The number of different types of activity
exceeds 800, but many of them are represented by less than
3 compounds. Total “activity spectrum”, i.e., the list of
predictable types of biological activity, includes more than
500 items.

In this work we use different subsets of compounds from
MDDR database astraining sets.A more detailed description
of the training sets is given below.

Training Procedure. For every type of activity we
generate the structure-activity relationships in the following
way: n is the total amount of compounds in the training
set; ni is the amount of compounds, containing MNA
descriptori; nj is the amount of compounds, containing the
type of activity j in activity spectrum; andnij is the amount
of compounds, containing MNA descriptori and the type of
activity j. For j-th type of activity we calculate the initial
estimatestj for each compound in the training set.

Each compound is excluded from the training set once;
valuesn, ni, nj, andnij are recalculated from the remaining
compounds, and the following values are calculated

Figure 1. List of the MNA descriptors for Cavinton. MNA/1 and
MNA/2 are descriptors of the first- and second-level, respectively.

sj ) Sin(∑iArcSin(ri*(2*pij - 1))/m)

s0j ) Sin(∑iArcSin(ri*(2*pj - 1))/m)

tj ) (1 + (sj - s0j)/(1 - sj*s0j))/2
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where the summation is taken over all MNA descriptors of
a given compound andm is the total number of descriptors
in it, ri ) ni/(ni + 0.5/m) is the regulating factor,pj ) nj/n
is the estimation of the a priori probability of the type of
activity j, pij ) nij/ni is the estimation of conditional
probability of the type of activityj for the MNA descriptor
i. A priory probability pj estimates the chance to find a
compound with type of activityj by random search.
Conditional probabilitypij estimates the same chance under
the condition that the search is done among the compounds
containing the descriptori.

Estimatestj for active compounds are sorted in ascending
order; the estimatestj for inactive compounds are sorted in
descending order. The conditional expectationsAj andIj are
calculated as

where Pr(m, n, F) ) Cn
mFm(1 - F)n-m is the binomial

distribution, Cn
m ) n!/m!(n - m)! is the binomial coef-

ficient, p is an active compound andq is an inactive
compound, andF is in the range [0, 1]. It is clear thatAj(F)
and Ij(F) are the calculated quantiles of the probability
distributions of the initial estimates. FunctionsAj(F) andIj(F)
together with valuesn, ni, nj, andnij represent the SAR data
for j-th type of activity.

Prediction Procedure.To estimate the activity spectrum
for a new compound (C) its MNA descriptors are generated.
For each type of activity (j) the value oftjC is calculated.
The probabilities of presence Paj and absence Pij of j-th
activity type in the compound are calculated according to
the next equations:

In other words, Pa and Pi are the probabilities of belonging
to the classes of active and inactive compounds, respectively.

The result of prediction for a new compound is theactiVity
spectrum,which is the ranked list of activity types with
estimated Pa and Pi values. The ranking is executed on
descending order of Pa-Pi; thus, more probable activity
types are at the top of predicted spectrum. Compound is
considered as active if Pa-Pi exceeds the cutoff value. By
default we use cutoff of Pa- Pi ) 0, but any user may
accept his own cutoff value, for example 0.5. Table 1 shows
the top part of predicted activity spectrum for Cavinton.

Validation of Prediction Accuracy. To estimate the
accuracy of prediction foreValuation setof compounds (i.e.
set of compounds with known biological activity, not
included into the training set) we use the next procedure.

MNA descriptors are generated for each compound in the
eValuation set.For jth type of activitytj value is calculated.
To estimate the quality of prediction ofjth type of activity
we use the expression called the Independent Accuracy of
Prediction

where N{tjact > tjinact} is the number of cases whentj for an
active compound is greater thantj for an inactive compound,

when all pairs of active and inactive compounds in the
evaluation set are compared;nact andninact are the numbers
of active and inactive compounds in the evaluation set.

This criterion is defined as “independent” because it does
not depend on any additional assumptions concerning the
parent population and risk function.

DESIGN OF THE EXPERIMENT

Database Used in This Study.We use the compounds
from MDDR18 (MDL Drug Data Report) as it is one of the
largest collections of structures, which include information
about biological activity. MDDR 97.2 from MDL Informa-
tion Systems, Inc.18 contains the information about 87486
pharmacological agents compiled mainly from the patent
literature. About 92% of them are under biological testing,
7% are drug candidates, and about 1% of the compounds
are registered drugs. Every compound in MDDR has one or
several records in the field “activity class”, indicating that
compound is related to certain therapeutic area. However,
not every one was really tested in experiments. Those
substances, for which biological activity was studied in detail,
have records in the field “Action”, such as experimental data
on activity, LD50, IC50, Ki, etc.

We considered only those compounds, which have some
records in the field “Action”. These are called theprincipal
compounds.For example, compound A-83094A is described
in the field “activity class” as“Antibiotic” and in the field
“Action” as “Pyrrole-ether antibiotic produced by Strepto-
myces setonii, actiVe inVitro against Gram-positiVe bacteria
as well as coccidia. LD50)196.4 mg/kg i.p. and 630 mg/
kg p.o. in mice”. So it was included into our study.
Compound MUREIDOMYCIN A contains the word “Anti-
biotic” in the field “activity class”, and nothing in the field
“Action”. This compound was not used in our study.

Following this rule, we have prepared a subset from
MDDR that includes 20561principal compounds.

Activities Considered in This Study.The types of activity
were selected which represent specific pharmacological
effects or molecular mechanisms of actions. Some unspeci-
fied terms, such as diagnostic agent, chemical delivery
system, pharmacological tool, etc., were not considered.
When synonyms encountered, the common term was chosen.
Table 2 shows the examples of how the types of activity
were constructed from terms used in MDDR.

In this way a list of 517 types of activity was obtained.
Since we planned to exclude a significant part of information
from the training sets in the frame of our experiment, only
those types of activity were chosen for which more than 80
principal compoundswere found in MDDR. Based on this
criterion 124 types of activity were selected. The majority
of them is represented by compounds of various chemical
classes, but there are some activity categories in which the
diversity is limited by compounds of the same chemical series
(e.g. “Antibiotic Carbapenem-like”, “Antibiotic Quinolone-
like”).

Descriptors Database.We exported the set ofprincipal
compoundsas an SDFile containing only data on structures
and activities. We excluded the entries, containing undeter-
mined structures (monoclonal antibodies, vaccines, etc.),
undefined R, X-groups, atoms with incorrect valencies or
polypeptides (insulin, regulatory peptide, etc.). For each

Aj(F) ) ∑pPr(p - 1, nj - 1, F)tjp

Ij(F) ) ∑qPr(q - 1, n - nj - 1, F)tjq

Aj(Pa)) tj
C; Ij(Pi) )tj

C

IAPj ) N{tj
act > tj

inact}/(nact*ninact)
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structure in the SDFile we build the MNA descriptors, which
can also be called keys, and store them in a database called
SARBase.In this way we generate about 30,000 descriptors
and arrange them as a binary file inSARBase.TheSARBase
contains 18977 unique compounds with their activities.

Creation of the Training and Evaluation Sets.The set
of compounds inSARBasewas 50 times divided at random
into two equal subsets. The first subset was used as the
training set, the second one as the evaluation set and vice
versa. So we prepared 100 pairs of the training and evaluation
sets.

Cross-Validation. We carried out the leave-one-out
(LOO) procedure for each of 100 training sets of compounds.
Every compound was consequently excluded from the set,
and its types of activity were predicted by PASS trained on
the other compounds. Then the IAP value for each type of
activity was calculated.

Simulation of Incompleteness of Activity Data. The
crucial question was how robust are the prediction results
depending on the quality of the training set. In particular
we wanted to evaluate how the accuracy of prediction with
PASS is influenced by leaving out activity data for a number
of compounds. The result is that some compounds have no
activity data any more. The other ones, which had originally
several types of activity, still have some activity data. We
proposed the following experimental procedure.

(1) Train PASS using theinitial training set and run the
prediction for the evaluation set.

(2) Exclude from the initial training set at random20% of
total number of actiVities.

(3) Retrain PASS and run the prediction for the evaluation
set again.

(4) Repeat step 3 excluding 40, 60, and 80% of total
number of activities from the initial training set.

(5) Compare the results of predictions, based on the
training set with different degree of incompleteness of
activity data.

Simulation of Incompleteness of Structure Data.The
purpose of this test was to evaluate how structural incom-

pleteness of the training set influences the accuracy of
predicting with PASS. For each of 100 pairs of the training
and evaluation sets we carried out the experiment similar to
the previous one but leaving out structures instead of
activities.

RESULTS AND DISCUSSION

Table 3 shows for each type of activity, the number of
compounds in the whole set, average results of prediction
for 100 evaluation sets, obtained by PASS trained on
respective training sets, and the average IAPLOO calculated
by LOO procedure for each training set. The last line of the
table shows the mean value for IAP over all types of activity,
IAPm.

The data in Table 3 are sorted in ascending order of IAP.
The best results are obtained for the compounds with the
following actions: antibiotic carbapenem-like (99.96%),
antibiotic quinolone-like (99.94%), and antibiotic macrolide-
like (99.75%). The worst but still satisfactory accuracy of
prediction is observed for anticerebroischemic (77.39%),
antiarthritic (77.74%), and septic shock treatment (79.89%)
actions.

In general, Table 3 demonstrates that mean IAP and
IAPLOO values are very close to one another (91.95 and
91.70%, respectively). This means that the leave-one-out
approach can be used to estimate the accuracy of prediction.

Influence of Incompleteness of Activity Data on the
Quality of Prediction with PASS. Figure 2 shows how IAP
values for each type of activity change depending on
incompleteness of activity data in the training set. Thex-axis
plots the numbers of types of activity corresponding to Table
3.

As one can see from Figure 2, IAP values are decreased
depending on incompleteness of activity data for the majority
of activity types. In general, the decrease of IAP value is
greater for those types of activity, which have a smaller initial
value of IAP. For example, IAP value for activity “diuretic”
changes from 86.18 to 70.44 when the activity data in the
training set are reduced from 100 to 20%, while IAP value
for activity “antibiotic beta lactam-like” changes from 99.58
to 99.54.

The minima in the graph are caused by removing data
from the types of activity, which are originally represented

Table 2. Examples of Activities Used in This Study

activity MDDR terms

5 hydroxytryptamine 1D agonist 5 HT1D agonist
alpha 2 adrenoreceptor antagonist adrenergic (alpha2) blocker

adrenoceptor (alpha2) antagonist
antibacterial antibacterial, topical

antibacterial
antibiotic beta lactam-like monocyclic beta-lactam

lactam (beta) enhancer
lactam (beta) antibiotic

benzodiazepine agonist benzodiazepine
benzodiazepine agonist

choleretic cholagogue
choleretic

corneal wound healing stimulator wound healing agent
corneal wound healing stimulator

male reproductive disfunction male sexual disorders, agent for
treatment antiinfertility, male

psychostimulant stimulant, central
centrally acting agent

renal disease treatment crf antagonist
renal failure, agent for

spasmolytic spasmolytic
antispastic

thyroid hormone agonist thyromimetic
thyroid hormone

Figure 2. Influence of incompleteness of activity data in the
training set on the accuracy of prediction. The legend shows the
percentage of activity data in the training set.
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by a small number of compounds. This fact must have a
larger influence on the result of prediction. For example, there
are only 86 compounds in the SARBase for activity
“squalene synthetase inhibitor”, no. 110 in Table 3 and on
the graph. The IAP value for “squalene synthetase inhibitor”
changes from 98.21% to 91.32%.

Figure 3 shows the IAPm, mean value for IAP over all
types of activity, versus percentage of activity data in the
training set. Thex-axis plots the relative number of types of
activity in the training set, while they-axis plots IAPm. The
extreme right point on the graph shows the IAPm calculated
for the initial training set. Moving from right to left across

Table 3. Independent Accuracy of Prediction

no. activity amt
IAP,
%

IAPLOO,
% no. activity amt

IAP,
%

IAPLOO,
%

1 anticerebroischemic 154 77.39 77.21 64 peristaltic stimulant 127 93.58 93.82
2 antiarthritic 563 77.74 77.24 65 acetylcholine agonist 184 93.84 93.59
3 septic shock treatment 157 79.89 79.91 66 antiemphysemic 117 93.99 93.74
4 irritable bowel syndrome therapy 107 82.01 81.32 67 alpha adrenoreceptor antagonist 150 94.10 93.85
5 immunomodulator 626 82.99 82.71 68 lipoxygenase inhibitor 490 94.21 94.08
6 vasodilator 203 83.13 82.98 69 adrenalin antagonist 200 94.32 94.11
7 urinary incontinence treatment 82 83.72 82.68 70 5 hydroxytryptamine 1 antagonist 88 94.33 94.18
8 antipsoriatic 276 83.72 83.66 71 endothelin antagonist 134 94.34 94.40
9 antiinflammatory 962 83.76 83.40 72 calcium channel antagonist 331 94.34 94.13

10 antiulcerative 376 83.95 83.57 73 NMDA antagonist 247 94.62 93.82
11 antianginal 410 84.13 83.45 74 elastase inhibitor 127 95.03 94.98
12 sedative 85 84.38 83.72 75 5 hydroxytryptamine 2 antagonist 133 95.06 94.97
13 dermatologic 449 84.43 84.38 76 alpha 1 adrenoreceptor antagonist 87 95.08 94.81
14 mediator release inhibitor 112 84.52 84.25 77 antihistaminic 137 95.11 94.94
15 acute neurologic disorders treatment 610 84.59 83.60 78 thromboxane synthase inhibitor 114 95.16 94.93
16 spasmolytic 106 84.73 82.93 79 dopamine D2 aihtagonist 99 95.20 95.08
17 analgesic, nonopioid 407 84.82 84.39 80 H+/K+-transporting ATPase inhibitor 117 95.20 94.31
18 antiosteoporotic 109 85.27 85.25 81 leukotriene antagonist 372 95.21 95.26
19 antineoplastic enhancer 81 85.27 84.33 82 antiemetic 212 95.59 95.33
20 cognition disorders treatment 930 85.49 85.21 83 anticoagulant 169 95.73 95.53
21 antiobesity 114 85.74 85.28 84 antiacne 186 95.85 95.78
22 reverse transcriptase inhibitor 83 85.86 85.38 85 thromboxane antagonist 238 95.86 95.70
23 diuretic 125 86.18 85.15 86 aldose reductase inhibitor 161 95.88 95.98
24 antiprotozoal 166 86.23 85.58 87 androgen antagonist 87 95.94 95.79
25 lipid peroxidase inhibitor 117 86.26 86.17 88 antibacterial 1473 96.03 95.89
26 anticonvulsant 380 86.37 85.74 89 phosphodiesterase inhibitor 216 96.04 95.87
27 immunostimulant 109 86.52 86.29 90 5 hydroxytryptamine antagonist 473 96.07 95.97
28 ophthalmic drug 229 86.84 86.80 91 platelet activating factor antagonist 272 96.23 95.97
29 antineoplastic 2410 86.94 86.73 92 acetylcholinesterase inhibitor 102 96.39 96.36
30 immunosuppressant 276 86.95 86.62 93 phosphodiesterase IV inhibitor 128 96.43 96.08
31 antiallergic 1164 86.98 86.73 94 thrombin inhibitor 123 96.57 96.49
32 cardiotonic 779 87.39 87.01 95 acetyl CoA transferase inhibitor 232 96.60 96.42
33 antiparkinsonian 171 87.60 87.04 96 dopamine antagonist 204 96.60 96.49
34 antiviral 598 87.93 87.94 97 analgesic, opioid 169 96.89 96.67
35 analgesic 577 87.95 87.59 98 antimitotic 88 96.94 96.98
36 bronchodilator 320 87.99 87.21 99 5 hydroxytryptarnine agonist 290 97.17 97.12
37 calcium regulator 94 88.18 88.04 100 antimetabolite 137 97.19 97.00
38 tumor necrosis factor antagonist 92 88.34 88.13 101 acetylcholine muscarinic agonist 138 97.23 96.89
39 antidiabetic 319 88.42 88.10 102 5 alpha reductase inhibitor 141 97.27 97.37
40 antidepressant 549 88.47 88.24 103 5 hydroxytryptamine 1A agonist 159 97.37 97.35
41 platelet aggregation inhibitor 783 88.57 88.31 104 adrenalin agonist 86 97.49 96.58
42 anti-HIV 693 88.63 88.46 105 5 hydroxytryptamrnine 1 agonist 250 97.55 97.51
43 antihelmintic 108 89.15 89.12 106 substance P antagonist 174 97.93 97.93
44 antiglaucomric 195 89.56 89.55 107 cholecystokinin antagonist 156 97.96 97.95
45 antihypertensive 1894 89.57 89.29 108 antibiotic 1301 98.07 98.05
46 gastric antisecretory 311 89.73 89.50 109 HIV-1 protease inhibitor 152 98.15 98.05
47 phospholipase inhibitor 118 90.07 88.98 110 squalene synthetase inhibitor 86 98.22 98.11
48 protein kinase C inhibitor 84 90.12 89.88 111 5 hydroxytryptamine 3 antagonist 203 98.36 98.33
49 antiviral (AIDS) 638 90.23 89.99 112 aromatase inhibitor 89 98.41 98.20
50 psychotropic 1492 90.39 90.27 113 GP IIb/IIIa antagonist 209 98.54 98.52
51 phospholipase A2 inhibitor 113 90.63 89.52 114 potassium channel activator 156 98.69 98.56
52 antiarrhythmic 373 90.86 90.37 115 angiotensin converting enzyme inhibitor 124 98.72 98.75
53 anxiolytic 710 91.33 91.09 116 prostaglandin agonist 94 99.19 99.19
54 antidiabetic symptomatic 200 91.33 91.36 117 HMG CoA reductase inhibitor 184 99.25 99.16
55 cyclooxygenase inhibitor 125 91.34 91.50 118 angiotensin II antagonist 465 99.44 99.41
56 chemoprotective 236 92.31 92.38 119 renininhibitor 218 99.58 99.56
57 antipsychotic 597 92.32 92.11 120 antibiotic beta lactam-like 655 99.58 99.57
58 prostate disorders treatment 194 92.38 92.20 121 antibiotic cephalosporin-like 315 99.65 99.65
59 protease inhibitor 127 92.65 92.83 122 antibiotic macrolide-like 109 99.75 99.73
60 antifungal 469 92.72 92.46 123 antibiotic quinolone-like 254 99.94 99.94
61 leukotriene synthesis inhibitor 115 92.90 93.10 124 antibiotic carbapenem-like 162 99.96 99.97
62 hypolipemic 812 93.22 93.11 IAPm 91.95 91.70
63 antimigraine 187 93.39 93.12
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the graph corresponds to the reduction of the total number
of activities in the training set and decreases in the mean
prediction accuracy. However, even working with 40% of
the available activities gives reasonably accurate predictions.

Influence of Structural Incompleteness on the Quality
of Prediction with PASS. Figure 4 shows the change of
IAP values for each type of activity depending on incom-
pleteness of structure data in the training set. Thex-axis plots
the numbers of types of activity corresponding to Table 3.

The influence of structural incompleteness on the accuracy
of prediction is similar to incompleteness of activity data.
In general, the decrease of IAP value is greater if the initial
value of IAP is smaller and the initial number of active
compounds is less.

Figure 5 shows the IAPm depending on the number of
compounds in the training set. Thex-axis plots the relative
number of compounds in the training set, while they-axis
plots IAPm.

The effect of reducing the number of structures on the
accuracy of prediction is very similar to reducing the

activities. In this particular case, a reduction of 60% of the
data still gives reasonably accurate predictions. Such similar-
ity is probably caused by the fact that the majority of
compounds in MDDR have only one type of activity. So
exclusion of the activity and exclusion of the compound with
this activity causes similar change of the total number of
activities in the training set.

CONCLUSIONS

We have shown that for a large set of compounds, like
principal compounds from MDDR, the accuracy of prediction
by PASS is still excellent for many types of activity, even
when up to 60% of the information is left out. It means that
chemical descriptors, biological activity representation, and
mathematical methods used in PASS provide the robust
approach to analyze SAR in large data sets.

The accuracy of prediction can be less if a new type of
activity is encountered that is not well represented in the
training set.

PASS, therefore, produces reasonably accurate results for
many predictions without retraining the system for each
special case.
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