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A new QSAR approach based on a Quantitative Neighbourhoods of Atoms description
of molecular structures and self-consistent regression was developed. Its prediction accuracy,
advantages and limitations were analysed from three sets of published experimental data
on acute toxicity: 56 phenylsulfonyl carboxylates for Vibrio fischeri; 65 aromatic compounds
for the alga Chlorella vulgaris and 200 phenols for the ciliated protozoan Tetrahymena
pyriformis. According to our findings, the proposed approach provides a good correlation and
prediction accuracy (r2¼ 0.908 and Q2

¼ 0.866) for the set of 56 phenylsulfonyl carboxylates
and the 65 aromatic compounds tested on C. vulgaris (r2¼ 0.885, Q2

¼ 0.849). For the
200 phenols tested on T. pyriformis, the prediction accuracy was r2¼ 0.685 and Q2

¼ 0.651.
This is at least as good as the best results obtained with the other QSAR methods originally
used on the same data sets.

Keywords: Acute toxicity; QSAR; Vibrio fischeri; Chlorella vulgaris; Tetrahymena pyriformis;
QNA

1. Introduction

The QSAR studies of the environmental fate of chemicals have become a necessary tool
for ecotoxicological risk assessments. Over 28 million chemicals are known to date.
About 200,000 different chemicals are produced commercially and consumed every year
and 2000 to 3000 new chemicals are added annually to that list. Complete toxicological
data, however, are only available for less than 10,000 of them. To fill the existing data
gaps, both regulatory agencies and companies have to use computational prediction
models [1, 2]. Acute toxicity is one of the most important parameters in the
ecotoxicological risk assessment. QSAR methods were shown to be applicable to
prediction of acute toxicity [3, 4]. The pattern recognition process and multiple
linear regression methods, such as MLR (multiple linear regression) and PLS
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(partial least squares), are used to develop QSAR models. Key elements of QSAR
modelling are training sets and molecular descriptions. The use of high quality data has
became a standard in QSAR modelling. Experimental data should be taken from a
well-standardized and validated assay with a clearly defined endpoint and, ideally, they

should all be measured according to one and the same protocol, preferably in the same
laboratory and by the same personnel [5]. In QSAR methods, different descriptions of
molecules are used, including physicochemical [5–10], electro-topological, structural

descriptors [11–15], etc. Each particular descriptor has its strong and weak points.
There is no universal description fit for all tasks in ecotoxicological risk assessment.

We have developed a new approach for prediction of acute toxicity. It is based on a
new molecular description — Quantitative Neighbourhoods of Atoms (QNA)
descriptors [16] and a Self-Consistent Regression (SCR) algorithm [17]. Methods are

often difficult to compare because of different numbers of compounds used in the
models [5]. Therefore, for the comparison purposes, several known datasets which had
been earlier used in QSAR modelling were selected.

Acute toxicity is studied on various species: unicellular organisms (e.g. algae),
invertebrates (e.g. Daphnia magna) and vertebrates (e.g. fish). We selected three

different sets (Vibrio fischeri [13], Chlorella vulgaris [9], and Tetrahymena pyriformis
[18]) of high-quality experimental data on acute toxicity available from publications
describing QSAR modelling, so that we could compare our method with the others.
Comparative molecular field analysis (CoMFA) [19], multiple linear regression analysis

and principal component analysis on the basis of extended topochemical atom (ETA)
indices and physicochemical properties [13, 20] were used to model the V. fischeri
acute toxicity of 56 phenylsulfonyl carboxylates. Multiple linear regression and partial

least squares analyses were used to develop QSARs for C. vulgaris based on a small
number of physicochemical descriptors [9]. A stepwise multiple regression using 108
physicochemical descriptors was applied for QSAR modelling of log (1/IGC50) for
T. pyriformis [18]. The results of our study and the accuracy of prediction were

compared with those obtained by the above-mentioned methods.

2. Materials and methods

2.1 Vibrio fischeri dataset

In the study, we used a dataset for 56 phenylsulfonyl carboxylates with acute toxicity to

V. fischeri (table 1). Toxicity values were presented as logEC50 (15min-EC50, mM) [19].
Aromatic sulfones are widely used as intermediates in the production of pesticides,
herbicides, and antihelmenthics, as well as floatation agents and extractants in
petrochemistry and metallurgy.

2.2 Chlorella vulgaris dataset

The data on the C. vulgaris toxicity of 65 aromatic compounds [log (1/EC50), mM] were
taken from Netzeva et al. [9]. The set included phenols, anilines, benzaldehydes, and
nitrobenzenes, as well as alkyl-substituted phenols, halogenated phenols and anilines,

nitro-substituted phenols, anilines and halogenated nitrobenzenes (table 2).

286 A. A. Lagunin et al.
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Table 1. Observed and predicted V. fischeri acute toxicity (logEC50, mM) of 56 phenylsulfonyl carboxylates.

X2 X1

S
O

O O

R2R3

O
R1

No R1 R2 R3 X1 X2 Obs. Pred.

1 CH3 –(CH2)2� H H 2.28 1.73
2 CH3 –(CH2)3� H H 2.12 1.71
3 CH3 –(CH2)4� H H 1.91 1.61
4 CH3 –(CH2)5� H H 1.81 1.46
5 CH3 –(CH2)2� H NO2 2.12 1.52
6 CH(CH3)2 –(CH2)2� H NO2 1.78 1.49
7 CH(CH3)2 –(CH2)3� H NO2 1.81 1.35
8 CH(CH3)2 –(CH2)5� H NO2 1.45 1.18
9 CH(CH3)2 –(CH2)6� H NO2 1.05 0.89

10 CH3 –(CH2)2� H Br 1.89 1.40
11 CH3 –(CH2)3� H Br 1.76 1.41
12 CH3 –(CH2)4� H Br 1.60 1.33
13 CH3 –(CH2)5� H Br 1.31 1.20
14 CH3 –(CH2)2� H Cl 1.96 1.59
15 CH3 –(CH2)3� H Cl 1.92 1.54
16 CH(CH3)2 –(CH2)2� H Cl 1.86 1.50
17 CH2(CH2)2CH3 –(CH2)2� H Cl 1.70 1.29
18 CH(CH3)2 –(CH2)4� H Cl 1.51 1.16
19 CH(CH3)2 –(CH2)5� H Cl 1.32 0.98
20 CH(CH3)2 –(CH2)6� H Cl 0.90 0.80
21 CH(CH3)2 –(CH2)2� H CH3 1.96 1.52
22 CH(CH3)2 –(CH2)3� H CH3 1.46 1.37
23 CH3 –(CH2)2� H CH3 2.22 1.50
24 CH2CH3 –(CH2)2� H CH3 1.92 1.56
25 CH2CH3 –(CH2)3� H CH3 1.68 1.47
26 CH(CH3)2 –(CH2)4� H CH3 1.22 1.21
27 CH(CH3)2 –(CH2)5� H CH3 1.09 1.06
28 CH3 –(CH2)5� H CH3 1.40 1.11
29 CH3 H H H NO2 1.29 0.75
30 CH(CH3)2 H H H NO2 1.28 0.95
31 CH3 H H Cl NO2 0.44 0.42
32 CH(CH3)2 H H Cl NO2 1.13 0.74
33 CH3 H H NO2 H 1.49 0.90
34 CH(CH3)2 H H NO2 H 1.34 1.09
35 CH3 H H NO2 Cl 1.33 0.66
36 CH(CH3)2 H H NO2 Cl 1.45 0.91
37 CH3 H CH3 H NO2 1.48 1.24
38 CH3 CH3 CH3 H NO2 1.42 1.19
39 CH3 CH2CH3 CH2CH3 H NO2 1.36 1.17
40 CH3 CH2(CH2)2CH3 CH2(CH2)2CH3 H NO2 1.10 0.69
41 CH3 CH2Ph CH2Ph H NO2 0.60 0.09
42 CH2CH3 CH2(CH2)2CH3 CH2(CH2)2CH3 H NO2 1.08 0.89
43 CH2CH3 CH3 CH2Ph H NO2 0.98 0.79
44 CH2CH3 CH3 CH2CH_CH2 H NO2 1.12 1.07
45 CH2CH3 CH3 CH2�1-Naph H NO2 0.83 0.51
46 CH(CH3)2 CH2(CH2)2CH3 CH2(CH2)2CH3 H NO2 1.05 0.75
47 Cyclohexyl H CH3 H NO2 1.19 0.94
48 CH3 H CH2CO2CH2CH3 H NO2 1.00 0.59
49 CH(CH3)2 H CH2CO2CH(CH3)2 H NO2 0.92 0.57

(Continued )

QSAR modelling of acute toxicity 287
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Table 1. Continued.

No R1 R2 R3 X1 X2 Obs. Pred.

50 CH(CH3)2 CH2CO2CH2CH3 CH2CO2CH2CH3 H NO2 0.66 0.45
51 CH3 ¼CHPh H NO2 0.82 0.31
52 CH2CH3 ¼CHPh H NO2 0.75 0.39
53 CH(CH3)2 ¼CHPh H NO2 0.64 0.20
54 CH2CH(CH3)2 ¼CHPh H NO2 0.66 0.50
55 CH(CH3)2 ¼CHPh H CH3 0.89 0.38
56 CH(CH3)2 ¼CHPh H Cl 0.80 0.39

Minimum 0.44 0.09
Maximum 2.28 1.73

Table 2. CAS numbers, chemical names, observed and predicted C. vulgaris toxicity [log (1/EC50) in mM]
of 65 aromatic compounds.

No CAS Name Obs. Pred.

1 108-95-2 Phenol �1.46 �1.14
2 62-53-3 Aniline �1.34 �0.88
3 100-66-3 Anisole �1.09 �0.90
4 367-12-4 2-Fluorophenol �1.08 �0.58
5 348-54-9 2-Fluoroaniline �1.05 �0.22
6 108-39-4 3-Cresol �1.01 �0.88
7 150-76-5 4-Methoxyphenol �0.97 �0.89
8 95-55-6 2-Hydroxyaniline �0.91 �0.89
9 90-05-1 2-Methoxyphenol �0.88 �0.97

10 87-62-7 2,6-Dimethylaniline �0.87 0.04
11 100-52-7 Benzaldehyde �0.81 �0.91
12 95-48-7 2-Cresol �0.81 �1.07
13 90-02-8 2-Hydroxybenzaldehyde �0.80 �0.82
14 98-95-3 Nitrobenzene �0.78 �0.63
15 106-44-5 4-Cresol �0.66 �0.86
16 95-65-8 3,4-Dimethylphenol �0.65 �0.65
17 104-87-0 4-Tolualdehyde �0.65 �0.35
18 94-71-3 2-Ethoxyphenol �0.62 �0.27
19 24964-64-5 3-Cyanobenzaldehyde �0.57 �1.04
20 99-08-1 3-Nitrotoluene �0.50 �0.08
21 106-48-9 4-Chlorophenol �0.42 �0.34
22 97-02-9 2,4-Dinitroaniline �0.36 0.34
23 106-41-2 4-Bromophenol �0.35 �0.29
24 106-40-1 4-Bromoaniline �0.33 0.19
25 108-42-9 3-Chloroaniline �0.31 0.03
26 2495-37-6 Benzyl methacrylate �0.21 �0.04
27 618-87-1 3,5-Dinitroaniline 0.03 0.02
28 89-98-5 2-Chlorobenzaldehyde 0.06 0.22
29 540-38-5 4-Iodophenol 0.16 �0.20
30 4748-78-1 4-Ethylbenzaldehyde 0.16 0.19
31 58-27-5 2-Methyl-1,4-naphthoquinone 0.16 0.09
32 88-69-7 2-Isopropylphenol 0.17 �0.19
33 626-43-7 3,5-Dichloroaniline 0.24 0.70
34 603-71-4 1,3,5-Trimethyl-2-nitrobenzene 0.25 0.24
35 608-31-1 2,6-Dichloroaniline 0.26 0.81
36 88-18-6 2-Tert-butylphenol 0.29 0.35
37 95-50-1 1,2-Dichlorobenzene 0.37 0.38
38 99-65-0 1,3-Dinitrobenzene 0.38 0.11
39 51-28-5 2,4-Dinitrophenol 0.40 0.32
40 100-25-4 1,4-Dinitrobenzene 0.41 0.14

(Continued )

288 A. A. Lagunin et al.
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2.3 Tetrahymena pyriformis dataset

The data on the T. pyriformis toxicity of 200 phenols [log (1/IGC50), mM] were

obtained from Cronin et al. [18]. The same compounds were selected as training set. The

compounds varied in structure from phenol itself, its relatively inert alkyl and halogen

derivatives, through to reactive multisubstituted phenols. Toxicity values were obtained

in the population growth impairment assay on the ubiquitous freshwater ciliate

T. pyriformis (strain GL-C). A detailed protocol can be found in Schultz [21].

2.4 Quantitative neighbourhoods of atoms (QNA) descriptors

The idea is that some values of each atom in a molecule can be calculated by the

formula:

ai
X
k

ðfðCÞÞikbk, ð1Þ

where ai is a property of atom i, bk is (another) property of atom k, and f(C) is a matrix

function of the molecular connectivity matrix C. In a general case, parameters ai and bk
may be any atomic characteristics depending on the atomic number. It is clear that each

so-calculated value contains information both about the particular atom and the entire

molecule. This is quite similar to a hologram, each part of which contains complete

Table 2. Continued.

No CAS Name Obs. Pred.

41 99-61-6 3-Nitrobenzaldehyde 0.45 0.00
42 99-30-9 2,6-Dichloro-4-nitroaniline 0.64 0.99
43 121-14-2 2,4-Dinitrotoluene 0.70 0.51
44 3531-19-9 6-Chloro-2,4-dinitroaniline 0.80 0.87
45 99-28-5 2,6-Dibromo-4-nitrophenol 0.81 1.27
46 89-61-2 2,5-Dichloronitrobenzene 0.97 1.01
47 94-62-2 Piperine 0.97 1.20
48 939-97-9 4-Tert-butylbenzaldehyde 1.00 0.76
49 634-93-5 2,4,6-Trichloroaniline 1.11 1.30
50 83-42-1 2-Chloro-6-nitrotoluene 1.17 0.78
51 5388-62-5 4-Chloro-2,6-dinitroaniline 1.19 1.16
52 528-29-0 1,2-Dinitrobenzene 1.23 0.27
53 100-00-5 1-Chloro-4-nitrobenzene 1.25 0.29
54 128-37-0 2,6-Di-tert-butyl-4-methylphenol 1.45 1.40
55 3481-20-7 2,3,5,6-Tetrachloroaniline 1.48 1.72
56 609-89-2 2,4-Dichloro-6-nitrophenol 1.50 1.12
57 83-38-5 2,6-Dichlorobenzaldehyde 1.50 0.99
58 96-76-4 2,4-Di-tert-butylphenol 1.60 1.83
59 87-86-5 Pentachlorophenol 1.69 1.86
60 89-69-0 1,2,4-Trichloro-5-nitrobenzene 1.88 1.56
61 6284-83-9 1,3,5-Trichloro-2,4-dinitrobenzene 1.89 1.96
62 1689-82-3 Phenylazophenol 2.16 1.99
63 not found 4-(Dibutylamino)benzaldehyde 2.18 2.22
64 117-18-0 2,3,5,6-Tetrachloronitrobenzene 2.34 2.22
65 608-71-9 Pentabromophenol 3.10 2.93

Minimum �1.46 �1.14
Maximum 3.10 2.93

QSAR modelling of acute toxicity 289
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information about the whole image. In this study, we used our earlier findings [16] and,

based on (1), calculated two values, Pi and Qi, for each atom of the molecule:

Pi ¼ B
�ð1=2Þ
i

X
k

exp �
1

2
C

� �� �
ik

B
�ð1=2Þ
k , ð2Þ

Qi ¼ B
�ð1=2Þ
i

X
k

exp �
1

2
C

� �� �
ik

B
�ð1=2Þ
k Ak, ð3Þ

Ai ¼
1

2
ðIPi þ EAiÞ, Bi ¼ IPi � EAi, ð4Þ

where IPi is the ionisation potential (the energy required to remove the outermost

electron from a neutral gaseous atom), and EAi is the electron affinity (the energy

released when an electron is added to a neutral gaseous atom of that element) of atom i

(figure 1).
For the regression-based approach, however, it is essential that each object (each

molecule) be presented by the same number of descriptors. This requirement poses

problems when datasets contain a wide variety of structures of different size and

CH

F

H

Cl

exp(-½C)= 

1.55 −0.59 −0.59 −0.59 −0.59

−0.59 1.14 0.14 0.14 0.14

−0.59 0.14 1.14 0.14 0.14

−0.59 0.14 0.14 1.14 0.14

−0.59 0.14 0.14 0.14 1.14

EA IP A= ½(IP+EA) B= IP–EA B−½ P Q

C 6.262 9.997 −0.1900.316 −2.540

0.2420.268 2.954F 10.434 13.972

Cl 8.292 9.356 0.327 0.302 2.873

H 7.177 12.846 0.279 0.254 0.254

H 7.177

11.260

17.420

12.970

13.600

13.600

1.263

3.448

3.614

0.754

0.754 12.846 0.279 0.254 0.254

C = 

0 1 1 1 1 

1 0 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

C 

F 

Cl 

H 

H 

(a) (b)

(c)

(d)

Figure 1. Example of QNA description for CH2ClF: (a) structure diagram; (b) connectivity matrix;
(c) exponent of connectivity matrix; (d) ionisation potentials, electron affinities, parts of equations (2) and (3),
P and Q values for each atom.

290 A. A. Lagunin et al.
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different numbers of atoms. A mathematical transformation is then necessary to arrive
at the same number of descriptors independent of the size of a molecule. This was done
using the quantiles of QNA calculated using order statistics as follows:

PðFiÞ ¼ ðn� 1Þ!
X

k
P 0
k

Fk�1
i

ðk� 1Þ!

� �
ð1� FiÞ

n�k

ðn� kÞ!

" #
,

QðFiÞ ¼ ðn� 1Þ!
X

k
Q 0

k

Fk�1
i

ðk� 1Þ!

� �
ð1� FiÞ

n�k

ðn� kÞ!

" #
,

where P 0
k and Q 0

k are the values of Pi and Qi calculated according to (2)–(4) for a
molecule of n atoms, and arranged in the ascending order. Choosing a certain number
of values Fi, we can calculate the same fixed number of descriptors for each molecule.
As a result, we present the molecular structure by the quantiles of QNA (qQNA)
descriptors as a vector of the values P(Fi), Q(Fi), P(Fi)Q(Fi), . . . ,Q

3(Fi) for i¼ 1, . . . , 12
and Fi¼ i/13.

2.5 Self-consistent regression

Multiple Linear Regression (MLR) is based on the assumption that a response can be
represented by a linear function of regressors:

y ¼ Xaþ e,

where y is the column vector of n response values; X¼ (1, x1, . . . , xm) is the regression
matrix, which consists of the column vector of units 1, and m columns of regressors xk;
a is a column vector of regression coefficients should be determined; " is a vector
of unobserved residuals (errors). Residuals are usually considered as random,
independent, identically distributed variables with zero mean and covariance matrix
�2In, where � is the unknown standard deviation of residuals, and In is the unit matrix.

One of the best ways to solve classical MLR problems is to apply the maximum
likelihood method. If the residuals "¼ y�Xa are normally distributed, i.e. the
likelihood function p( y|X, a) of the response vector y at the conditions of the regression
matrix X and a is normal density, then the maximum likelihood method reduces to the
ordinary least-squares (OLS) one:

a ¼ argmin
X
i

yi �
X
k

xikak

 !2

:

Although the assumption of normality is not necessary for the OLS method, it is often
considered as such.

An ordinary MLR has a number of limitations. For example, the number of
responses, n, should significantly exceed the number of regressors, m, and it is
important to use only the non-collinear ones. A variety of techniques including stepwise
and principal components regression, partial least squares, cluster significance analysis,
nearest neighbour analysis and evolutionary (genetic) algorithms are used to overcome
these limitations. All of such methods have certain advantages and disadvantages, the
main disadvantage being their heuristic background. Another strategy employs
statistical regularization of ill-posed problems [22].

QSAR modelling of acute toxicity 291
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It is obvious that any regressor has only a restricted influence on the response,
i.e. large values of regression coefficients are prohibitive, i.e. they have small
probabilities. We therefore suggest using an a priori probability distribution of the
regression coefficients p(a|v), where v are the distribution parameters. Therefore,
the estimate of a is obtained by the maximum a posteriori probability method:

a ¼ argmax pðajX, y, vÞ,

where p(a|X, y, v) is calculated by Bayes formula:

pðajX, y, vÞ ¼
pð yjX, aÞpðajvÞ

pð yjX, vÞ
,

and the likelihood function of the sample p( y|X, v) is calculated by summation
(integration) of all possible values of the regression coefficients a:

pð yjX, vÞ ¼
X
a

pð yjX, aÞpðajvÞ:

If the residuals e¼ y�Xa are normally distributed and an a priori conditional
probability p(a|v) has also normal density:

pðajvÞ � exp �
ðv1a

2
1 þ � � � þ vma

2
mÞ

2

� �
, ð5Þ

then the maximum a posteriori probability method is the regularized least-squares
method:

a ¼ argmin
X

i
ð yi �

X
k
XikakÞ

2
þ �2

X
k
vka

2
k

h i
: ð6Þ

It has the following solution:

a ¼ TX0y, VarðaÞ ¼ �2T, T ¼ ðX0Xþ �2VÞ
�1
, ð7Þ

where V is the diagonal matrix of regularization parameters. In cases where �2V is equal
to !In with a positive multiplier !, equation (7) is reduced to the well-known ridge
regression [23].

Based on the above, we have proposed an approach for the estimation of optimal
values of parameters v in an a priori probability distribution p(a|v) of regression
coefficients. Since the parameters v use the same data sample, X and y, we called the
method ‘‘self-consistent regression’’ (SCR). As recommended in [23], the maximum
likelihood method can be used to find the best values of parameters v:

a ¼ argmax pð yjX, vÞ: ð8Þ

In cases where p( y|X, a) and p(a|v) are the normal densities from equations (5)–(8),
the following equation is derived:

vkða
2
k þ �2tkÞ ¼ 1, k ¼ 1, . . . ,m, ð9Þ

where tk is the kth diagonal element of matrix T.
Due to their complex multidimensional nonlinear character, equation (9) can only be

solved by iteration methods. Unlike the stepwise regression and other methods of
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combinatorial search, the SCR model includes all regressors. Nevertheless, the
final model may contain several regressors truly describing the existing relationship.
They can be easily identified based on their significance, which can be presented by
the effective dimension of the regressor:

dk ¼ 1� �2vktk, k ¼ 1, . . . ,m: ð10Þ

Only those meeting a certain criterion, e.g. dk>10�2, are left in the model.
The assumption of normality for p( yjX, a) and p(a|v) is not as restricted as seems to

be the case. Normal distribution has an extreme property: it has the highest entropy for
distributions with equal dispersion, and, in this sense, it is the ‘‘worst’’ among all
possible distributions. Therefore, a solution obtained under the assumption of
normality is rougher than it is theoretically possible for an exact residual distribution,
but it is more robust, which is essential for the predictive power of a regression model.
The regularized least-squares method (6) can be applied directly, without any statistical
paradigm. However, the above-discussed statistical approach offers a useful tool for the
optimisation of parameters v.

If residuals’ dispersion �2 is unknown, then the following estimate s2 can be used:

s2 ¼

P
i yið yi �

P
k xikakÞ

ðn� d Þ
, d ¼ 1þ

X
k

dk:

Based on the above-described theory, we have developed an efficient SCR algorithm.
It is based on a modified Gram–Schmidt orthogonalization, which does not require
the explicit inversion of a high-dimension matrix [24].

For a test molecule, the value of y can be calculated as follows:

y ¼
X
k

xkak, k ¼ 1, . . . ,m

where m is the number of regressors (qQNA) left in the equation after the SCR-part of
the training procedure.

3. Results and discussion

The predicted acute toxicity values for V. fischeri by SCR-qQNA are given in table 1
together with the structures of compounds and observed values. We used 56
phenylsulfonyl carboxylates as training set. The model was evaluated by leave-one
out cross-validation procedure (Q2). This procedure consists in excluding the data
(qQNAs and toxicity values) of each molecule (one at a time) from the training set, with
the following prediction of the excluded value using the retrained model, and
comparison of the predicted value and the observed one. The theorem of unbiasedness
and justifiability of leave-one-out cross-validation criterion was proved by Vapnik [25].
There was a good correlation between the observed and predicted values. We use the
following parameters of the regression models: n is the number of compounds in the
training set, r2 is the square of the regression coefficient and Q2 is the cross-validated r2,
F is the Fisher’s statistics, SD is a standard deviation. The statistical parameters of the
correlation are n¼ 56, r2¼ 0.908, Q2

¼ 0.866, F¼ 58, SD¼ 0.164. The final equation

QSAR modelling of acute toxicity 293
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contains 8 QNA quantiles as independent variables. A plot of the observed versus

predicted by the SCR-qQNA method is presented in figure 2.
All compounds in the set are phenylsulfonyl carboxylates that are structurally similar

to each other. The observed values of acute toxicity vary from 0.44 to 2.28 logEC50

(mM), while those predicted vary from 0.09 to 1.77 logEC50 (mM). For 45 compounds

(80%), the deviation of the predicted values from the observed ones is less than 0.5

logEC50 (mM). A comparison of the prediction accuracy of SCR-qQNA with the other

QSAR methods applied to the same data is presented in table 3.
The studied set of compounds was used for CoMFA [19], MLR analysis, principal

component regression (PCR) analysis and Genetic Function Approximation (GFA) on

the basis of extended topochemical atom (ETA) indices and non-ETA (physicochem-

ical) parameters [13, 20]. Non-ETA parameters include topological indices such

as Wiener, Hosoya Z, molecular connectivity, kappa shape, Balaban J and E-State

parameters, as well as physicochemical parameters such as AlogP98, MolRef, and

H-bond-acceptor. It is clear that the SCR-qQNA method has the best statistical

parameters of correlation. The CoMFA method showed an excellent r2 value (0.92)

which was slightly better then that of the SCR-qQNA method, but Q2 (0.79) was worse.

Cross-validated Q2 values are typically lower than normal r2 values, yet they are

considered to be more indicative of the predictive ability of the model. Whereas r2 is a

measure of goodness of fit, Q2 is a measure of goodness of prediction. Therefore, a

higher value of Q2 is more important for prediction of toxicity than a higher value of r2.
Factor scores were used as independent variables so as to apply the backward

stepwise regression method (Factor score, PCR, MLRc) on the basis of a combination
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Figure 2. Toxicity to V. fischeri: SCR-qQNA-predicted vs. observed values.
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of the ETA indices and non-ETA descriptors. The obtained statistical parameters

were very close to those of the SCR-qQNA method. The Fisher value alone was better

than that of the SCR-qQNA method. However, the other parameters — r2 (0.905),

Q2 (0.848), and the standard deviation (0.178) — were worse.
For C. vulgaris, we obtained similar results. Table 2 shows CAS Registration

Numbers, chemical names, observed and predicted acute toxicity [log (1/EC50)] for

65 aromatic compounds tested on C. vulgaris. A reasonable correlation was obtained

between the observed and predicted toxicity values. The statistical parameters of

the correlation were as follows: n¼ 65, r2¼ 0.885, Q2
¼ 0.849, F¼ 41.8, SD¼ 0.422.

The final equation contains 10 QNA quantiles as variables. A plot of the observed

versus predicted toxicity values by the SCR-qQNA method is shown in figure 3.
The experimental values of acute toxicity vary from �1.46 to 3.10 log (1/EC50).

The predicted values of acute toxicity vary from �1.14 to 2.93 log (1/EC50). It means

that, unlike the predicted values for V. fischeri, the predicted values for C. vulgaris fall

within the observed boundaries. A comparison of the SCR-qQNA accuracy with that of

the other QSAR methods used for the same compounds is presented in table 4.
The set of compounds tested on C. vulgaris was used for QSAR modelling by MLR

and Partial Least Squares Regression (PLS) on the basis of 102 molecular descriptors

calculated by ClogP, MOPAC93, TSAR 3.3 (Oxford Molecular Limited, Oxford,

England) and QSARis ver. 1.1 software (SciVision–Academic Press, San Diego, CA).

MLR was made by MINITAB ver. 13.1 (Minitab Inc., State College, PA) and PLS was

made with SIMCA-P ver. 9.0 (Umetrics AB, Umeå, Sweden) [9]. The statistical

characteristics of our method are better than those achieved by MLR and PLS. Closest

to our characteristics were those of the PLS hydrophobicity/electrophilicity model:

r2¼ 0.858, Q2
¼ 0.843, SD¼ 0.403.

A plot of the observed toxicity values [log (1/IGC50)] versus those predicted by

the SCR-qQNA method for 200 phenols tested on T. pyriformis is shown in figure 4.

Table 3. Comparison of prediction accuracies of SCR-qQNA and other methods used for V. fischeri
toxicity of 56 phenylsulfonyl carboxylates (log EC50, mM).

Method No r2 Q2 F SD Ref.

SCR-qQNA 56 0.908 0.866 58.0 0.164
CoMFA 56 0.920 0.790 N/A N/A [17]
PCR, MLRa 56 0.837 0.726 57.4 0.186 [13]
PCR, MLRb 56 0.798 0.763 44.3 0.207 [13]
PCR, MLRc 56 0.798 0.763 44.3 0.207 [13]
Factor score, PCR, MLRa 56 0.894 0.816 57.8 0.196 [13]
Factor score, PCR, MLRb 56 0.871 0.828 55.4 0.190 [13]
Factor score, PCR, MLRc 56 0.905 0.848 77.5 0.178 [13]
GFAa 56 0.861 0.771 69.0 0.172 [18]
GFAb 56 0.820 0.805 53.5 0.196 [18]
GFAc 56 0.865 0.779 71.7 0.169 [18]

SCR-qQNA – Self-Consistent Regression on the basis of QNA quantiles. PCR – Principal Component Regression;
MLR – Multiple Linear Regression; Factor score – factor scores were used as independent variables so that the backward
stepwise regression method could be applied. GFA – Genetic Function Approximation; a – Extended topochemical atom
(ETA) indices were used as parameters of the molecules [13]; b – Non-ETA parameters (topological indices including Wiener,
Hosoya Z, molecular connectivity, kappa shape, Balaban J and E-State parameters, as well as physicochemical parameters
such as AlogP98, MolRef and H-bond-acceptor) were used as parameters of the molecules; c – Both ETA and non-ETA
descriptors were used as parameters of the molecules. N/A – Not available.

QSAR modelling of acute toxicity 295
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The statistical parameters of the correlation are as follows: n¼ 200, r2¼ 0.685,

Q2
¼ 0.651, F¼ 34, SD¼ 0.49. The final equation contains 12 variables.
The experimental values of acute toxicity varied from �1.5 to 2.71 [log (1/IGC50)

in mM]. The predicted values of acute toxicity vary from �0.68 to 2.88 [log(1/IGC50)].

A comparison of the SCR-qQNA accuracy with that of other QSAR methods applied

to the same compounds is presented in table 5.
The set of compounds tested on T. pyriformis was used for QSAR modelling by MLR

and PLS on the basis of 108 physicochemical descriptors calculated by ACD/Labs

software, Chem-X version 2000.1, MOPAC ver. 6.49, TSAR 3.3, and QSARis ver. 1.1

software. MLR was made by MINITAB ver. 13.1 and PLS was made in TSAR 3.3 [9].

It is clear that the degree of correlation between the observed and predicted values

was the worst, as compared to C. vulgaris and V. fischeri. Yet, if we compare it with

the other methods used to predict log (1/IGC50) for T. pyriformis, we can see that the

statistical characteristics of our method are as good as the best ones achieved with

the MLR model, which presented the following statistical parameters: r2¼ 0.690,

Q2
¼ 0.670, F¼ 75, SD¼ 0.46.
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Figure 3. Toxicity to algae: SCR-qQNA-predicted vs. observed values.

Table 4. Comparison of prediction accuracies of SCR-qQNA and other
methods for C. vulgaris toxicity of 65 aromatic compounds [log (1/EC50), mM].

Method No r2 Q2 F SD Ref.

SCR-qQNA 65 0.885 0.849 41.8 0.422
MLR 65 0.839 0.819 161 0.429 [9]
PLS 65 0.858 0.843 N/A 0.403 [9]

SCR-qQNA – Self Consistent Regression on the basis of QNA quantiles. MLR – Multiple
Linear Regression; PLS – Partial Least Squares Regression; N/A – Not available.
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The new QSAR approach described in this paper can be used to develop a model with
high correlation coefficients and low errors of prediction. Its prediction accuracy is at
least as good as that of any other method used in QSAR modelling for the prediction of
acute aquatic toxicity. The SCR-qQNA method is a very promising tool for prediction
of the toxicity of organic compounds.
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