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Abstract

The potential of the computer program PASS (Prediction Activity Spectra for Substances) to predict rodent carcinogenicity
for chemical compounds was studied. PASS predicts carcinogenicity of chemical compounds on the basis of their structural
formula and of structure–activity relationship analysis of known carcinogens and non-carcinogens. The data on structures and
experimental results of 2-year carcinogenicity assays for 412 chemicals from the NTP (National Toxicological Program) and
1190 chemicals from the CPDB (Carcinogenic Potency Database) were used in our study. The predictions take into consideration
information about species and sex of animals. For evaluation of the predictive accuracy we used two procedures: leave-one-out
cross-validation (LOO CV) and leave-20%-out cross-validation. In the last case we randomly divided the studied data set 20
times into two subsets. The data from the first subset, containing 80% of the compounds, were added to the PASS training set
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which includes about 46,000 compounds with about 1500 biological activity types collected during the last 20 years
iological activity spectra), the second subset with 20% of the compounds was used as an evaluation set. The mea
f prediction calculated by LOO CV is about 73% for NTP compounds in the ‘equivocal’ category of carcinogenic acti
0% for NTP compounds in the ‘evidence’ category of carcinogenicity. The mean accuracy of prediction for the CPDB

s 89.9% calculated by LOO CV and 63.4% calculated by leave-20%-out cross-validation. Influence of incorporation o
nd sex data on the accuracy of carcinogenicity prediction was also investigated. It was shown that the accuracy wa
nly for data on male animals.
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1. Introduction

Progress in combinatorial chemistry and hi
throughput screening is resulting in signific
increases in the number of known chemical c
pounds. The study of toxic effects of chemicals, inc
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ing carcinogenicity, is an important part of both drug
R&D and protection of the environment. Clearly,
such toxicological investigations increase concomi-
tantly with the increase in the number of chemical
compounds. It is not possible to study carcinogenicity
of chemicals in humans, and therefore several species
of animals are used for carcinogenicity assessment.
One of the most general methods of carcinogenicity
assessment is 2-year carcinogenicity assay for rodents
(mainly rats and mice), which is time-consuming and
highly expensive. A study made by Gold et al.[1]
shows that if a chemical is a carcinogen for rats and
mice there is a 50% probability that it will be a human
carcinogen. Our comparison of chemicals classified
by the IARC human carcinogenic hazard classification
(International Agency for Research on Cancer)[2] with
rodent carcinogenicity data from CPDB (Carcinogenic
Potency Database) shows that about 90% of evident,
probable and possible human carcinogens (Groups 1,
2A and 2B by IARC classification) are rodent carcino-
gens. The possibility of extrapolating rodent bioassay
data to human carcinogens was shown by other inves-
tigators[3]. According to the strength-of-evidence cri-
teria used by IARC, chemicals that induce cancer in
two species should be considered most likely to pose
carcinogenic hazards to humans[4] and need more
detailed and extensive evaluation of the available data
and information. Many approaches have been devel-
oped to predict rodent carcinogenicity. These vary from
short-term biological assays[5,6] and expert systems
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dicted. Moreover, this experiment shows that testing in
cell lines and using approaches based on expert evalu-
ations provide more accurate results than do available
computer-aided approaches.

The main purpose of carcinogenicity prediction is
a determination of carcinogenicity for chemical com-
pounds without using the long-term biological assays.
This conforms to the biological activity spectra con-
cept, on which the PASS approach (Prediction of Activ-
ity Spectra for Substances) is based: all potential activ-
ities caused by the compound in biological entities are
presented as a biological activity spectrum of the sub-
stance[14]. Carcinogenicity is one of many potential
activities of chemical compounds that is predicted and
it is described qualitatively. A qualitative description
of biological activities provides the basis for includ-
ing the data collected from many different sources
in the PASS training set. The PASS approach uses a
heterogeneous training set and universal descriptors
of molecules that provide high accuracy and robust-
ness of biological activity prediction[14–18]. Features
of carcinogenic manifestations which may depend on
species, sex and tissues may be taken into account
as particular types of biological activity. On the basis
of such statements we studied the prediction accu-
racy of the PASS approach for rodent carcinogenic-
ity data from on-line representation of NTP[19,20]
and CPDB[21,22]databases. This paper describes an
investigation of PASS prediction accuracy for different
categories of carcinogenicity (evident, equivocal and
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7,8] to computer-aided carcinogenicity prediction
he basis of structure–activity relationships[9–11].
nfortunately, by comparison of prediction results w
xperimental data it has been shown that the ave
rediction accuracy of these approaches is less
5% [12,13]. The reasons for this poor accuracy

he limited number of chemical compounds from so
hemical classes used as training sets, imperfecti
pplied approaches and complex pathogenesis o
inogenicity. Nevertheless, whether or not a compo
s a carcinogen depends (as do all its properties) o

olecular structure. Analysis of the second comp
ive exercise (Predictive Toxicology Challenge of
ational Toxicology Program) for carcinogenicity p
iction methods shows that the most difficult proble
separation of true carcinogens from non-carcino

hat contain structural fragments of carcinogens[13].
s a consequence, too many false positives are
on-carcinogens) from the NTP database accordi
pecies and sex of animals. We analyzed the influ
f combination of chemicals by species and sex

he accuracy of carcinogenicity prediction. The ac
acy of carcinogenic prediction for chemicals from
PDB database was studied and compared with th
ompounds from the NTP database. Concordance
itivity and specificity values of carcinogenicity pred
ion were found to depend on the threshold of estim
robability.

. Data and methods

.1. PASS technology

The PASS approach[14–16]is described in detail o
he web-site (http://www.ibmh.msk.su/PASS) and in a

http://www.ibmh.msk.su/pass
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book [17]. Here, we present only a brief description
of the PASS method, necessary for a general under-
standing of how it works. PASS uses MNA (Multi-
level Neighborhoods of Atoms) descriptors for pre-
sentation of a compound’s structure[18]. They are
based on a molecular structure description according
to the valences and partial charges of connected atoms
(including hydrogen atoms) although the bond types
are not specified. MNA descriptors are generated as a
recursively defined sequence:

• zero-level MNA descriptor for each atom is the label
A of the atom itself;

• any next-level MNA descriptor for the atom is the
sub-structure notationA(D1D2· · ·Di · · ·);

where Di is the previous-level MNA descriptor for
ith immediate neighbor of the atomA. The neigh-
bor descriptorsD1D2· · ·Di · · · are arranged in a unique
manner, e.g., in lexicographic order. The atom label
A may include not only the atomic type but also any
additional information about the atom. In particular, if
the atom is not included in any ring, it is marked by
“-”. The iterative procedure for MNA descriptor gen-
eration can be continued to cover the first, second, etc.,
neighborhoods of each atom. In this way the structure
of any molecule is represented as a set of MNA descrip-
tors.Fig. 1 shows the structure and MNA descriptors
of Amiben (2,5-dichloro-3-aminobenzoic acid) which
is a carcinogen in female mice.

In PASS the biological activity is described qualita-
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Fig. 1. List of the MNA descriptors for Amiben (2,5-dichloro-3-
aminobenzoic acid). MNA/1 and MNA/2 are descriptors of the first-
and second-level, respectively.

given by

P(Ak) = nk

n
, P(Ak|Di) = nik

ni

,

where n is the total number of compounds in the
training set,ni the number of compounds containing
descriptorDi in the structure description,nk the num-
ber of compounds containing the activity typeAk in
the training set andnik is the number of compounds
containing both the activity typeAk and descriptorDi .

The PASS training set used for this work con-
tained 45,660 substances represented by 43,000 MNA
descriptors and possessing about 1500 different types
of biological activity which are molecular mechanisms
of action, pharmacological activity, side and toxic
effects. The training set was collected during 25 years
from the literature and databases that describe the real
experimental data. The structural information input of
PASS is a MOL- or SD-file (MDL Information Sys-
tems Inc.)[23]. The results of prediction (output) can
be represented as CSV, TXT or SD-files containing a
ively (‘active’ or ‘inactive’). The algorithm of predic
ion is based onB-statistics specially designed for t
ASS approach. For each type of activityAk, the fol-

owingBk values are calculated based on the molec
tructure represented by the set ofm MNA descriptors
D1, . . ., Dm}:

k = Sk − S0k

1 − SkS0k

,

k = sin

[∑
iarcsin(2P(Ak|Di) − 1)

m

]
,

0k = 2P(Ak) − 1

hereP(Ak|Di) is a conditional probability of activ
ty type Ak if the descriptorDi present in the se
f a molecule’s descriptors andP(Ak) is the a prior
robability to find a compound with activity typeAk.
he estimates of the probabilitiesP(Ak), P(Ak|Di) are
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list of activities with the estimates of probability of
being active (Pa) and inactive (Pi ), respectively. Only
activities for whichPa >Pi can be considered as prob-
able.

We used carcinogenicity data from NTP and CPDB
databases as training sets separately or in combination
with the existing PASS training set. In the last case all
compounds from the PASS training set different from
those of NTP and CPDB databases were considered as
non-carcinogens. Actually some of these compounds
may be rodent carcinogens. Analysis of drugs included
in the open part of the FDA database on rodent carcino-
gens (http://www.predictive-toxicology.org/data/fda/)
shows that only 17% of 223 drugs reveal carcinogenic-
ity in two species and 43% at least in one. In spite
of lack of knowledge whether all of these compounds
are non-carcinogens or not, our experiments show that
such a procedure improves the accuracy of prediction
(see Section3). In that way we increase the training
set. The positive influence of the database size on the
informational content was confirmed by Takihi et al.
[24]. Increasing the number of inactive compounds in
the training set also improves the accuracy of prediction
that was shown in the study on mutagenicity prediction
by Liu et al.[25].

2.2. Databases

Quality of experimental data plays a key role in
computer-aided carcinogenicity prediction. We used
t ata:
t ase
[ ase
( of
t as-
s on-
s or
f
s
t mix-
t ntal
p are
u ngth
o cat-
e ome
e uiv-
o fects
( that

because of major flaws cannot be evaluated (inadequate
study). We used a set of 412 chemical compounds from
the NTP database for training in PASS. Small inorganic
compounds (e.g., NO2), oils, paraffins and mixtures
of compounds were excluded from the set. The pre-
viously existing PASS training set already included
337 structures of carcinogens, and thus only 75 new
structures were added. The PASS training set includes
compounds with carcinogenic activity, but this activ-
ity is not specified by species. From 337 compounds
which are in the NTP database and in the PASS training
set 152 compounds are carcinogens, 119 are muta-
gens, 107 compounds have embryotoxic effects, 105
compounds have toxic effects and 68 compounds are
teratogens. These compounds reveal also about 200
other types of biological activity, but with a frequency
of less than 40 compounds. We combined two cat-
egories of positive results (clear evidence and some
evidence) into one, which was described according to
the species and sex of animals as ‘carcinogen, female
mice’; ‘carcinogen, male mice’; ‘carcinogen, female
rats’ and ‘carcinogen, male rats’. For the ‘equivocal
evidence’ category we used the following descrip-
tions: ‘carcinogen, equivocal, female mice’; ‘carcino-
gen, equivocal, male mice’; ‘carcinogen, equivocal,
female rats’ and ‘carcinogen, equivocal, male rats’. All
compounds that did not fall into any category were
considered as non-carcinogens. The CPDB database
(http://potency.berkeley.edu/cpdb.html) includes infor-
mation from the NTP database and data of carcino-
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We also compared carcinogenic activities for the
chemicals that are present in both NTP and CPDB
databases. It appeared that the difference between these
is about 15%. We did not correct these data and used
them as it is.

2.3. Validation of the prediction accuracy

We used the independent accuracy of prediction
(IAP) values to estimate the prediction accuracy. IAP
was calculated for each type of activity in PASS pre-
dictions:

IAP = N(p1 > p0)

n1n0

whereN(p1 >p0) is the number of cases when the pre-
dicted probability of an active compound (p1) to be
active is greater than the predicted probability to be
active for an inactive compound (p0); n1 andn0 is the
number of active and inactive compounds, respectively
in the evaluation subset.

For evaluation of the accuracy of prediction we used
two procedures: leave-one-out cross-validation (LOO
CV) and leave-20%-out cross-validation. In the last
case we randomly divided the studied set 20 times into
two subsets. The data from the first subset contain-
ing 80% of the compounds were added to the PASS
training set, the second subset with 20% compounds
was used as an evaluation set. Thus, we prepared 20
pairs of training and evaluation sets. Each training set
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3. Results and discussion

3.1. Prediction of carcinogenicity on the basis of
NTP data

Initially, we studied the predictive accuracy of PASS
for data from the NTP database, which were used
together with the PASS training set, and separately.
The number of compounds and the accuracy of car-
cinogenicity prediction calculated by LOO CV for
the NTP set (IAPNTP) and in combination with the
PASS training set (IAPPASS) also as leave-20%-out
cross-validation (IAP20PASS) procedures for each ani-
mal group are displayed inTable 1.

The prediction accuracy calculated by LOO CV
for combined NTP and PASS training sets (IAPPASS)
shows that the prediction accuracy for compounds
from the category ‘equivocal’ (nos. 1–4) was worse
than for positive carcinogens (nos. 10–14), varying
from 75.6 (carcinogen, equivocal, male rats) to 82.1%
(carcinogen, equivocal, female mice). The mean accu-
racy for ‘equivocal’ activities is 78.9%. At the same
time the mean accuracy for positive carcinogens is
86.7%. It varies from 85.7 (carcinogen, female rats)
to 87.6% (carcinogen, female mice). Combining activ-
ities by sex (nos. 5, 6, 14, 15) or by species (nos.
7–9, 16–18) did not lead to any significant increase
of the accuracy of carcinogenic prediction. Analysis
of the prediction accuracy activity types show that the
combination of animal groups makes sense only for
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Table 1
The number of compounds, accuracy of prediction and categories of carcinogenic activity for NTP data

No. Number IAPPASS(%) IAPNTP (%) IAP20PASS(%) Activity type

1 23 82.1 46.5 54.2 Carcinogen, equivocal, female mice
2 36 80.7 41.8 50.9 Carcinogen, equivocal, female rats
3 39 77.3 – 46.0 Carcinogen, equivocal, male mice
4 41 75.6 46.8 38.0 Carcinogen, equivocal, male rats
5 55 81.1 – 47.6 Carcinogen, equivocal, female rodent
6 75 80.6 37.1 43.4 Carcinogen, equivocal, male rodent
7 55 77.1 – 41.6 Carcinogen, equivocal, mice
8 67 82.8 42.4 49.3 Carcinogen, equivocal, rats
9 110 81.1 – 42.4 Carcinogen, equivocal, rodent

10 147 87.6 48.4 57.5 Carcinogen, female mice
11 120 85.7 48.2 57.0 Carcinogen, female rats
12 125 86.2 47.9 60.8 Carcinogen, male mice
13 152 87.3 47.3 57.0 Carcinogen, male rats
14 190 86.6 48.2 56.0 Carcinogen, female rodent
15 201 87.9 48.3 60.0 Carcinogen, male rodent
16 165 87.4 47.4 59.0 Carcinogen, mice
17 172 86.9 49.6 57.0 Carcinogen, rats
18 228 87.4 46.9 57.2 Carcinogen, rodent

IAPPASS: invariant accuracy of prediction calculated by the leave-one-out cross-validation procedure for joint PASS and NTP data; IAPNTP:
invariant accuracy of prediction calculated by the leave-one-out cross-validation procedure for NTP data; IAP20PASS: invariant accuracy of
prediction calculated by the leave-20%-out cross-validation procedure on the basis of joint PASS and NTP data; –: activity types that could not
be predicted by PASS.

58.1%, which is 10% better than for compounds from
the ‘equivocal’ category (47.3%).

3.2. Prediction of rodent carcinogenicity on the
basis of CPDB data

We estimated the accuracy of rodent carcinogenic-
ity prediction for 1190 compounds from the CPDB set.
In this investigation we studied the influence of data
on possible non-carcinogens contained in the PASS
training set on the accuracy of prediction. For this we
compared the prediction results for the CPDB set using

the PASS training set with drug-like compounds and
the CPDB set together and separately as training sets
for prediction of rodent carcinogenicity. We calculated
IAP by LOO CV for all compounds from the training
set (IAPPASS and IAPCPDB) and IAP by leave-20%-
out cross-validation for the CPDB set (IAP20PASSand
IAP20CPDB). Table 2shows the result of these calcula-
tions for each group of animals.

The mean accuracy calculated by LOO CV for the
combination of the PASS training set and compounds
from the CPDB database (IAPPASS) was 89.9%. This
value is 3% higher than the accuracy of carcinogenicity

Table 2
The number of compounds, accuracy of carcinogenicity prediction calculated by the leave-one-out cross-validation (LOO CV) procedure (IAP)
for CPDB data

Activity type Number IAPPASS(%) IAPCPDB (%) IAP20PASS(%) IAP20CPDB(%)

Carcinogen, female mice 294 90.8 74.0 65.3 58.9
Carcinogen, female rats 319 89.7 70.5 65.5 59.1
Carcinogen, male mice 277 90.1 65.3 62.8 57.8
Carcinogen, male rats 357 88.9 71.8 59.8 51.9

Mean values 312 89.9 70.4 63.4 56.9

IAPPASS: invariant accuracy of prediction calculated by the leave-one-out cross-validation procedure for joint PASS and CPDB data; IAPCPDB:
invariant accuracy of prediction calculated by the leave-one-out cross-validation procedure for CPDB data; IAP20PASS: invariant accuracy of
prediction calculated by the leave-20%-out cross-validation procedure on the basis of joint PASS and CPDB data; IAP20CPDB: invariant accuracy
of prediction calculated by the leave-20%-out cross-validation procedure for CPDB data.
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prediction for the NTP data in spite of the fact that the
NTP data were obtained under the more strict protocols
and are less diverse chemically in comparison with the
CPDB set. This may be explained by the higher num-
ber of compounds in the CPDB set than in the NTP
database.

Using only CPDB set for training, we obtained a
mean accuracy of 70.4% (IAPCPDB), which is 20% less
than for the joint PASS and CPDB data. Since the PASS
training set contains mostly non-carcinogenic drug-
like compounds, its addition to the data from CPDB
increases the structural diversity of non-carcinogens.
As a consequence, the discrimination between car-
cinogens and non-carcinogens is also increased, thus
improving the accuracy of prediction. This is clear from
the leave-20%-out cross-validation. When 80% of the
CPDB set was used together with the PASS training set
(IAP20PASS) for the training of PASS, then the mean
accuracy of prediction for 20% of the CPDB set was
63.4%. When 80% of the CPDB set was used sepa-
rately from the PASS training set (IAP20CPDB) for the
training of PASS, then the mean accuracy of prediction
for 20% of the CPDB set decreased to 56.9%, a dif-
ference of 6.5%. Therefore, in further experiments we
combined the PASS training set and the CPDB data.

Fig. 2 shows an example of rodent carcinogenicity
prediction for 1,2,3,4,5,6-hexachloro-benzene.

Carcinogenic effects for three animal groups with
probabilityPa >Pi were predicted for this compound.

F ,6-
h

Predictions for two groups of animals (carcinogen,
male mice and carcinogen, female mice) coincided
with the experimental results. The probability of a
carcinogenic effect for these groups exceeds 75%. Car-
cinogenicity was predicted also for male rats, whereas it
was not found experimentally. However, the low value
of the probability of a carcinogenic effect in this group
of animals and the small difference betweenPa (0.183)
andPi (0.167) values of probability shows that this pre-
diction is not significant.

As mentioned above, one of the main conclusions
from the NTP comparative exercises was the difficulty
in separating true carcinogens from non-carcinogens
that contain structural fragments of carcinogens. To
reproduce the same condition with methods that were
applied in the NTP comparative exercises (1996), we
used as a training set only those data from NTP that
were available at that time, i.e. from 1976 to 1995.
Our computer experiment with prediction of carcino-
genicity for 30 compounds used in the second NTP
comparative exercise shows that concordance of car-
cinogenicity prediction by PASS was 62.5%, sensitiv-
ity 86.7% and specificity 22.2% atPa >Pi threshold.
That is, despite the high number of correctly predicted
carcinogens, most non-carcinogens were predicted as
carcinogens. A similar result was obtained for most
of the best approaches applied in the NTP compara-
tive exercises[13]. Prediction results of carcinogenicity
expressed byPa andPi values solve the problem of sep-
arating carcinogens and non-carcinogens by means of
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ig. 2. Example of carcinogenicity prediction for 1,2,3,4,5
exachlorobenzene. Known activities are marked in bold.
election of a particular difference betweenPa andPi
s a threshold (Fig. 3).

The curves inFig. 3were calculated by LOO CV fo
PDB data.Fig. 3 shows that changing the ‘Pa−Pi ’

hreshold from 0 to 95% leads to an increase in
rediction accuracy of non-carcinogens and decre

he number of false positives. Specificity increa
rom 36.4 (Pa−Pi > 0) to 99.5% (Pa−Pi > 95%).
t the same time, however, such change leads
ecrease in the prediction accuracy of carcinog
ensitivity decreases from 84.9 (Pa−Pi > 0) to 4.5%
Pa−Pi > 95%). Taking into consideration all thr
urves presented inFig. 3, it was suggested that t
ptimal threshold is atPa−Pi > 30%. In this case con
ordance has a maximal value of 64.4%, specifi
2.4% and sensitivity 66.2%.

In this investigation we can see an inverse n
ive relationship between sensitivity and specific
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Fig. 3. Accuracy of carcinogenicity prediction depending on threshold of difference betweenPa andPi values. Concordance = total correct pre-
dictions/total number of predictions, sensitivity = percentage of correct predictions of carcinogens, specificity = percentage of correct predictions
of non-carcinogens.

The same observation was made on the study by
Matthews and Contrera, which reported a modified
FDA-MCASE model for carcinogenicity prediction
based on an expanded version of the CPDB enriched
with pharmaceuticals and with an FDA weight-of-
evidence-graded activity assignment[28]. They also
had discordance between sensitivity and specificity.
In that investigation the authors reported high sen-
sitivity and low specificity in rodent carcinogenicity
prediction but did not provide a possibility to find an
optimum between two. They supposed that the relation-
ships between sensitivity and specificity depend on the
quality of a training set. We think that it also depends
on the algorithm of the method and an output of predic-
tion results. In our opinion it is very important to have
a possibility to change one to improve another and our
approach provides this.

Some of the rodent carcinogenicity prediction
approaches used in the NTP comparative exercises,
such as MULTICASE, provide useful information
(rules or structural features, which may be reason of
this effect) for rationalization and justification of a
prediction. We consider that the representation of rela-
tionships between the PASS descriptors and carcino-
genicity is possible but it has not been realized yet. We
studied this possibility, but at present it may be done
only in statistical terms.

4. Conclusions

Studying the prediction of rodent carcinogenicity by
the PASS software has shown that the PASS algorithm
can be successfully applied for this purpose. Analysis
of prediction results of rodent carcinogenicity shows
that use of data on carcinogenicity together with data
for drug-like compounds from the PASS training set,
which are represented as possible non-carcinogens,
increases the accuracy of carcinogenicity prediction.
Changing of the ‘Pa−Pi ’ threshold leads to revision
of sensitivity and specificity of carcinogenicity predic-
tion. It may be used to increase the number of correctly
predicted carcinogens or non-carcinogens. Our study
shows that the mean prediction accuracy calculated by
LOO CV was 78.9% for ‘equivocal’ and 86.7% for
‘evident’ carcinogens. The study also shows that com-
bining NTP data on species and sex did not increase the
accuracy of carcinogenicity prediction with the excep-
tion of data for male animals. The mean accuracy for
combined CPDB data and the PASS training set was
89.9% calculated by LOO CV and 63.4% calculated
by leave-20%-out cross-validation for ‘evident’ car-
cinogens. This accuracy was achieved without expert
evaluation of prediction results and is comparable with
the best currently available methods of carcinogenic-
ity prediction. Carcinogenicity prediction for rats and
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mice of both sexes may be useful for extrapolation of
rodent carcinogenicity to humans.
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