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Abstract: Natural products found a wide use in folk medicine. Presently, when routine development of new drugs faced a considerable 
challenge, they become an inspiration and valuable source in drugs discovery. Rather complex and diverse chemical structures of natural 

compounds provide a basis for modulation of different biological targets. Natural compounds exhibit a multitargeted action that may lead 
to additive/synergistic or antagonistic effects. Rational design of more safe and potent pharmaceuticals requires an estimation of probable 

multiple actions of natural products. Our software PASS can perform such estimation. It predicts with reasonable accuracy over 3500 
pharmacotherapeutic effects, mechanisms of action, interaction with the metabolic system, and specific toxicity for drug-like molecules 

on the basis of their structural formulae. We analyzed PASS predictions utilizing PharmaExpert, which performs selection of compounds 
with multiple mechanisms of action, analysis of activity-activity relationships and drug-drug interactions. The paper describes an 

application of PASS and PharmaExpert to the evaluation of biological activity of natural compounds including marine sponge alkaloids, 
triterpenoids of lupane group, and their derivatives. Proposed computer-aided methods can generate combinatorial libraries of 

macrolides. They help to select the most promising pharmaceutical leads with the required properties. Case study, based on the analysis 
of biological activity spectra predicted for St John’s Wort constituents, clearly demonstrates capabilities of computational methods in the 

evaluation of multitargeted actions, additive/synergistic and/or antagonistic effects of natural products. 

Keywords: Natural products, computational evaluation, biological activity spectra prediction, PASS, multitargeted action, drug-drug 
interaction, marine sponge alkaloids, triterpenoids, St John’s Wort.  

1. INTRODUCTION 

 Natural products are widely used in a non-traditional medicine 
[1], especially in China [2], India [3] and Russia [4]. Being created 
by Mother Nature, natural compounds are specially adapted for 
their interactions with biological systems [5]; therefore, they are 
considered as valuable sources for drug discovery. Over 70% of 
New Chemical Entities (NCEs) introduced into medical practice in 
1981-2006 were obtained on the basis of natural products [6]. 
Rather complex and diverse chemical structures of natural 
compounds provide the basis for modulation of different biological 
targets [7]. Multitargeted actions of natural compounds could lead 
to additive/synergistic or antagonistic effects [8]. Since there are 
several thousands of known pharmacological targets and natural 
products exhibit pleiotropic action interacting with multiple targets, 
therefore computer-aided methods could be extremely useful for 
natural products evaluation [9]. 

 Generally, natural products research requires the utilization of 
virtual screening methods to find new lead substances. Currently, 
three main integrated approaches are in use for achieving this 
purpose, including: (1) creation of 3D structure database of natural 
product components with description of biological activity obtained 
from in vitro screening of natural products extracted from 
ethnopharmacological sources; (2) selection of biologically active 
material on the basis of hits found by docking in the database of 
natural product 3D structures; (3) parallel screening of unstudied 
natural substances, to identify the promising lead compounds [10]. 
But all these strategies confined to identification of phytochemical 
lead ethnic biological activity only. It is believed that just a small 
part of structural diversity exhibited by plant compounds has been 
seriously explored for its pharmacological potential so far [11]; and, 
therefore, new in-silico approaches are necessary to reveal novel 
biological activities of known natural products, including their 
interactions with the known biological targets and related  
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pharmacotherapeutic effects. Predicted pharmacological profiling 
[12] of natural products could be performed with computer program 
PASS (Prediction of Biological Activity for Substances). 

2. PASS APPROACH 

 The computer program PASS is the product of ideas that 
originated some 35 years ago from the development of a National 
Registration System for New Chemical Compounds in the former 
USSR [13]. Since all research institutes and universities in the 
Soviet Union were state-owned, it was intended that all chemists 
who synthesized new chemical compounds or extracted them from 
natural sources should register the structural formulae of those 
compounds, together with the associated information about 
physico-chemical properties and biological activities. In order to 
identify probable biological activities and to select the most 
promising compounds for biological testing there was a proposition 
that during the registration process, these structures must be 
analyzed using computer-aided methods. 

 The first attempts to develop computer-aided methods for the 
prediction of biological activity from chemical structures were 
made in the 1970s [14, 15]. Further progress was made in the 
following decade [16-19], but for various reasons the problem was 
not completely solved at that time. However, the obtained 
experience had provided the basis for the later development of 
PASS [20, 21]. 

 From the beginning, PASS target was the prediction of many 
kinds of biological activities from the structural formulae of 
chemical compounds. The PASS algorithm was based on the 
concept of the “biological activity spectrum”, which is an intrinsic 
property of a compound. It reflects all its different biological 
activities that arise from interactions with biological entities [20-
26]. It should be noted that this definition differs significantly from 
some other definitions of “biological activity profile” or “biological 
activity spectrum” published in the literature [27-31], because in 
PASS the biological activity spectrum represents a theoretical 
estimate for general biological potential of the compound under 
study. 
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2.1. Biological Activities Predicted by PASS 

 The latest version of PASS (9.1) predicts 3750 kinds of 
biological activity with the average prediction accuracy of about 
95% (Supplement 1). PASS could predict 3300 kinds of biological 
activities in 2007, 2500 activities - in 2005, 541 activities - in 1998, 
and only 114 activities - in 1996. Thus, the information about new 
biologically active compounds and novel activities is permanently 
collected and added into the PASS training set. 

 In PASS 9.1 the default list of predictable biological activities 
includes: 261 pharmacotherapeutic actions (e.g., anxiolytic); 66 
anti-infective actions (e.g., antileishmanial); 72 actions blocking a 
certain process (e.g., apoptosis antagonist); 40 actions stimulated a 
certain process (e.g., apoptosis agonist); 140 actions blocking 
activity of certain endogenous substance (e.g., acetylcholine 
antagonist); 71 actions stimulating activity of certain endogenous 
substance (e.g., acetylcholine agonist); 5 actions blocking a release 
of a certain endogenous substance (e.g., cytochrome C release 
inhibitor); 9 actions stimulating a release of a certain endogenous 
substance (e.g., acetylcholine release stimulant); 9 actions blocking 
an uptake of a certain endogenous substance (e.g., adenosine uptake 
inhibitor); 2219 actions inhibiting a certain enzyme (e.g., 12 
lipoxygenase inhibitor); 41 actions stimulating action of a certain 
enzyme (e.g., ATPase stimulant); 268 actions blocking a certain 
receptor (e.g., 5 hydroxytrypamine 1 agonist); 121 actions stimu-
lating a certain receptor (e.g., 5 hydroxytrypamine 1 antagonist); 28 
actions blocking a certain channel (e.g., chloride channel 
antagonist); 5 actions stimulating a certain channel (e.g., calcium 
channel agonist); 28 actions blocking a certain transporter (e.g., 
GABA transporter 1 inhibitor); 128 actions that is a substrate of a 
certain metabolic enzyme (e.g., CYP3A4 substrate); 24 actions 
inhibiting a certain metabolic enzyme (e.g, CYP3A4 inhibitor); 13 
actions inducing a certain metabolic enzyme (e.g., CYP3A4 
inducer); 28 actions inhibiting a certain protein (e.g., collagen inhi-
bitor); 8 actions inhibiting an expression of a certain transcription 
factor (e.g., transcription factor Rho inhibitor); 2 actions stimu-
lating an expression of a certain transcription factor (e.g., TP53 
expression enhancer); 389 actions that cause a certain adverse/toxic 
effect (e.g., carcinogen). 

 In PASS we describe biological activities qualitatively (“active” 
or “inactive”). The qualitative presentation allows integrating the 
information about biologically active compounds collected from 
many different sources into the general PASS training set. Any 
property of chemical compounds, which is determined by their 
structural peculiarities, can be used for prediction by PASS. It is 
obvious, that the applicability of PASS is broader than the 
prediction of biological activities. For instance, this approach was 
successfully used for prediction of such general property of organic 
molecules as drug-likeness [32]. 

2.2. Chemical Structure Description 

 We have chosen 2D structural formulae as the basis for des-
cription of chemical structure because this is the only information 
available at the early stage of research. Thus, using the structural 
formula as an input data, one can obtain the estimates of biological 
activity profiles even for virtual molecules, prior to their chemical 
synthesis and biological testing. 

 Many different characteristics of chemical compounds can be 

calculated on the basis of structural formulae [33]. In earliest 

versions of PASS [20, 21] we used the Substructure Superposition 

Fragment Notation (SSFN) codes [34]. However, SSFN, like many 

other structural descriptors [35], reflects rather abstract level of 

chemical structure than the nature of ligand-target interactions, 

which are the molecular mechanisms of biological activities. The 

Multilevel Neighbourhoods of Atoms (MNA) descriptors [36] have 

certain advantages in comparison with SSFN. These descriptors are 

based on the molecular structure representation, which includes the 

hydrogens according to the valences and partial charges of other 

atoms and does not specify the types of bonds. MNA descriptors 
are generated as recursively defined sequence: 

• zero-level MNA descriptor for each atom is the label A of the 
atom itself; 

• any next-level MNA descriptor for the atom is the sub-structure 
notation A D1D2...Di ...( ) , 

where the descriptor Di of each successive level is a concatenation 

of the zero-level descriptor of the atom and, enclosed in paren-

theses, a lexicographically ordered list of descriptors of the 
previous level of its nearest neighbors [36]. 

 The atoms label may include not only the atomic type but also 

any additional information about the atom. In particular, if the atom 

is not included into the ring, it is marked by “-”. The neighbour 

descriptors ......21 iDDD  are arranged in unique lexicographic order. 

Iterative process of MNA descriptors generation can be continued 
covering first, second, etc. neighbourhoods of each atom.  

 The molecular structure is represented in PASS by the set of 

unique MNA descriptors of the 1
st
 and 2

nd
 levels. We consider that 

the substances are equivalent when they have the same set of MNA 

descriptors. Since MNA descriptors do not represent the stereo-

chemical peculiarities of a molecule, the substances which struc-

tures differ only stereochemically, are formally considered as 
equivalent. 

2.3. SAR Base  

 PASS estimations of biological activity spectra of new 
compounds are based on the structure-activity relationships data 
and the knowledgebase (SAR Base), which accumulates the results 
of the training set analysis. PASS 9.1 training set includes 205873 
of the known biologically active substances (drugs, drug-
candidates, pharmaceutical leads, and toxic compounds). Since new 
information about biologically active compounds is discovered 
regularly, we perform a special informational search and analyse 
the new information, which is further used for updating and 
correcting the PASS training set. SAR Base is obtained during the 
training procedure, which is performed using each new PASS 
training set.  

2.4. Biological Activity Spectrum Estimation 

 PASS algorithm of the biological activity spectrum prediction is 
based on Bayesian estimates of the probabilities of a molecule 
belonging to the classes of active and inactive compounds, respec-
tively. The mathematical method is described in several publi-
cations [23-26], and its details will not be discussed in this paper. 
Only general description necessary for interpretation of prediction 
results is presented here. 

 Since the main purpose of PASS is to predict of activity spectra 
of a new molecules, the general principle of the PASS algorithm is 
the exclusion from SAR Base the substances, which are equivalent 
to the substance under prediction (see above). 

 The structural formula of a molecule, whose prediction should 
be performed by PASS, is presented as a MOL file (for the set of 
molecules - as a SDF file). The predicted activity spectrum is 
presented in PASS by the list of activities with the probabilities "to 
be active" (Pa) and "to be inactive" (Pi) calculated for each activity. 
The list is arranged in descending order of Pa-Pi; therefore, more 
probable activities are at the top of the list. Only activities with 
Pa>Pi are considered as probable for a particular compound. The 
list can be shortened at any desirable cutoff value, but Pa>Pi is used 
by default. If the user chooses rather high value of Pa as a cutoff for 
selection of probable activities, the chance to confirm the predicted 
activities by the experiment is high too, but many existing activities 
will be lost. For instance, if Pa>90% is used as a cutoff, then about 
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90% of real activities will be lost; for Pa>80%, the part of lost 
activities is 80%, etc.  

 General PASS interface with representation of prediction 
results for a set of molecule is shown in Fig. (1). 

 It is necessary to keep in mind that the probability Pa reflects 
the similarity of a molecule under prediction with the structures of 
molecules, which are the most typical in a sub-set of “actives” in 
the training set. Therefore, usually there is no direct correlation 
between the Pa values and quantitative characteristics of activities. 

 If the structure of active and potent compound does not 
resemble any typical structure of “actives” from the training set, 
then the Pa value calculated for such compound may be rather small 
(even negative Pa-Pi values could be observed). This may be 
explained by the following calculation. Assume that the values Pa 
for “active” and Pi for “inactive” are distributed uniformly, then, 
for instance, when Pa=0.9, then the corresponding “active” 
estimates are less in 90% of compounds from the training set and 
only in 10% these values are higher. If the investigator declines the 
proposition that the studied compound is active, then it leads to a 
wrong decision with probability 0.1. In case when Pa<0.5 and Pa > 
Pi, then the corresponding estimates are higher for more than a half 
of the “active” compounds from the training set. By declining the 
proposition that this compound is active, the investigator will make 
a wrong decision with probability less than 0.5. In such cases the 
probability to experimentally confirm this kind of activity is small, 
however, if being confirmed, this structure has a high novelty and 
may become NCE in more than 50% cases. 

 If the predicted biological activity spectrum is wide, then the 
structure of the compound is quite simple and does not contain 
peculiarities responsible for the selectivity of its biological action. 

 If it appears that the structure under prediction contains several 
new MNA descriptors (in comparison with the descriptors from the 

compounds of the training set), then the structure has low similarity 
with any structure from the training set, and the results of prediction 
should be considered as rough estimates. 

 Based on these criteria, on the basis of a compromise between 
the novelty of the expected pharmacological action and the risk to 
obtain the negative result in the experimental testing, one may 
choose which activities must be tested for the studied compounds. 
Certainly, one should also take into account a particular interest to 
some kinds of activities, experimental facilities, etc.  

2.5. PASS Validation 

 Leave one out cross-validation (LOO CV) for the whole PASS 
9.1 training set, which includes 205873 substances with 3750 kinds 
of biological activity, provides the estimates of PASS prediction 
accuracy during the training procedure. Average accuracy of 
prediction is about 95.3% according to the LOO CV estimation, 
while for the different kinds of activity the prediction accuracy 
varies from 70.7% (antineoplastic, myeloid leukemia) to 99.9% 
(p21-activated kinase 1 inhibitor). 

 The accuracy of PASS predictions depends on several factors, 
of which the quality of the training set seems to be the most 
important one. A perfect training set must include the compre-
hensive information about known and possible biological activities 
for each compound. In other words, the whole biological activity 
spectrum should be thoroughly investigated for each compound 
included into the PASS training set. Unfortunately, there is no a 
database with information about biologically active compounds 
tested against each kind of biological activities. Therefore, the 
information concerning the known biological activities for any 
compound is always incomplete.  

 We investigated the influence of the information’s incom-
pleteness on the prediction accuracy for new compounds. About 
20000 “principal compounds” from MDDR database (SYMYX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). General PASS interface with representation of prediction results for a set of molecules. Input structural formulae (left); predicted activity spectrum 

(right) for the selected molecule (central part). “Known activities” - the list of activities for the selected molecule included into the PASS training set. Probable 

activities are selected at the cutoff value Pa>0.5. 
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MDL) were used to create the heterogeneous training and eval-
uation sets. 20, 40, 60, 80% of information was randomly excluded 
from the training set. Either structural data or biological activity 
data were removed in two separate computer experiments. In both 
cases it was shown that even if up to 60% of information is 
excluded, the results of prediction are still satisfactory [37]. Thus, 
despite the incompleteness of information in the training set, PASS 
algorithm is robust enough to achieve the reasonable results of 
predictions. 

 PASS predictions were performed for about 250000 molecules 
from Open NCI database [38]. This information is available at the 
NCI web-site (http://cactus.nci.nih.gov/ncidb2/) in a searchable 
mode. One could combine different terms in a query using Boolean 
operators. For example, with a query “angiogenesis inhibitor AND 
Pa>0.9 AND Pi<0.2 NOT acid NOT amide” we identified 85 hits. 
Seven compounds were tested in NCI and four compounds showed 
an angiogenesis inhibitory activity in the range of 10-100 M. [38]. 
Also, on the basis of results of anti-HIV testing of compounds from 
Open NCI database, we estimated that using PASS predictions one 
can significantly (up to 17 times) increase the fraction of “actives” 
in the selected sub-set [38].  

 PASS INet service (http://www.ibmc.msk.ru/PASS) provides 
the predictions via Internet for any registered user free of charge. It 
has been available since 2000 [23, 39, 40]. The input is a MOL file 
or drawing of a structural formula using Marvin applet. By 
December the 1

st
, 2009 the number of registered users exceeded 

5000, and over 115000 predictions were made. Based on the pre-
diction results, the researchers select the most prospective subs-
tances for chemical synthesis and biological testing. Comparison of 
PASS prediction results with the experiments provides the 
independent validation of the approach versus compounds from 
different chemical series with various kinds of biological activity. 
Currently, over twenty publications described the coincidence of 
PASS predictions with the experiment. For example, due to the 
PASS predictions, new antileishmanial agents were found among 7-
substituted 9-chloro and 9-amino-2-methoxyacridines [41], 2 
substitution-bearing 6-nitro- and 6-amino-benzothiazoles [42], beta-
carboline alkaloids [43]; new anxiolytics were found among 
quinazolines [44], thiazoles, pyrazoles, isatins, a-fused imidazoles 
and other chemical series [45]; new anti-inflammatory agents were 
found among 1-acylaminoalkyl-3,4-dialkoxybenzene derivatives 
[46], substituted amides and hydrazides of dicarboxylic acids [47]; 
etc. (for review - see [40]). 

 Also, on the basis of PASS predictions new antihypertensive 
and antiinflammatory agents with dual mechanisms of actions were 
discovered [48, 49], which demonstrated the capability of PASS in 
finding the multitargeted drugs.  

2.6. PharmaExpert: Tool for Analysis of PASS Predictions  

 PharmaExpert [50] was developed to analyze the biological 
activity spectra of substances predicted by PASS. This software 
provides a flexible mechanism for selecting compounds with the 
required biological activity profiles. Different kinds of biological 
activities are divided into six classes: mechanisms of actions, 
pharmacological effects, toxic/adverse effects, metabolic terms, 
transporter terms and gene expression terms. Mechanism of an 
action reflects the interactions of biologically active compounds 
with biological entities at macromolecular level, for example, 
acetylcholinesterase inhibitor, acetylcholine release inhibitor or 
alpha 1 adrenoreceptor agonist. The pharmacological effect ref-
lects the pharmacological action or pharmacotherapeutic appli-
cation of the compound e.g., antiischemic, anxiolytic or Alzheimer's 
disease treatment. Toxic/adverse effect reflects the specific toxicity 
(e.g. mutagenic, teratogenic) or adverse action (arrhythmogenic, 
anemic, nauseant). Metabolic terms reflect interactions of chemical 
compounds with metabolic enzymes (e.g., CYP2D6 inhibitor, 
CYP3A4 substrate, CYP 2C9 inducer). Transporter terms reflect the 

interaction of compound with the transporters (P-glycoprotein 
substrate, P-glycoprotein inhibitor, P-glycoprotein inducer, etc.). 
Gene expression terms reflect the influence of compounds on the 
expression of certain genes (APOA1 expression enhancer, ErbB-2 
expression inhibitor, etc.). PharmaExpert analyzes the relationships 
between biological activities (“mechanism-effect(s)” and “effect-
mechanism(s)”), identifies the probable drug-drug interactions, and 
searches for compounds acting on multiple targets. The analysis is 
based on the knowledgebase that is collected from literature during 
the past 10 years and includes about 8000 “mechanism-effect(s)” 
and “effect-mechanism(s)” relationships at present time. One 
example of PharmaExpert analysis is given in Fig. (2).  

3. PASS APPLICATIONS TO NATURAL PRODUCTS 

3.1. Marine Sponge Alkaloids 

 We applied PASS to more than ninety marine sponges’ alka-
loids and their synthetic analogs (halitulin, nortoseptins, motu-
poramines, pyridoacrydines, aaptamines, pyrinodemins, etc.) [51]. 
Sixty four compounds exhibited cytotoxic activity in tumor cell 
lines bioassay, and they were suggested for further evaluation in 
vivo by NCI; all others were the novel molecules with unknown 
biological activities. Predicted antineoplastic activity coincided 
with the known experimental data in ~80% of cases (51/64). In five 
cases, when predictions did not correspond to the experiment, the 
compounds had more than two new MNA descriptors; therefore, for 
these compounds the reliability of predictions is low (see section 
2.4).  

 In addition to the known antineoplastic activities, PASS predic-
ted some new activities for these molecules. For example, we 
predicted a possible application of Halitulin for the treatment of 
psychosexual dysfunction, seborrhea, neurogenic pain and peri-
pheral vascular disease (Fig. (3)).  

 The most probable activities predicted for the analyzed set of 
marine sponge alkaloids include: interleukin antagonist, cerebral 
vasodilator, MAP kinase inhibitor, liver fibrosis treatment, 5 HT 
release stimulant, protein kinase inhibitor, antineoplastic; telo-
merase inhibitor, antineoplastic alkaloid, antiamyloidogenic, ben-
zodiazepine 1 receptor agonist, etc. [51]. Therefore, marine sponge 
alkaloids represent a valuable source for finding of new biologically 
active compounds in many different pharmacotherapeutic areas. 

3.2. Hepatoprotective Activity of Triterpenoids  

 Chemical modification of natural bioactive compounds often 
brings to the obtaining more effective substances with a different 
biological activity spectrum [52]. Triterpenoids of the lupane group 
are considered as suitable parent compounds due to (1) wide 
spectrum of biological activity including hepatoprotective, antibac-
terial, anti-inflammatory, antitumor, antiviral and other actions; (2) 
availability of raw materials (lupeol and betulin) extracted from 
white birch (Betula pendula) [53]. Thus, chemical synthesis of 
hemisuccinates, hemiphthalates, acetylsalicylates, cinnamates and 
p-metoxycinnamates of lupeol, betulin and 3-O-acetylbetulin was 
performed via interaction with corresponding acid anhydrides or 
acid chlorides. We used PASS predictions to estimate probable 
biological activity spectra of the synthesized compounds. For all 
compounds hepatoprotective activity was predicted with the 
reasonable probability (Pa values varied from 0.75 to 0.80). 
Through the subsequent biological testing of hepatoprotective 
action of the synthesized compounds in rats it was shown that all of 
them have a potent hepatoprotective effect, more potent than the 
extract of birch bark, betulin and reference drug silibor [53]. 
Betulin bis hemiphthalate demonstrated the most potent hepato-
protective effect and it was chosen for more detailed studies. Its 
hepatoprotective action was further confirmed in rat models of 
hepatitis induced by CCl4, ethanol and tetracycline [53]. Structural 
formula and predicted biological activity spectrum of betulin  
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Fig. (3). Structural formula and predicted biological activity spectrum for 

Halitulin (only activities predicted with Pa>0.5 are shown). 

 

bishemiphthalate is shown in Fig. (4). As one may see from this 
data, that no toxic/adverse effects are expected for this compound; 
thus, betulin bishemiphthalate could be considered as a promising 
lead substance. Also, in addition to the hepatoprotective effect, 
some other biological activities are predicted, which could be the 
reasons for new applications.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Structural formula and predicted biological activity spectrum for 

Betulin bishemiphtalate (only activities predicted with Pa>0.5 are shown). 

 

3.3. Computer-Aided Design of Macrolides with the Required 

Activity Profiles  

 Secondary metabolites produced by different organisms display 
diverse biological activities, thus having a potential of being 
pharmacological agents [54]. An example of secondary metabolites 
are macrolides (amphotericin, nystatin, erythromycin, methymycin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Results of PASS predictions analysis by PharmaExpert. A - structural formulae; B - PASS prediction results; C - visualization of effect-mechanisms 

relationships; D - query for searching compounds with the required biological activity profile; E - search results. 



1708    Current Pharmaceutical Design, 2010, Vol. 16, No. 15 Lagunin et al. 

etc.), produced mainly by bacteria and some fungi. Macrolides 
display a wide range of biological activities, including antibacterial, 
antifungal, antiviral, immunosuppressive, antineoplastic etc. [55]. 
Macrolides are biosynthetically assembled by the modular 
polyketide synthase (PKS) enzymes [56] (example of erythromycin 
synthesis see in Fig. (5)).  

 Mode of action of PKS theoretically leads to an extremely large 
number of analogues, which can be produced upon combinatorial 
manipulation with these enzymes. Experimental engineering of all 
possible variants of a certain PKS system as well as isolation and 
testing of the resulting macrolides in the laboratory are unfeasible. 
Due to the achievements in postgenomic technologies, rational 
approach can be applied to design of the macrolides’ structures 
based on the information on their biosynthesis. Mode of action of 
PKS can be simulated in silico, thus leading to the generation of 
virtual libraries of macrolide’s analogues [57]. Such combinatorial 
libraries can be analyzed using computer-aided prediction of 
biological activities, physico-chemical properties, drug-likeness 
etc., and yielding compounds with the desired properties. This 
approach provides rational selection of macrolide’s molecules with 
the desired biological activities.  

 To perform a rational design of new polyketides with the 
required biological activity spectrum we developed BioGenPharm 
software, which generates combinatorial libraries of polyketides 
based on the user-defined input parameters, performs PASS 
predictions of biological activity spectra for the generated structu-
res, and PharmaExpert selection of molecules with the required 
properties [58]. Validation of PASS prediction ability for 
polyketides was carried out against the test set containing 242 
natural macrolides from the Dictionary of Natural Products [59]. 
The mean prediction accuracy was 75.5% [58].  

 We show applicability of the proposed approach by generation 
of a virtual library of the erythromycin analogues and by selection 
of substances with low probability of the hepatotoxic effect. 
Erythromycin is reasonably well tolerated by patients; the most 
serious side-effect observed during administration of all pharma-

ceutical forms of erythromycin is cholestasis [60]. Administration 
of erythromycin may also cause the increase of serum transa-
minases and the development of cholestatic hepatitis. The 
mechanism of toxic liver damage by erythromycin administration 
remains unclear: it was shown that erythromycin does not inhibit 
bile acids (taurocholic acid) transport [61]. We have searched for 
erythromycin analogues, whose hepatotoxic activity was predicted 
with a minimal probability. The erythromycin analogues library 
was generated using the following set of parameters: propionate 
starter, 6 extender modules, and cladinose glycosylation by the 3rd 
carbon atom, desosamine glycosylation by the 5th carbon atom, 
hydroxylation by the 6th and 12th carbon atom. Compounds were 
selected at Pa>0.8 and Pa<0.6 for antibacterial and hepatotoxic 
activities, respectively.  

 As a result, we obtained 17 erythromycin analogues which 
satisfy all the criteria settings. Among them, the lowest probability 
of hepatotoxic activity and the highest probability of antibacterial 
activity were observed for a molecule No. 2456. Hepatotoxic 
activity was predicted for this compound with Pa=56.5%, while for 
erythromycin hepatotoxicity was predicted with Pa=94.1%; thus, 
the most perspective erythromycin analogue was a compound No. 
2456. The information on domain composition of PKS required for 
biosynthesis, necessary for the design of corresponding microor-
ganism-producer, was obtained with BioGenPharm program (Fig. 
(6)).  

4. IN SILICO ANALISIS OF HYPERICUM PERFORATUM 
AS A HERBAL MEDICINE  

 We selected one of the most popular herbal medicines St John’s 
Wort (Hypericum perforatum) as an example for the case study. In 
this study, using PASS and PharmaExpert we estimated in silico the 
most probable pharmacological mechanisms and effects that could 
be expected for individual components of St John’s Wort (SJW), 
likely interactions between the components in extracts, possible 
peculiarities in pharmacological action of herbs collected in 
different areas. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Erythromycin synthesis by modular polyketide synthases. The three genes EryAI-III encode three proteins of PKS: DEBS1 (the loading module, 

modules 1, 2) DEBS2 (modules 3, 4), DEBS3 (modules 5, 6, TE domain). Thus, PKS consists of the loading module, six extension modules, and TE domain. 

Each module includes from three to six domains: AT-acyl transferase, ACP-acyl carrier protein, KS–ketosynthase, KR-ketoreductase, DH-dehydratase, ER–

enoyl reductase. 
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 SJW is mainly used in clinical practices for the treatment of a 
mild or moderate depression. In Germany, St John’s Wort is the 
leading treatment against depression, outselling Fluoxetine 
(Prozac®) [62]. The main advantage of this herb, which promoted 
its wide use, is less side effects in comparison with traditional anti-
depressants (Fig. (7)). 

 SJW is also recommended for the treatment of bacterial and 
viral infections, skin wounds, tumor, peptic ulcers and inflam-
mation; it has antiseptic, choleretic, spasmolytic, analgesic, antioxi-
dant and photosensitive activities [62-64]. These pharmaco-
therapeutic effects and SJW interactions with the drugs, mainly on 
CYP3A4 level, is the reason for an intensive study of both cons-
tituents of the extract and their biological activity. Using “St John’s 
Wort” as a keyword one can find about 2000 articles in PubMed. 

 Numerous biologically active constituents were identified in St 
John’s Wort, including naphthodianthrones (e.g. hypericin and its 
derivatives), phloroglucinols derivatives (e.g. hyperforin) and 
flavonoids (e.g. rutin, quercetin, quercitrin and biapigenin) [63]. 
Hypericum perforatum is widely distributed herb. It grows in 
America, Europe, Asia, Africa and Australia. Some of the extract 
components may be different depending on the region. This may 
influence on both therapeutic and side effects of SJW extracts.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Average frequencies of side effects observed in patients treated 

with St John’s Wort and traditional antidepressants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Structural formulae, predicted biological activities, module composition for PKS type I required for synthesis for erythromycin and its analogue No. 

2456 obtained with BioGenPharm software. ATmal - malonyl-specific acyltransferase domain; ATmet - methylmalonyl-specific acyltransferase domain. 
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Therefore, the knowledge of probable activity of each component 
and the interaction between them is important for estimating the 
clinical usage of St John’s Wort obtained from different places. 
Such information could be obtained by computer prediction of 
biological activity spectra with PASS.  

4.1. General Analysis of Individual Constituents in St John’s 

Wort  

 We have found available information about ninety three com-
pounds, which were determined in St John’s Wort collected from 
different regions (Supplement 2). The basic compounds represented 
in the majority of studied extracts of Hypericum perforatum 
include: hyperforin, hypericin, pseudohypericin, rutin, quercetin, 
quercitrin, isoquercitrin, biapigenin, alpha-pinene, hyperoside and 
chlorogenic acid. Information on the known biological activities 
collected from the main reviews of St John’s Wort compositions 
and contained in PASS training set is also provided in Supplement 
2. 

 Prediction of biological activity spectra for all 93 compounds 
was carried out with PASS 9.1. The distribution of predicted 
activities’ number for 93 compounds depending on the predicted 
probability is shown in Fig. (8). Fig. (8) shows that 817 from 3750 
biological activities, which can be predicted by PASS, are expected 
with probability Pa>0.7 at least for one constituent from the St 
John’s Wort extract.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Number of predicted activities for 93 compounds isolated from St 

John’s Wort versus the probability Pa. 

 

 The number of compounds with a particular amount of 
predicted activities (N) is shown in Fig. (9). It is clear that at the 
cutoff Pa>0.7 maximum of distribution is located at N=10. Also, 
about 38% of compounds have no more than 20 activities predicted 
with Pa>0.7, however over 45% of compounds have more than 40 
predicted activities. It means that only a small part of compounds 
exhibit some selectivity, while the majority of St John’s Wort 
constituents are multitargeted agents.  

4.2. Prediction of Pharmacotherapeutic Effects 

 Pharmacotherapeutic effects predicted at least for one of the 
analyzed compounds with Pa>0.5 (analgesic and antiviral activities 
- with less probability Pa>0.4) are listed in Table 1. Also, in Table 1 
one could find the IDs of compounds designated according to the 
Supplement 2. The IDs allow to label the compounds exhibiting 
particular kinds of activity (IDs are arranged in the descending 
order of probability of the appropriate activity). Table 1 shows that  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Amount of compounds from St John’s Wort, which have a 

particular number of predicted activities at different thresholds (A - Pa>0.5; 

B - Pa>0.7). 

 

the most frequent activities predicted for SJW constituents are anti-
oxidant, antiinflammatory, antineoplastic, choleretic, and antiul-
cerative. 

4.3. Prediction of Side Effects 

 As was mentioned above, St John’s Wort reveals fewer side 
effects in comparison with the traditional antidepressants. 
Analyzing the prediction of biological activity spectra for 93 SJW 
constituents, one may determine the compounds probably causing 
particular side effects. The most frequent side effects of St John’s 
Wort mentioned in [62] are shown in Table 2. This data could be 
compared with the appropriate predictions obtained with the special 
version of PASS trained using information on the known side 
effects of drugs [60]. All known side effects have been predicted 
except for the Gastrointestinal symptoms, which are not covered by 
this version of PASS (PASS terms used in Table 2 sometimes 
synonymous to the names of adverse effects from [62]). Moreover, 
PASS predictions help to identify the compound(s), which likely 
have a particular side effect. Such information may be useful in 
further studies of individual components of SJW as a potential 
pharmaceutical leads.  
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Table 1. Pharmacotherapeutic Effects Predicted with Pa>50% and the IDs of Corresponding Compounds 

No. Activity IDs 

1 Analgesic* 58, 61 

2 Antibacterial 23, 80, 24, 48, 30 

3 Antidepressant 7, 19, 1, 5, 3, 6, 13, 4 

4 Antiinflammatory 55, 20, 21, 52, 54, 30, 32, 24, 22, 53, 49, 79, 80, 43, 27, 88, 76, 23, 35, 81, 50, 48, 68, 51, 78, 39, 91, 69, 77, 63, 31, 

86, 28, 56, 38, 14, 92, 60, 93, 65, 42, 57, 82, 29 

5 Antineoplastic 66, 43, 71, 61, 38, 72, 35, 24, 23, 33, 25, 80, 48, 16, 8, 42 

6 Antioxidant 30, 20, 21, 32, 80, 22, 53, 52, 49, 79, 48, 27, 76, 78, 5, 91, 7, 81, 50, 29, 6, 51, 31, 92, 24, 82, 23, 54, 1, 83, 4, 55, 

33, 93, 77, 87, 28, 56, 86, 14, 19, 41, 13, 85, 57, 2, 15, 36, 58, 84, 12 

7 Antiseptic 25, 89, 84, 67, 86, 37, 74, 47 

8 Antiulcerative 54, 85, 1, 41, 7, 5, 6, 36, 27, 55, 68, 35, 15, 86, 77, 89 

9 Antiviral* 78, 87 

10 Choleretic 50, 81, 51, 77, 86, 76, 27, 68, 88, 92, 2, 18, 93, 84, 56, 31 

11 Photosensitizer 18 

12 Spasmolytic 89, 85, 91, 29, 28, 58, 44 

*Predicted with Pa>0.4 

**ID is the compound number in Supplement 2 

Table 2. Known Side Effects of St John’s Wort in Comparison with PASS Predictions 

Side Effect ID* PASS Prediction N**  IAP*** 

Dizziness 89, 37, 47, 74, 39, 75, 59, 84, 11, 70, 34, 30, 92 Dizziness 223 74.9 

Dry mouth 89, 86, 75, 59, 47, 37, 74, 77 Xerostomia 62 87.6 

Gastrointestinal symptoms  Not Predictable   

Headache 89, 52, 47, 74, 37, 30, 59, 75, 85, 84, 21, 79, 86, 34, 70, 11, 53, 49, 22, 

91, 77, 32, 39, 65, 44, 62, 78, 48, 20, 56, 40, 38 

Headache 224 75 

Insomnia 52, 30, 14, 32, 79, 49, 22, 53, 31, 82, 59, 75, 92, 56, 11, 70, 34, 74, 37, 

47, 93, 86, 89, 69, 77, 57, 84, 91, 48, 76, 83, 65, 78, 21, 62, 87, 28, 20, 

38, 2, 80, 45, 16 

Insomnia 86 74.3 

Photophobia 18 Photosensitizer 59 94.5 

Restlessness 59, 75, 86, 84, 47, 74, 37, 89, 77, 45, 34, 11, 70, 60, 56, 50, 81, 14, 73, 

65, 44, 51, 67, 57, 64, 46, 82, 93, 92 

Akathisia 46 75.7 

Skin reactions 41, 36, 85, 67, 74, 47, 37, 34, 11, 70, 62 Skin irritative effect 1030 96.7 

Tiredness Fatigue 91, 78, 65, 39, 63, 75, 59, 44, 84, 40, 56, 77, 28, 72, 86, 38 Lassitude 24 76.9 

Tremor 30, 32, 89, 22, 53, 49, 79, 52, 37, 47, 74, 48, 80, 76, 20, 75, 59, 14, 21, 

92, 11, 34, 70, 31, 82, 93, 84, 57, 91, 58, 23, 83, 87, 78, 56, 28, 24, 86, 

25, 62, 26, 77, 33, 17, 16, 67, 73, 27, 18 

Tremor 84 74.7 

Vertigo 37, 47, 74, 75, 59, 85, 65, 11, 70, 34, 62, 61, 44, 68, 38, 69, 42, 41, 84, 

63, 60, 86, 26, 35, 89, 45, 25, 77, 67, 39, 64, 73, 66, 91, 52, 46, 48, 40, 

72, 8, 24, 71, 51, 23, 78, 56, 57, 76, 36, 80, 16, 18, 82, 90, 32, 81, 50, 

21, 49, 22, 17, 53, 58, 93, 92, 43, 79, 31, 87, 2, 12, 28, 20 

Vertigo 60 65.4 

*ID is the compound number in Supplement 2.  

**N is the number of compounds with the appropriate side effect in PASS training set.  

*** IAP is the Invariant Accuracy of Prediction calculated by LOO CV during the training procedure. 
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4.4. Prediction of Probable Interactions Between the St John’s 

Wort Constituents 

 Each compound in St John’s Wort has a unique profile of 
biological activity. The total number of predicted activities for 
ninety three compounds grouped according to the activity types is 
represented in Fig. (10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). Distribution of predicted activities for constituents of St John’s 

Wort through the different types of biological activity. 

 

 When the St John’s Wort is administered to patients in clinics 
or to experimental animals in preclinical studies, the individual 
compounds interact with each other pharmacologically that could 
lead to both positive and negative manifestations. The analysis of 
predicted biological activity spectra for individual compounds, 
which can be performed on the basis of knowledge about 
mechanism-effect relationships, reveals the possible interactions. If 
either a particular mechanism of action or a few mechanisms of 
action causing the same pharmacotherapeutic of toxic/side effect 
were predicted for several compounds, then such interaction could 
lead to additive/synergistic activity. If several compounds have 
different mechanisms, which lead to an opposite to pharmaco-
therapeutic toxic/side effect, then such interaction could lead to the 
antagonistic activity. The total number of predicted interaction at 
cutoff Pa>0.7 is given in Fig. (11). Fig. (11) shows that multiple 
potential interactions could be found at each of four activity types 
(mechanisms, pharmacotherapeutic effects, toxic/side actions, and 
metabolism).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). Possible interactions between the different St John’s Wort 

constituents. 

 

 All possible additive/synergistic interactions and their causes 
identified by PharmaExpert at cutoff Pa>0.7 are presented in Table 
1 (Supplement 3). As one can see from this data, the basic known 
pharmacotherapeutic effects could be caused by additive/synergistic 
action of different components of St John’s Wort. Based on this 
analysis, several new pharmacotherapeutic effects caused by addi-
tive or synergistic action were also identified (e.g. atherosclerosis 
treatment, antipsoriatic, neuroprotector, etc.). These findings should 
be checked in further experimental studies. 

 We have identified several additive/sinergistic interactions 
leading to toxic/effects (Table 2, Supplement 3) and interactions 
with metabolic enzymes (Table 3, Supplement 3) of St John’s Wort 
compounds. Data on the components responsible for toxic/side 
effects (Table 2, Supplement 3) can be used either for excluding 
these components from the extracts or for collecting the Hypericum 
perforatum in the regions, where the fraction of these components 
in the herb is either absent or small. Data on additive/synergistic or 
antagonistic effects at the level of metrabolism should also be taken 
into account at dosage determining, particularly, in combination 
therapy.  

 We also found 142 possible interactions of St John’s Wort 
constituents at the level of molecular mechanisms of action. This 
data is partially given in Table 4 (Supplement 3). Interaction at the 
level of molecular mechanisms could also lead to additive/ 
synergistic or antagonistic effects.  

4.5. Prediction of Likely Different Actions in St John’s Worts 

Collected in Different Regions  

 The analysis of predicted biological activity spectra may reveal 
the features in clinical manifestations of plant extracts prepared 
using raw materials collected in different geographical regions. This 
could be illustrated by comparison of essential oils’ compositions 
from Hypericum perforatum collected in Southeastern Serbia [65] 
and Lithuania [66]. The essential oil compositions from Southeas-
tern Serbia and Lithuania contain 14 and 19 compounds, respec-
tively. Six compounds with IDs 11, 35, 43, 46, 47 and 59 (Supple-
ment 2) are identical.  

 Table 3 demonstrates the difference between the predicted 
activities for the samples from the Southeastern Serbia and Lithua-
nia. While the total numbers of mechanisms of action and toxic 
effects are similar for both sets, the significant difference is 
observed in therapeutic effects and interactions with drug-meta-
bolizing enzymes. More detailed analysis of predicted toxic/side 
effects showed that, despite the qualitative identity of the effects 
predicted for the both sets, the number of compounds that could 
reveal these effects is different (Table 4). Hematotoxic, hyper-
thermic, neurotoxic effects and the inhibition of thrombo-cyto-
poiesis were predicted for more compounds from essential oil from 
Serbia. At the same time emetic and reproductive dysfunction 
effects were predicted for more compounds from essential oil from 
Lithuania. 

 The detailed analysis of prediction of the studied subsets 
interactions with drug-metabolic enzymes shows that the majority 
of predicted interactions are the same (Table 5). CYP17 inhibition 
and CYP2C19 induction only were not predicted for the samples 
from Southeastern Serbia. The number of compounds predicted as 
the inducers of CYP2B6 and inhibitors of CYP2B6 and CYP2C8 
for essential oil composition from Serbia exceeded those from 
Lithuania. 

 Prediction of biological activity spectra for the two sets of 
compounds and further analysis of possible interactions between 
the constituents determined the difference in additive/synergistic 
pharmacotherapeutic effects for essential oil compositions from 
Serbia and Lithuania. Table 6 shows that the essential oil compo-
sitions from Southeastern Serbia and Lithuania have 25 identical 
additive/synergistic pharmacotherapeutic effects.  
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Table 3. Number of Predicted of Biological Activity Types for SJW Essential Oil Constituents from Southeastern Serbia and 

Lithuania 

Region N Effects Mechanisms Toxic/side Effects Metabolic Effects Transporters Gene Interaction 

Serbia 14 58 354 14 21 - 3 

Lithuania 19 72 356 14 37 1 4 

Serbia* 14 32 78 17 20 - 1 

Lithuania* 19 36 47 15 14 - - 

N is the number of compounds in the studied set. 

* number of activities that could lead to additive/synergistic effects. 
 

Table 4. Predicted Toxic/Side Effects for Essential Oil Compositions from Southeastern Serbia and Lithuania* 

No. Serbia Lithuania 

1 Bronchoconstrictor (2): 74, 47 Bronchoconstrictor (2): 60, 47 

2 Convulsant (2): 74, 47 Convulsant (1): 47 

3 Emetic (4): 74, 47, 75, 59 Emetic (5): 47, 44, 65, 59, 61 

4 Eye irritation, high (2): 74, 47 Eye irritation, high (3): 67, 47, 41 

5 Eye irritation, moderate (2): 74, 47 Eye irritation, moderate (2): 47,41 

6 Hematotoxic (9): 70, 34, 11, 75, 59, 74, 47, 71, 69 Hematotoxic (5): 11, 60, 68, 59, 47 

7 Hypercholesterolemic (5): 72, 71, 75, 59, 73 Hypercholesterolemic (5): 60, 40, 59, 65, 63 

8 Hyperthermic (7): 59, 75, 74, 47, 11, 34, 70 Hyperthermic (4): 67, 59, 47, 11 

9 Neurotoxic (4): 74, 47, 75, 59 Neurotoxic (2): 59, 47 

10 Reproductive dysfunction (2): 74, 47 Reproductive dysfunction (4) : 60, 65, 47, 41 

11 Skin irritation, high (5): 47, 74, 11, 70, 34 Skin irritation, high(4): 67, 47, 11, 41 

12 Skin irritation, moderate(5): 47, 74, 11, 70, 34 Skin irritation, moderate (3): 41, 47, 11 

13 Skin irritative effect (2): 74, 47 Skin irritative effect (3): 41, 67, 47 

14 Thrombocytopoiesis inhibitor (4): 75, 59, 47, 74 Thrombocytopoiesis inhibitor (2): 59,47 

*Number of predicted activities related to the particular effect is given in brackets; IDs of the appropriate compounds are in accordance with Supplement 2. 

Table 5. Prediction of Interactions with Drug-Metabolic Enzymes for Essential Oil Compositions from Southeastern Serbia and 

Lithuania 

No. Serbia Lithuania 

1 - CYP17 inhibitor (1): 60 

2 CYP2A6 inhibitor (2): 75, 59 CYP2A6 inhibitor (2): 40, 59 

3 CYP2B6 inducer (11): 59, 75, 70, 34, 11, 47, 74, 72, 73, 46, 71 CYP2B6 inducer (7): 60, 59, 11, 47, 46, 67, 65 

4 CYP2B6 inhibitor (9): 47, 74, 70, 11, 34, 75, 59, 69, 35 CYP2B6 inhibitor (8): 47, 11, 40, 59, 44, 62, 35, 42 

5 - CYP2C19 inducer (1): 64 

6 CYP2C8 inhibitor (7): 70, 34, 11, 74, 47, 75, 59 CYP2C8 inhibitor (4): 11, 40, 47, 59 

7 CYP2C9 inhibitor (2): 74, 47 CYP2C9 inhibitor (1): 47 

8 CYP2D2 inhibitor (2): 75, 59 CYP2D2 inhibitor (1): 59 

9 CYP2E1 inducer (2): 74, 47 CYP2E1 inducer (1): 47 

10 CYP2E1 inhibitor (4): 74, 47, 75, 59 CYP2E1 inhibitor (3): 47, 41, 59 
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Table 6. Predicted Additive/Synergistic Therapeutic Effects for Essential oil Compositions from Southeastern Serbia and Lithuania 

No. Serbia Lithuania 

1 Allergic conjunctivitis treatment Allergic conjunctivitis treatment 

2 Alopecia treatment Alopecia treatment 

3 Ankylosing spondylitis treatment Ankylosing spondylitis treatment 

4 Antidote, cyanide - 

5 Antidyskinetic Antidyskinetic 

6 - Antiepileptic 

7 Antihypoxic - 

8 Antiinflammatory Antiinflammatory 

9 Antiinflammatory, intestinal - 

10 Antiinflammatory, pancreatic Antiinflammatory, pancreatic 

11 Antimetastatic Antimetastatic 

12 Antimutagenic - 

13 Antineoplastic Antineoplastic 

14 - Antineoplastic (gastric cancer) 

15 - Antineoplastic (lymphoma) 

16 - Antineoplastic (non-Hodgkin's lymphoma) 

17 - Antineoplastic (non-small cell lung cancer) 

18 - Antineoplastic (ovarian cancer) 

19 Antineurotic - 

20 Antineurotoxic Antineurotoxic 

21 - Antipruritic 

22 Antipsoriatic Antipsoriatic 

23 Antiseborrheic Antiseborrheic 

24 - Antisecretoric 

25 - Antiulcerative 

26 Antiviral (Arbovirus) Antiviral (Arbovirus) 

27 Apoptosis agonist Apoptosis agonist 

28 Cardiovascular analeptic Cardiovascular analeptic 

29 Carminative Carminative 

30 Cholesterol synthesis inhibitor Cholesterol synthesis inhibitor 

31 Cytoprotectant - 

32 Fibrinolytic Fibrinolytic 

33 Gaucher disease treatment Gaucher disease treatment 

34 - Hepatoprotectant 

35 - Hypolipemic 

36 Leukopoiesis stimulant Leukopoiesis stimulant 

37 Mucositis treatment Mucositis treatment 
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(Table 6) Contd…. 

 

No. Serbia Lithuania 

38 Proliferative diseases treatment Proliferative diseases treatment 

39 Psychosexual dysfunction treatment Psychosexual dysfunction treatment 

40 Sclerosant Sclerosant 

41 Sialagogue - 

42 Spermicide Spermicide 

43 Vasoprotector Vasoprotector 

 

 At the same time, seven additive/synergistic therapeutic effects 
(antidote, cyanide; antihypoxic; antiinflammatory, intestinal; anti-
mutagenic; antineurotic; cytoprotectant and sialagogue) were 
predicted for the sample from Serbia only. The other eleven 
additive/synergistic therapeutic effects were predicted for the 
sample from Lithuania only (Table 6). Such information could help 
to estimate the clinical potential of plant extracts collected from 
different geographical regions. 

5. FUTURE TASKS  

 In this review we presented some examples of how computer-
aided prediction of biological activity spectra could be used for the 
analysis of pharmacotherapeutic potential of natural products. More 
examples can be found in our papers [67-73]. The prediction results 
for the individual constituents identified in herbs, sponges, 
microorganisms etc. could reveal the hidden potentials of natural 
products by identification of active substances that caused the 
effects known from ethnopharmacology and molecular mechanisms 
of their action. The predicted biological activity spectra provide the 
basis for new rational combinations of medicinal plants with 
improved efficacy and safety, as well as the recommendations for 
the personalization of therapy. This information can also be used 
for selecting new pharmaceutical leads with the required biological 
activity profiles [12, 50, 74-76]. 

 The accuracy of biological activity spectra prediction strongly 
depends on three issues: (1) robustness of the algorithm for the 
analysis of structure-activity relationships, (2) its orientation on 
prediction of biological activity of novel molecules, and (3) quality 
of the training set. The first two issues were thoroughly investigated 
and implemented in PASS. To provide more reliable estimates, we 
are permanently collecting new information about biologically 
active compounds, add it to the training set and update the PASS 
knowledgebase. Further development of the algorithm [77] and the 
increase of quantitative data available for the training set provide 
the possibility to switch from SAR to QSAR analysis.  

 Certainly, for a more detailed analysis of the multitargeted 
action of compounds and their interactions, it is necessary to apply 
the computational methods simulating the behavior of regulatory 
pathways under treatment by individual pharmaceutical agents and 
their combinations. Such methods are currently developed by our 
team [78] and by some other researchers [79, 80].  

ABBREVIATIONS 

ATP = Adenosine triphosphate 

DNP = Dictionary of natural products 

HIV = Human immunodeficiency virus 

IAP = Invariant accuracy of prediction 

LOO CV = Leave one out cross-validation 

MDDR = MDL drug data report 

MNA = Multilevel neighborhoods of atoms 

NCE = New chemical entities 

NCI = National Cancer Institute 

PASS = Prediction of Biological Activity Spectra 

PKS = Polyketide synthase 

QSAR = Quantitative structure-activity relationships 

SDF = Structure-data file 

SJW = St John’s Wort 

SAR = Structure-activity relationships 

SSFN = Substructure superposition fragment notation 

SUPPLEMENTARY MATERIAL 

 Supplementary material is available on the publishers Web site 
along with the published article. 
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