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In recent years, the accumulation of the genomics, proteomics, transcriptomics
data for topological and functional organization of regulatory networks in a cell
has provided the possibility of identifying the potential targets involved in
pathological processes and of selecting the most promising targets for future drug
development. We propose an approach for anticancer drug target identification,
which, using microarray data, allows discrete modelling of regulatory network
behaviour. The effect of drugs inhibiting a particular protein or a combination of
proteins in a regulatory network is analysed by simulation of a blockade of single
nodes or their combinations. The method was applied to the four groups of breast
cancer, HER2/neu-positive breast carcinomas, ductal carcinoma, invasive ductal
carcinoma and/or a nodal metastasis, and to generalized breast cancer. As a
result, some promising specific molecular targets and their combinations were
identified. Inhibitors of some identified targets are known as potential drugs for
therapy of malignant diseases; for some other targets we identified hits in the
commercially available sample databases.

Keywords: regulatory networks; breast cancer; drug target identification

1. Introduction

The worldwide prevalence of cancerous diseases and the rather low effectiveness, toxicity
and resistance of the current therapy require identification of new promising anti-tumour
targets [1]. In recent years, the accumulation of genomic, transcriptomic, proteomic data
for structural and functional organization of regulatory processes in a cell has provided the
possibility of identifying the peculiarities related to a particular disease and of selecting the
most promising targets for future drug development [2,3].

The regulation of cell processes is often considered as a regulatory network (RN) – a
theoretical abstraction of biochemical reactions, intermolecular interactions and transport
of molecules inside the cell through the membrane. RNs sufficiently well reflect the
known cause-and-effect interactions between genes, proteins and small molecules.
They consist of nodes connected by directed edges. Each node corresponds to a particular
gene, mRNA, protein, protein–protein or protein–ligand complex, or small molecule.
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Each edge corresponds to the interaction between cell components, so that the up-

stream nodes affect the downstream nodes. Different approaches exist for the
analysis and modelling of the network’s behaviour. Structural analysis methods give the

possibility of working with large networks, and investigating properties of interesting

structures such as hubs and bottlenecks, feedback loops, etc., but they do not allow the
modelling of the processes in dynamics [4–7]. One of the most widely used dynamic

methods is the method of differential equation modelling, which is applicable only

to the small parts of a RN (pathways), as the experimental data for large RNs, e.g.
kinetic parameters, reaction rates, etc., is limited [8,9]. It has been shown in several studies

that some constructed RNs are very stable, and time is not a critical factor for the

modelling of regulatory processes [10]; therefore, discrete modelling methods can be
applied to large RNs reflecting such processes as the cell cycle, where the major

information is concentrated in a sequence of cell states and the functioning of a particular
gene(s)/protein(s) defines the selection of further cell behaviour [11]. Therefore, using

a large mass of accumulated data on the interaction between proteins, the method of

discrete modelling may sufficiently well describe the cell processes as opposed to the
methods of differential equations, cellular automata, etc, that cannot provide the analysis

of large RNs.
In this paper we present an original algorithm of RN simulation based on a discrete

dichotomy model, which may be used for identification of promising targets, and its
application to the four groups of breast cancer: HER2/neu-positive breast carcinomas,

ductal carcinoma, invasive ductal carcinoma and/or a nodal metastasis, and to generalized
breast cancer.

2. Materials and methods

2.1 Algorithm

The aim of this work is to develop an approach for identification of promising drug

targets. For this purpose RNs may be considered as artificial neural networks (ANNs).
The usual ANN approach implies transformation of input data to the output results, so

that the structure and inner behaviour of the ANN is not significant. To distinguish the

difference between the usual ANN approach and our approach, we call the considered RN
a dichotomic RN. Since the goal of our study is the identification of promising drug

targets, we consider the states of particular nodes and the edges of the RN at different
steps of the simulation; therefore, information about the behaviour of the neural network

at the distinct initial states is of high priority.
Each node of the dichotomic RN may be in two states, active and inactive, and each

edge may be of two types: activation and inactivation.
Let Si be the state of the node i; then for the active node Si4 0 and for the inactive

Si¼ 0 (Figure 1). Let the properties of the edges correspond to the matrix B, where the

array cell bik¼ 1 if the edge is an output of node i and if it activates node k, bik¼�1 if
the edge is an output of node i and if it inactivates node k, bik¼ 0 in all other cases and

bii¼ 0 means that the node cannot activate itself. The direction of edges means that only

one of two values, bik and bki, is not zero.
We consider the consecutive states S(0), S(1), S(2), . . . as a trajectory and the subset of

a network node’s states {S}2 2n as an outcome (result).

756 O.N. Koborova et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
E
I
C
O
N
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
0
5
:
3
7
 
1
8
 
D
e
c
e
m
b
e
r
 
2
0
0
9



Using such an approach, the modelling (simulation) of the regulation processes lies in

the computation of the trajectories S(0),S(1),S(2), . . . by the set of dichotomy functions:

Si tþ 1ð Þ ¼ Fi S1 tð Þ,S2 tð Þ, . . . ,Sn tð Þð Þ, i ¼ 1, 2, . . . , n, ð1Þ

where S(0) is the given initial state of the RN, Si(t) is the state of node i in the network of n

nodes during the step t; Fi is the function of transition determined by the network structure

and by the rules of combination of node states, where up-stream nodes are connected with

node i by their down-stream edges. If the number of working activating nodes connected

with the node i exceeds that of the working inactivating nodes, then the node i is active,

and vice versa.
We assume the time to be a discrete variable and at each particular moment of time

(step) the states of the nodes depend on the nodes of the network in the previous step of the

simulation, so that S(t) are the states of the network nodes at step t.
The function of the transition of node i is as follows,

Fi S1,S2, . . . ,Snð Þ ¼ � ai þ
X

k
Skbki

� �
, ð2Þ

where the threshold function � zð Þ ¼ 0 if z� 0 and � zð Þ ¼ 1 if z4 0; ai is used for more

accurate adjustment of the model according to the known data on regulation processes

(as described in the Results section). In addition, parameter ai may reflect the influence of

the unknown part of the RN.
For all network nodes of our model, the initial states S(0) are the input data and the

output data are trajectories. The computation of the trajectories ends when the selected

result is reached, which remains stable during all time steps. The selected result

corresponds to activation/inhibition of a particular RN fragment (a set of corresponding

nodes), e.g. on reaching cell cycle arrest and/or apoptosis stimulation of the cancer cells

without influence on the normal cells.

Figure 1. Scheme of regulatory network modelling.
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A set of nodes that essentially change trajectories for the selected results can be picked
out by changing the network node’s states; e.g. when a particular protein is inhibited,
its state corresponds to Si 0ð Þ ¼ Si 1ð Þ ¼ Si 2ð Þ ¼ � � � ¼ Si tð Þ ¼ 0.

We implemented the original algorithm of dichotomy network simulation as a
computer program NetFlowEx for identification of promising antineoplastic targets.

2.2 Data

The data on protein–protein and protein–gene interactions were collected from the
TRANSPATH� database (http://www.biobase-international.com). The database also
contains a lot of information about signalling molecules, interactions and pathways [12].
The obtained network consists of 1405 nodes and 2336 edges. It includes different parts of
the cell cycle regulation and apoptosis RN, such as the cascade of caspases, the TNFalpha
pathway, the IL-6 pathway, the TGFbeta pathway, the HIF-1alpha pathway, the VEGF
pathway, the Fas pathway, different cell cycle regulatory chains, the EGF pathway, MAP
kinases cascades, the Wnt/beta-catenin pathway and other pathways involved in breast
cancer progression and mammary gland development. The nodes reflecting the proteins
have only direct reactions that have been experimentally confirmed; indirect reactions
between genes and proteins (transrepression, transactivation and expression) were also
included in the network. The average number of edges incident on a node in the created
network equals 1.66.

The list of human housekeeping genes (467 genes) – the constitutive genes transcribed
at a relatively constant level across many or all known conditions – was taken from the
Explain database, which provides a number of predefined gene sets, such as Human,
Mouse, and Rat promoters and housekeeping genes [13]. The ExPlain� Analysis System
promotes biological interpretation of high-throughput experiments such as DNA
microarrays, proteomics or proteome data, and ChIP-on-chip experiments (Chromatin-
Immunoprecipitation on chip). Some of the genes found have no down-stream edges or
encode polypeptides involved in the metabolic pathways, have no edges associated with
cell cycle regulation or belong to the class of structure proteins. Some genes are out of our
selected network. Finally, 48 housekeeping genes were selected for further simulation of
normal cell processes (Table 1).

Table 1. Selection of up- and down-regulated genes for further simulation.

Property
of genes

Results of
meta-analysis

Available
in Explain
database

Selected for
simulation

Normal process Housekeeping 467 467 48
HER2/neu-positive

breast carcinomas
Down-regulated 125 56 9
Up-regulated 16 10 2

Ductal carcinoma Down-regulated 100 58 9
Up-regulated 96 57 5

Invasive ductal carcinoma
and/or a nodal metastasis

Down-regulated 191 155 20
Up-regulated 124 83 15

Generalized breast cancer Down-regulated 786 365 59
Up-regulated 691 324 49
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The microarray data on generalized breast cancer were obtained from the Cyclonet
database (http://cyclonet.biouml.org), which also contains information about normal and
pathological mammalian cell cycle regulation [14]. The data for breast cancer were
analysed by meta-analysis, which is widely used for identification of differentially
expressed genes by integrating the results of several independent microarray experiments
[15]. The data for generalized breast cancer consisted of statistically significant 786
down-regulated genes and 691 up-regulated genes. We found that only 365 of the 786
down-regulated genes and 324 of the 691 up-regulated genes were presented in the Explain
database (Table 1). Eventually, 49 up- and 59 down-regulated genes were presented in our
network, due to the availability of the information about their interactions with other
proteins of the selected network. The number of up- and down-regulated genes of
generalized breast cancer and other groups of breast cancer, and the housekeeping genes
used for further simulation, are presented in Table 1. The genes and the corresponding
proteins with no interactions to other proteins were not considered. Complete lists of the
analyzed genes and proteins, up- and down-regulated genes can be viewed in the
supplementary material which is available via the supplementary material tab on the
online article webpage.

3. Results and discussion

3.1 Simulation of normal processes

We simulated the normal processes in the cell, using the housekeeping genes as input data.
Some genes do not have input edges from other nodes, so they cannot maintain their
stable states after the primary step of the simulation. For the housekeeping genes
IKAPPAB-ALPHA, JUND, GSK3ALPHA, PIN1, 14-3-3BETA, 14-3-3ZETA, CKI-
EPSILON, CYCLIN D3, MDIA1, RHOGDI-1, HRS, SIAHBP1, 14-3-3ETA,
14-3-3TAU, CKII-BETA, ADA3, E2F-4, RAD23A, NDKA, MM-1, APC5, RASSF1A,
HMGB1, L11, RHOGAP1 and TRIM28, parameter ai was set equal to 1 to sustain their
active state. So as to ensure that all edges between the nodes are involved in the simulation,
the maximum number of time steps was higher than the number of nodes (2500 time steps).
The modelling results showed that from the 14th to the 19th step and from the 15th to 20th
step CDK1 and Cyclin A :CDK1 are activated. However, after the 20th step the states of
the cell cycle participants remain inactive and stable, and the cell does not enter into the
M phase and does not divide (Figure 2). Caspases were not active and apoptosis was also
not reached. Thus, the results of the simulation do not contradict the known processes in
normal cells [16].

3.2 Simulation of pathological processes

The simulation of pathological processes was carried out individually for the four groups
of breast cancer, HER2/neu positive breast carcinomas, ductal carcinoma, invasive ductal
carcinoma and/or a nodal metastasis, and for generalized breast cancer, with the number
of time steps equal to 2500.

The results of the simulation for generalized breast cancer are presented in Figure 3.
Input data for the initial states of the simulation contain five housekeeping genes that
are up-regulated, EZRIN, NDKA, PIN1, PRDX1 and RHOGDI-1. The genes PRLR,

SAR and QSAR in Environmental Research 759
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BMPR-IB, P19INK4D, MYT1, ErbB2, FIBRONECTIN, RON, RHOGDI-1, FGFR-3,
TRAF2, KAP, JAB1, AR (NR3C4), TGFBETA3, IMPORTIN-ALPHA2, NDKA,
14-3-3ZETA, PIN1, CATHEPSIN B, MUC1, AURORA-A, GATA-3, SECURIN,
BAF47, PRLR and BMPR-IB were permanently up-regulated as they cannot
reproduce themselves in the model, as the information on their feedback regulation is
limited.

Although the cell cycle inhibitor p19INK4D is permanently active, the cell cycle
complexes are active iteratively. Cyclin E :CDK2 is active from the ninth to the 14th time
steps, at the 21st time step and then iteratively active every fifth time step (Figure 3). Cyclin
A :CDK1 and Cyclin B1 : CDK1 are active from the 7th to the 14th time step and from the
9th to the 16th step, respectively. Beginning with the 20th and 21st step, the complexes
become active every second or first time step. Major apoptotic proteins are inactive during
all of the 2500 time steps, in spite of the active BAX responsible for Cytochome C release
considered as an indicator of apoptosis. The AKT protein of cell survival remains active
from the third time step.

Figure 2. Results of simulations using housekeeping genes as initial states for several cell cycle and
apoptosis proteins. Rows correspond to proteins, columns correspond to time steps; a cell of the
table reflects an active (1) or an inactive (0) state of the protein during the simulation time step.
Active states are shaded in grey.
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The results of the simulation for all the considered groups of breast cancer showed the
inactivity of the apoptotic proteins and activation of the Cyclin/CDK complexes and
major growth factors such as the ERBB family, EGFR and VEGFR. The behaviour of the
Cyclin/CDK states of the breast cancer groups differs by intervals of periodic activation of
the cell cycle complexes (the more aggressive the type of tumour, the faster the cell cycle
generation).

3.3 Drug target identification

Drug target identification includes two different options: (1) inhibition of the cell cycle and
(2) initiation of apoptosis.

3.3.1 Inhibition of cell cycle progression

We selected the blockade of the Cyclin/CDK complexes as the terminal nodes as their
inhibition naturally leads to cell cycle arrest [17]. They can be inhibited either directly or
indirectly through inhibition or activation of some other up-stream nodes.

At first, we considered each of the Cyclin/CDK complexes as terminal nodes, whose
inhibition led to cell cycle arrest. We simulated inhibition of each other node one by one.
As is seen from Table 2, Cyclin A :CDK2 and Cyclin E :CDK2 are typically up-regulated
during the S phase. For all of the considered breast cancer groups, several common targets
were found: CYCE, CYCLIN E, CDK2, PLK1 and AKT-1. The targets were not found
for the complex of Cyclin B1 : CDK1, except for SYK which was identified for HER2/neu
positive breast carcinomas.

Figure 3. Results of simulations using up- and down-regulated genes for generalized breast cancer as
initial states for several cell cycles and apoptosis proteins. Rows correspond to proteins, columns
correspond to time steps; a cell of the table reflects an active (1) or an inactive (0) state of the protein
during the simulation time step. Active states are shaded in grey.
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It has been reported [18] that activating K-Ras mutations, frequently present in cancer,
up-regulate the SYK kinase in several lung and pancreatic cell lines, and the treatment of
K-Ras-dependent cells with either interfering RNA or small inhibitors induces cell
apoptosis. Inhibitors of SYK activity and its pathways are expected to be useful in the
treatment of inflammation diseases, and in the suppression of B-cell tumour growth [19].
The list of targets identified in this study mostly includes Cyclins, which are known to be
crucial for cell cycle progression; thus this corresponds to well-known information [20,21].
PLK1 and AKT-1 might be more interesting targets as their combinations with Cyclins
and CDKs are not so obvious, and they have a strong positive influence on cell cycle
progression in normal cases and in pathology [22].

We have not found any non-trivial combination of targets whose blockade led to the
simultaneous inhibition of particular complexes. As many different proteins are known to

Table 2. Results of target identification using Cyclin : CDK inhibition as terminal nodes for cell
cycle arrest.

Effect Mechanism

HER2/neu
positive
breast
carcinomas,

Ductal
carcinoma

Invasive
ductal
carcinoma
and/or a
nodal
metastasis

Generalized
breast
cancer

Inhibition
of cell cycle
progression

Inactivation
of Cyclin
D1:CDK4,
Cyclin
D1:CDK6
(G1 phase)

CYCD1, CYCLIN D1

Inactivation of
Cyclin E:CDK2
(G1/S phase),
Cyclin A:CDK2
(S phase)

CYCE, CYCLIN E, CDK2, PLK1, AKT-1
SYK N/A SRC N/A

Inactivation
of Cyclin
B:CDK1
(G2/M phase)

SYK N/A N/A N/A

Apoptosis
activation

Activation of
Cytochrome C

BCL-2

N/A N/A RAF-1,
GRB-2,
PKC,
RACK1,

Fibronectin
receptor
ALPHA5
BETA1,
Fibronectin

Activation of
Caspase-3

MKK4, PI3K, MKK6, P38ALPHA, CRKL, HPK1
N/A N/A VEGF-A,

VEGFR-2,
HIF-1ALPHA,
VEGF

N/A

N/A – specific targets were not found.
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take part in the regulation of Cyclin/CDK complexes, blockade of any one single target
does not lead to cell cycle arrest.

3.3.2 Apoptosis initiation

Cytochrome C release was chosen as a terminal node for apoptosis initiation, as the
activation of pro-apoptotic factors leads to formation of the multimeric complex known as
apoptosome and initiates the caspase activation cascades [23]. Inactivation of either
fibronection or fibronection receptor alpha5 beta1 leads to apoptosis in generalized breast
cancer while inactivation of RAF-1, GRB-2, PKC or RACK1 leads to apoptosis in
invasive ductal carcinoma and/or in a nodal metastasis group of cancer. BCL-2 is the
common target for all considered breast cancer groups.

Caspase-3 was taken as the terminal node for possible apoptosis initiation. Table 2
shows the identified common targets for all of the considered breast cancer groups:
MKK4, PI3K, MKK6, P38ALPHA, CRKL and HPK1. Inactivation of proteins respon-
sible for blood vessel growth, VEGF-A, VGFR-2, HIF-1ALPHA and VEGF, leads to
activation of caspase-3 in invasive ductal carcinoma and/or in a nodal metastasis,
reflecting the experimentally confirmed importance of blood vessel growth in invasion
processes [24].

3.4 Algorithm verification

We verified our results by modelling the inactivation of the identified targets in normal
cases using active housekeeping genes as input data. At first, the identified promising
targets were taken: fibronectin (hyperexpressed in generalized breast cancer), MKK4,
PI3K, MKK6, P38ALPHA, CRKL, HPK1 and BCL-2 (common promising targets for all
considered breast tumours). Fibronectin is involved in cell adhesion and migration
processes including embryogenesis, wound healing, blood coagulation, host defence and
metastasis [25]. It remains inactive in the simulation of normal cases. Thus, its inhibition
does not affect the normal signalling processes. Inhibition of almost all of the identified
targets does not lead to apoptosis initiation, except for three targets: MKK4, MKK6 and
BCL-2.

In normal cases, the inhibition of MKK4 and MKK6 leads to activation of Caspases
(Figure 4) via the FAS and FADD signalling chain, prompting the suggestion that
inhibition of such kinases may be cytocidal.

Figure 4. Results of simulations for inactivated MKK4 in normal cases. Rows correspond to
proteins, columns correspond to time steps; a cell of the table reflects an active (1) or an inactive (0)
state of the protein during the simulation time step. Active states are shaded in grey.
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BCL-2 inactivation also leads to initiation of apoptosis via Cytochrome C, through the
Cathepsin B chain (Figure 5). However, Cytochrome C release is finished after the 20th
time step and remains inactive from the 21st to the 2500th time step.

The verification of the algorithm was also made by reversing the direction of the edges
in the network. Inactivation of the edges in the pathology did not give any promising
targets. We also used the random microarray data with an unchanged network, so that the
number of up- and down-regulated genes remained the same, but the genes were randomly
selected.

As promising targets were not found, such data gave evidence that our algorithm
identifies not random targets, but those responsible for the important signalling and cell
cycle regulation processes.

As can be seen from the results of the modelling, inhibition of almost all of the
identified targets leads to apoptosis in the pathology only. Furthermore, inhibitors for
fibronectin are attributed to the group of oncolytic drugs, and these have already been
used for therapy in clinics. Inhibitors of Cyclin-dependent kinases and Cyclins are also
used for cancer therapy. For example, UCN-01, which is on the second stage of clinical
trials, inhibits CDK1, CDK2, CDK6, CDK4, PI3K, CHK1, CHK2, PKC, PDK1 and
some signalling pathways, and induces apoptosis [26].

4. Conclusion

We have developed an algorithm for identification of promising drug targets and their
combinations based on a discrete approach to RN modelling. The approach provides
modelling and analysis of large RNs using microarray data for many genes. The results of
the simulation using housekeeping genes do not contradict with the processes known to
occur in normal cells. Simulation of the pathology has shown iterative division, inactive
states of apoptotic proteins and activation of major growth factors. Application of an
in silico drug target identification algorithm for the four groups of breast cancer: HER2/
neu-positive breast carcinomas, ductal carcinoma, invasive ductal carcinoma and/or a
nodal metastasis, and for generalized breast cancer showed common and specific targets.
Some of the identified targets for invasive ductal carcinoma and/or a nodal metastasis,
VEGF-A, VGFR-2, HIF-1ALPHA and VEGF, are mostly important for the growth and
maintenance of that type of cancer (e.g., vessel formation and growth). Most inhibitors of
the identified targets belong to the group of oncolytic drugs, which are at different stages

Figure 5. Results of simulations for inactivated BCL-2 in normal cases. Rows correspond to
proteins, columns correspond to time steps; a cell of the table reflects an active (1) or an inactive (0)
state of the protein during the simulation time step. Active states are shaded in grey.
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of preclinical and clinical trials; some of these drugs have been launched (Gleevec,
Nexavar, Torisel). Inhibitors for Cyclin D1, Cyclin E, AKT, SRC, BCL-2, RAF-1, PKC,
VEGF-A. VEGFR-2, HIF-1ALPHA and VEGF have already been studied as drugs for
breast cancer therapy (see the Integrity database, integrity.prous.com). Some of the
identified targets involved in cell cycle regulation and gene expression do not possess the
known inhibitors in the Integrity database, such as RACK1, CRKL and HPK1, and may
be interesting for application in breast cancer therapy.
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