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ABSTRACT

We propose a new approach to predict functional specificity of proteins from their amino
acid sequences. Our approach is based on two things: structural Multilevel Neighborhoods
of Atom (MNA) descriptors and an original Bayesian algorithm. Usually, a protein sequence
is presented as a string of amino acid symbols. Here we introduce a new description of an
amino acid sequence: a set of structural MNA descriptors. The MNA descriptor is a string
describing an atom and its neighbor atoms according to the selected level. In this work, we
also use description of a protein sequence as a set of peptides (strings of amino acid sym-
bols). We performed a case study on two subsubclasses of enzyme nomenclature (EC). It is
shown that B-statistics give a sufficient predictive power of enzyme specificity prediction for
both MNA descriptors and peptides. We also showed that MNA descriptors give higher ac-
curacy values in comparison with peptides and also provide a choice of MNA descriptor lev-
els for best accuracy prediction. The highest average accuracy prediction that was achieved
was 0.98.

INTRODUCTION

ALARGE NUMBER of amino acid sequences (which permanently increases) significantly exceeds the num-
ber of proteins with experimentally established functional features. Application of computer methods

helps to predict protein function without expensive and time-consuming experiments. There are three ba-
sic approaches toward prediction of protein function from amino acid sequence: (1) prediction by homol-
ogy, (2) pattern or motif searching, (3) functional residue identification.

1. Prediction of protein function by sequence homology involves two steps. One is the detection of ho-
mology and other is the inference of function from homology. Homology detection is solved by pow-
erful and sensitive algorithms such as FASTA (Pearson, 2000), BLAST (Altschul and Gish, 1996), PSI-
BLAST (Altschul et al., 1997), and HMM (Eddy, 1998). However, the inference of function from
homology generates many errors (Rost, 2003; Devos and Valencia, 2001).

2. Functional sites in proteins presented as patterns or motifs are stored in a number of databases such as
Prosite (Sigrist et al., 2002), PRINTS (Attwood, 2000), and BLOCKS (Henikoff, 2000). These databases
do not provide with successful prediction for many cases. For example Prosite patterns associated with
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the active site of a specific protein are also found in sequences of many unrelated enzymes (Tian et al.,
2004).

3. Protein function is determined (in most cases) by several functional residues. Many methods were de-
veloped to determine functional residue in protein sequences (Livingstone and Barton, 1993; Casari et
al., 1995; Lichtarge et al., 1996; Hannenhalli and Russel, 2000; Landgraf et al., 2001; Mirny and Gelfand,
2002; Rose and Cera, 2002; Del Sol Mesa et al., 2003; Kalinina et al., 2004). These methods detect
residues that are not conserved in whole family alignment but are conserved within the small group,
which carry the same function. However, as background it is necessary to know about the protein groups
in family (Livingstone and Barton, 1993; Hannenhalli and Russel, 2000; Mirny and Gelfand, 2002; 
Kalinina et al., 2004) or about the three-dimensional (3D) structure of at least one protein per group
(Casari et al., 1995; Lichtarge et al., 1996; Landgraf et al., 2001).

All these methods describe an amino acid sequence as a string of symbols, and similarity of sequences is
calculated from frequencies of symbols in aligned sequences. We suppose that the same enzyme function
can be supported by the structural fragments that are larger or smaller than an amino acid residue or that
cannot be described as a consequence of amino acid symbols. We think a more detailed description of a pro-
tein chemical structure can give advantage with protein function prediction. Based on this assumption, we
introduce the description of a protein sequence as a set of Multilevel Neighborhoods of Atom (MNA) de-
scriptors. The MNA descriptors were developed in our laboratory earlier (Filimonov et al., 1999) and used
in the PASS program (Poroikov and Filimonov, 2005) for prediction of biological activity spectra. Earlier
we showed that MNA descriptors could be applied for prediction of protein function (Fomenko et al., 2003).

In this paper, we propose a novel approach toward prediction of protein functional specificity that is
based on two things: structural MNA descriptors and an original Bayesian algorithm. We suppose that MNA
descriptors reflect protein’s nature more accurately than amino acid symbols. The predictive algorithm is
based on original Bayesian statistics, which is used in the PASS program (Poroikov and Filimonov, 2005)
for predicting the biological activity spectra of low-molecular substances. Our approach does not need align-
ment of sequences in its work, in contrast to all the methods mentioned above.

Our approach supposes the prediction of protein function based on similarity of the query sequence with
the different protein groups. So we need a training set to be divided into functional groups. In this work,
we performed a case study for our approach using EC.

Enzymes were classified based on their enzyme-catalyzed reactions, and EC was formed by the Nomen-
clature Committee of the International Union of Biochemistry and Molecular Biology (Webb, 1992). EC is
based on biochemical specificity of enzymes. The EC code includes four classification levels denoted by
numbers and separated by points. The first level shows which of the six main classes the enzyme belongs
to (1–oxidoreductases, 2–transferases, 3–hydrolases, 4–lyases, 5–isomerases, 6–ligases). The second level
indicates the subclass. The second level for oxidoreductases, for example, indicates the group in the hy-
drogen (or electron) donor, and the second level for hydrolases indicates the nature of the bond hydrolyzed.
The third level indicates the sub-subclass. The sub-subclass of oxidoreductases indicates the type of ac-
ceptor involved, and the sub-subclass of hydrolases specifies the nature of the substrate. The first three lev-
els of EC code are associated with the chemical reaction, which is catalyzed by the enzymes. For example,
1.2.1.- is the code of oxidoreductases acting on the aldehyde or oxo group of donor with NAD� or NADP�
as acceptor; 3.4.21.- is the code of serine endopeptidases. The fourth level of EC code is the serial number
of the enzyme in its sub-subclass, which represents the substrate specificity of the enzyme reaction.

It is known that many cases of enzymes with the same EC number exist, but which are not homological
proteins (Galperin et al., 1998; Babbit, 2003) and vice versa (Babbit, 2003). Thornton et al. (1999) report
that about half (91) of the 190-enzyme homologous family in the CATH database (Orengo et al., 1997)
have members with different third level EC. This fact caused difficulties with prediction of enzyme func-
tion by using EC. However, EC is the largest classification to provide a detailed description of the enzyme
function inferred by an experiment.

Understanding this, many researchers investigated the possibility of enzyme function prediction in groups
of homological proteins. Todd et al. analyzed sequences from the CATH database aligned by the FASTA
algorithm (Pearson, 2000), and came to the conclusion that, even at the low sequence identity of 30%, en-
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zyme function could be predicted up to the third EC level with an accuracy of almost 95% (Todd et al.,
2001). Wilson et al. (2000) have found that the first three EC levels appear to be conserved down to 40% se-
quence identity among pairs of sequences with the same fold. Devos and Valencia (2000) showed, using FSSP
database (Holm and Sander, 1996), that protein pairs with the same whole EC code were found at 80% se-
quence identity and higher. At 50–80% identity, only the first three EC levels were identical in the aligned
pairs. Below 50% identity, a trend to conservation of the first three EC levels can be observed. Another group
of researchers (Tian and Skolnick, 2003) showed that the EC code could be transferred at 60% sequence iden-
tity, with accuracy of at least 90%. The same group of authors developed an automatic engine, EFICAz, to
infer enzyme function (Tian et al., 2004). This approach allowed 92% accuracy for predicting the fourth EC
level in testing sequences, with lower than 40% sequence identity to any member of the training set.

We applied our novel approach to predict enzyme function at the fourth EC level. We used representa-
tion of amino acid sequence as sets of MNA descriptors and also as a set of peptides. It is shown that us-
ing the Bayesian approach provides high average accuracy values (�0.95) for both MNA descriptors and
peptides. However, the use of MNA descriptors is more preferable for this approach, because they give
higher values of accuracy than peptides and provide a choice of the descriptor level for the best prediction.
Use of MNA descriptors provided an average accuracy of 0.98 for this prediction of enzyme specificity.

METHODS

We formed a training set from two sub-subclasses that belong to the different EC classes oxidoreduc-
tases (1.-.-.-) and hydrolases (3.-.-.-) The 3.4.21.- sub-subclass containes serine endopeptidases, which in-
clude trypsine and subtilisin families. The 1.2.1.- sub-subclass of oxidoreductases is acting on the aldehyde
or oxo group of donor with NAD� or NADP� as acceptor. Each sub-subclass contains a large amount of
sufficiently diverged proteins. The 35th release of ENZYME database (Bairoch, 2000) was used as a source
of the sequences with known EC numbers. The sequences which have more than one EC number and which
have non-canonical letters (B, Z, and X) were excluded from the training set. We used only the EC num-
bers presented by two or more sequences. Sequences, which have the same whole EC code, are defined as
a group. The final experimental set contained 77 groups (EC codes) and 1267 sequences.

As one can see in Figure 1, most of the groups consist of two to five sequences, and only four groups
contain more than 100 sequences.

In our approach, we compared a query sequence with training set sequences. Training set sequences be-
longed to different functional groups composed according to the 4th EC level. We assayed similarity be-
tween the query sequence and each group in the training set, using Bayesian approach. The original B-sta-
tistics (Bayesian statistics) were calculated using the following algorithm.

FIG. 1. The representation of the different Enzyme Nomenclature (EC) codes. Number of EC codes (y-axis) versus
number of sequences enclosed by correspondence interval (x-axis).
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Let d be a structural element of an amino acid sequence (descriptor). Each amino acid sequence can be
described as a set of descriptors d. Let s be a training set sequence. So for each descriptor d of a query se-
quence we can define fs(d ) as a similarity feature between the query sequence and the training set sequence,
if sequence s contain d.

For each group g in training set we calculated two probability estimations. The first one is the condi-
tional probability P(g � d ) of that a query sequence belongs to a group g assuming that a descriptor d has
occurred.

P(g�d ) � 

Another estimation P(g) is the composite probability of that a query sequence belongs to a group g calcu-
lated for all the query sequence descriptors.

P(g) �

Then we calculated original B-statistics, which is also described in work (Borodina et al., 2004):

Sg � sin��
s

arcsin(2P(s � d ) � 1)/t�
S0g � 2P(g) � 1

B � (Sg � S0g)/(1 � SgS0g)

Here, t is the number of unique MNA descriptors in query sequence.
Note that if P(g� d ) � 1 for all d then B � 1, if P(g� d ) � 0 for all d then B � �1, if P(g� d � P(g) (there

is no relation between the query sequence descriptors and the descriptors of group g) then B � 0.
In this work we carried out leave-one-out cross validation procedure for evaluating our approach. Ac-

cording to this procedure, we excluded each sequence from the training set and then used it as a query se-
quence. So for each protein we calculated B statistics for each group. To assess accuracy of the method
used, we calculated independent accuracy prediction (IAP) scores. The IAP score was calculated for each
group of the training set by the following way.

Let X be a number of sequences in group g. Let Y be a number of sequences that are not belong to group
g. We made up the matrix X � Y. In this matrix we counted N(BX � BY) as number of cells, for which 
B-statistics of sequence from X is more than B-statistics of sequence from Y. X � Y is the number of cells
in X � Y matrix.

IAP �

In our approach, each amino acid sequence was represented as a set of MNA descriptors. MNA (Multilevel
Neighbourhoods of Atom) descriptor is a string that describes a fragment of the molecular structural for-
mula. The MNA descriptor of the level 0 describes a single atom. The MNA descriptor of the 1st level de-
scribes an atom and atoms, which is bound with them by a covalent bond (i.e., neighbors). The MNA de-
scriptor of the 2nd level describes atom and atoms, which distanced from it by one and two covalent bonds.
And so on. MNA descriptors of different levels describe molecular fragments of different sizes. Approxi-
mately we can say that the descriptor of the 3rd level corresponds to structural fragments from 1 or 2 amino
acid residues. The MNA descriptor of the 6th level corresponds to structural fragments that cover 3 or 4
amino acid residues. The MNA descriptor of the 9th level takes the fragments, which cover 5 or 6 amino
acid residues. And so forth.

N(BX � BY)
��

X � Y

�
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�
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�
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MNA descriptors are build from structural formulas of amino acids that allow comparing structural fea-
tures of sequences directly in contrast to symbol’s description of amino acids. In this work we used de-
scriptors of different levels ranged from one to twelve. To compare our approach with the symbol’s repre-
sentation of sequences, each amino acid sequence was represented also as set of peptides. We used eight
levels of peptide sets. Each level was presented by fragments of amino acid string that consist of one, two
and so fourth up to eight amino acid symbols in a string.

It can be many different methods to calculate fs(d) similarity feature. In this work we used two methods
for this. The method of descriptor compositions (hereafter C-method) did not take into account the descriptor
frequencies in amino acid sequence:

fs(d ) � 1

The method of descriptor frequencies (hereafter F-method) took into account the frequency of descriptors
in each sequence:

fs(d ) � e(m�n)ln (n/m)/ 2

Here m is the number of descriptor d in query sequence, n is the number of descriptor d in sequence s.

Statistical analysis

So we calculated the set of MNA descriptors of different levels (1–12) for each sequence in the training
set. We also formed the set of peptides for each sequence of the training set with different length (from sin-
gle amino acid to octapeptides). For each group (EC code) we calculated B-statistics for each sequence of
training set using leave-one-out cross validation procedure. B-statistics was calculated using both C-method
and F-method. The IAP values were calculated for each group. Finally, 77 IAP values were calculated for
both MNA descriptors and peptides type of amino acid description and both C-method and F-method for
all used levels.

RESULTS

Minimal, average, and median values were calculated for IAP values of each MNA and peptide level.
These results are presented in Figure 2.

The following results were obtained by using MNA descriptors. Use of C-method gives median values
more than 0.95 on the 4th to 12th MNA level. Median reaches 1 on the 6th MNA level and holds this value
up to the 12th level. Median, observed for F-method has values more than 0.95 at all the MNA levels. It
takes on 0.985 value on the 1st MNA level then it grows up to 1 at the 6th MNA level and holds this value
up to the 12th MNA level. Average of IAP that was observed for C-method, has value more than 0.95 on
the 5th to 12th MNA levels. The highest average value is 0.986, which is observed on the 10th MNA level.
For F-method more than 0.95 average values are observed on 6th to 12th MNA level. The highest average
value is 0.982 on the 10th MNA level. The highest minimal value for C-method is 0.487, which is observed
on the 7th MNA level and for F-method is 0.08 for the 10th level.

The following results were obtained for peptides. Median, obtained with C-method, has values close to
1 on the 2nd to 4th peptide level and median, obtained with F-method has values close to 1 on the 1st to
4th peptide level. For both methods the highest median values is 0.999 on the 3rd peptide level. Average,
observed for both methods, has value more than 0.95 on the 3rd and 4th level of peptide length. The high-
est average value is 0.963 on the 3rd peptide level for both methods. The highest minimal value for both
methods is 0.385, which observed on the 4th peptide level.

It is obvious that one can choose MNA or peptide level with satisfactory predictive power for each of
four used variants of predicting (MNA with C-method, MNA with F-method, peptides with C-method, pep-
tides with F-method). So the B-statistics shows good results of the enzyme specificity prediction for both
peptides and MNA-descriptors were used. However median and average IAP values are higher for MNA
descriptors. Thus the use of MNA descriptors gives more accurate predictions than the use of peptides.

6103_05_p56-65  3/23/06  11:52 AM  Page 60



PREDICTION OF PROTEIN FUNCTIONAL SPECIFICITY

61

It is clear that both methods (C- and F-methods) have the best accuracy on the same levels of MNA de-
scriptors (8th to 12th) and on the 3rd level of peptide. It says that using of frequencies of MNA descriptor
in sequence do not give any advances in accuracy values. Nevertheless F-method gives satisfactory IAP
value (�0.95) at the lower levels of MNA descriptors or peptides. It can give advantage with time of cal-
culations. For example, calculations for the 2nd MNA level is more than twenty times quickly then for the
12th MNA level. This condition could be sufficient for the bigger size of training set.

It can be seen in Figure 2 that MNA descriptors up to the 12th level hold high accuracy values, whereas
IAP values for peptides decrease quickly after the 4th peptide level. Another representation of the results
in figure 3 can help to clarify this observation and give one more reason for progress of MNA descriptors.

The use of MNA descriptors reveals large area (six MNA levels: from the 8th to the 12th) with only four
groups (1.2.1.1, 1.2.1.16, 1.2.1.22, 1.2.1.28) having IAP lower than 0.95 for both C-method and F-method
used (Fig. 3). On the contrary, the light area obtained for peptides is smaller. In fact, only the 4th peptide
level has the smallest number of dark fields (eight dark fields for C-method and seven dark fields for 
F-method). This observation confirms the conclusion about the accuracy progress of the results obtained
with MNA descriptors. Moreover, results from Figure 3 are consequence of the nature of the descriptions
used for the amino acid sequences. One level of MNA descriptor increased by an atom for each side of
molecular chain, whereas one level of peptides increased by one amino acid residue with many atoms. In-
deed, one level of peptides corresponds to more than one MNA levels. For example, all the MNA descriptors
of the 1st, the 2nd, and the 3rd levels are found within a structural formula of a single amino acid residue
or they are the same for all amino acid residues (except the descriptors of some atoms of proline and glycine).
So nature of MNA descriptors is reflected by more smooth changes of IAP values. This property of MNA
descriptors could be used to choose the descriptors level with the best prediction accuracy for the interest-
ing specificity group.

FIG. 2. (a,b) Independent accuracy prediction (IAP) values obtained for MNA descriptors. (c,d) IAP values obtained
for peptides. (a,c) IAP values obtained with using C-method. (b,d) IAP values obtained with using F-method. The level
of the correspondent Multilevel Neighborhoods of Atom (MNA) descriptors or peptides is shown on x-axis; IAP value
is on y-axis. Average values are shown by triangles (firm line), median values are shown by squares (dotted line), and
minimal values are shown by squares (dashed line).
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DISCUSSION

In this work, we introduce a novel approach toward prediction of protein functional specificity. Our
approach is based on B-statistics and structural MNA descriptors. We used two representations of amino
acid sequence as a set of MNA descriptors and a set of peptides. We showed that B-statistics give a
high average accuracy value for both peptides and MNA descriptors. However, MNA descriptors
showed higher accuracy values than peptides. Also, MNA descriptors provided a choice of descriptor
levels for the best prediction. So, the use of MNA descriptors is more preferable than the use of pep-
tides in this approach. The highest average accuracy that was achieved with MNA descriptors in this
work was 0.98.

FIG. 3. There are two kinds of independent accuracy prediction (IAP) values in this figure. Dark fields show groups
with IAP values lower than 0.95; light fields show groups with IAP equal or higher than 0.95. Level of Multilevel
Neighborhoods of Atom (MNA) descriptors or peptides grows up from left to right. (a) Obtained for MNA descriptors
using C-method. (b) Obtained for MNA descriptors using F-method. (c) Obtained for peptides using C-method. (d) Ob-
tained for peptides using F-method.
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We think that MNA descriptor advances could be explained after analysis of a number of unique MNA
descriptors and peptides in the dataset. As we noted previously, MNA descriptor of the 6th level approxi-
mately corresponds to the 3rd or the 4th level of peptides and MNA descriptor of the 9th level corresponds
to the 5th or the 6th peptide level. Taking this rule into account, we can say that the number of unique el-
ements in MNA descriptors is more than the number of unique elements of peptides for the 8th to the 12th
levels, which take the highest IAP values with MNA descriptors (Fig. 4). Furthermore, MNA descriptors
are calculated for each atom. So number of unique elements of MNA descriptors tends to number of atoms
in amino acid sequence with growth of MNA level. Apparently, larger number of unique elements of MNA
descriptors, especially for the high MNA levels, gives advantage in predictive power.

Of course, this work performed only with two EC subsubclasses (1.2.1.- and 3.4.21.-), which are repre-
sented by 1267 amino acid sequences. The 35th release of ENZYME database would give more than 48,000
sequences. However, the size of the dataset used is near the maximum of our program’s possibility. In the
future, we plan to optimize the program algorithm for the larger dataset that would be used. On the other
hand, if the dataset were larger, we think that the accuracy of prediction would decrease. Nevertheless, we
suppose that the biggest part of EC numbers will show sufficiently high accuracy of prediction. So we plan
to develop this approach toward an expert system for the prediction of enzyme specificity.

Although we showed our approach only in the context of enzyme specificity prediction we presented it
as a more general prediction of protein functional specificity. Thus, we propose that our approach could be
applied for other types of functional prediction such as prediction of type of enzyme reaction (EC subsub-
classes) or prediction of function of non-enzymes. Also we hope that this approach could be applied for
tasks of structure prediction such as fold prediction or secondary structure prediction. We plan to try an-
other sort of prediction in the future.

CONCLUSION

We introduced a new approach toward predicting of protein functional specificity based on MNA de-
scriptors and original B-statistics used in the PASS program (Poroikov and Filimonov, 2005). We tested
our approach for the task of enzyme specificity prediction. Usually amino acid sequence is described as se-
quence of symbols for the task of functional prediction. Here we applied new description of amino acid se-
quence as set of structural MNA descriptors. In this work we used two types of description of amino acid
sequence: the one is a set of MNA descriptors and the other is a set of peptides. It is shown that the use of

FIG. 4. Number of unique elements (y-axis) at each level of used amino acid description. The level of Multilevel
Neighborhoods of Atom (MNA) descriptors (light) or peptides (dark) is shown by x-axis.
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B-statistics provides sufficient predictive power for both types of protein sequence description. However,
MNA descriptors shows higher accuracy than peptides and provides a possibility to choose a descriptors
level with the best accuracy value. The highest average accuracy value achieved was 0.98. Advances of
MNA descriptors could be explained by the nature of MNA descriptors that reflects chemical structure of
proteins more accurately than amino acid symbols.
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