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The aim of this article is to show the main aspects of quantitative structure activity
relationship (QSAR) modeling for regulatory purposes. We try to answer the question;
what makes QSAR models suitable for regulatory uses. The article focuses on directions
in QSAR modeling in European Union (EU) and Russia. Difficulties in validation models
have been discussed.

Key Words: biokinetic modeling; computational toxicology; expert systems; human
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INTRODUCTION

It is estimated that over 30,000 industrial chemicals used in Europe require
additional safety testing to meet requirements of the new chemical regulation
REACH (registration, evaluation and authorization of chemicals). If conducted
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202 N. Fjodorova et al.

on animals, this testing would require the use of an extra 10–20 million animal
experiments. Quantitative structure activity relationships (QSAR) is one major
prospect between alternative testing methods to be used in a regulatory context.

Development of QSARs is solving several problems:

� Ethical saving of animal lives;

� Economical cost reduction on testing;

� Political implementation of new chemical regulation REACH.

In the context of REACH and the Cosmetics Directive (Council Directive
2003/15/EC), it is anticipated that (Q)SARs will be used more extensively, in
the interests of time- and cost-effectiveness and animal welfare.

Many different (Q)SAR models for prediction of properties relevant for
chemical management exist and have been published in the literature. How-
ever, most of them are poorly described in terms of the five principles for val-
idation of (Q)SAR models, which have been adopted by Organization for Eco-
nomical Cooperation and Development (OECD).

The aim of this article is to show the main aspects of QSAR modeling for
regulatory purposes. We try to answer the question: what makes QSAR models
suitable for regulatory uses? The article focuses on directions in QSAR modeling
in European Union (EU) and Russia. Difficulties in validation models have been
discussed.

1. QSAR MODELING FOR REGULATORY USES IN OECD MEMBER
COUNTRIES AND IN EU

1.1 Definition of (Q)SAR
Structure-activity relationships (SARs) and quantitative structure-activity

relationships (QSARs) are theoretical models that can be used to predict the
physicochemical and biological (e.g., toxicological) properties of molecules from
knowledge of chemical structure. A SAR usually represents an association be-
tween a chemical substructure and the potential of a chemical containing the
substructure to exhibit a certain biological effect. A QSAR quantitatively relates
the properties of a chemical (encoded in its chemical structure) to a physical
property or to a biological effect (e.g., a toxicological endpoint).

QSARs are all quantitative models yielding a continuous or categorical re-
sult. The most common techniques for developing QSARs are regression analy-
sis, neural nets, and classification methods. SARs are qualitative relationships
in the form of structural alerts that incorporate molecular substructures or
fragments related to the presence or absence of activity.
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Directions in QSAR Modeling 203

(Q)SARs for human health endpoints and certain eco-toxicological end-
points can be regarded as alternative methods to animal experiments since
they could be used to replace or reduce animal testing (1).

The development of predictive models is intended for application in chemi-
cal management, including priority setting, risk assessment and classification
and labeling (2).

1.2 Scientific and Regulatory Uses of (Q)SARs
From the scientific perspective, (Q)SARs can be developed for prediction of

the following types of property or effects:

1. Physicochemical properties;

2. Toxic potential and potency;

3. Environmental distribution and fate;

4. Biokinetic processes (absorption, distribution, metabolism and excretion).

Regulatory uses of QSARs include:

1. Supporting priority setting of chemicals;

2. Guiding experimental design of regulatory tests or testing strategies;

3. Providing mechanistic information;

4. Grouping chemicals into categories based on similarity;

5. Filling in a data gap needed for classification and labeling;

6. Filling in a data gap needed for risk assessment.

It must be emphasized that principles and procedures for scientific valida-
tion of (Q)SARs are separate from the considerations and procedures necessary
for regulatory acceptance (3).

1.3 Organizations Involved with Validation of QSARs
It was considered necessary to develop a framework for the independent

development, validation and dissemination of QSARs. The European Commis-
sion’s Joint Research Centre (JRC) is a suitable organization to coordinate such
a framework, due to its recognized independence from national and sectoral in-
terests, and its established role in the provision of scientific and technical sup-
port for the development and implementation of EU legislation on chemicals.

The JRC established the QSAR Action as a project within the JRC Work Pro-
gramme to coordinate and expedite activities in the area of chemical-grouping,
SARs, and QSARs approaches with potential regulatory use.
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204 N. Fjodorova et al.

The European Chemicals Bureau (ECB) is coordinating the JRC Action
on Computational Toxicology (including QSARs), which aims to promote the
development, validation and implementation of computational models that are
useful for regulatory purposes (4). The work involves collaboration with internal
partners, such as European Center for the Validation of Alternative Methods
(ECVAM), and external partners, such as the OECD.

1.4 Guidelines and Documents for Developing and Application
QSARs for Regulatory Uses
Preliminary guidance “The Characterization of (Quantitative) Structure-

Activity Relationships” has been published in (5).
The following endpoints associated with EU Test Methods and OECD test

guidelines have been proposed:

� Physicochemical properties such as melting point, boiling point, vapor pres-
sure, K octanol/water partition coefficient, Koc organic carbon/water parti-
tion coefficient, water solubility;

� Ecological effects such as acute fish, long-term toxicity, acute Daphnid, algal,
terrestrial toxicity;

� Environmental fate such as biodegradation, hydrolysis in water, atmo-
spheric oxidation. bioaccumulation;

� Human health effects such as acute oral, acute inhalation, acute dermal,
skin irritation, eye irritation, skin sensitization, repeated dose toxicity, geno-
toxicity (in vitro, bacterial cells), genotoxicity (in vitro, mammalian cells),
genotoxicity (in vivo), reproductive toxicity, developmental toxicity, carcino-
genicity.

Guidelines for developing and using QSARs with examples of models for
prediction toxicity was published in (6). Regulatory uses and applications of
(Q)SAR models in the assessment of new and existing chemicals in OECD
member countries was reported in (7). Principles of validation of (Q)SARs was
published in (8).

The general acceptability criteria or validation principles of (Q)SARs for
Human Health and Environmental Endpoints was developed at the workshop
“Regulatory Acceptance of (Q)SARs for Human Health and Environmental End-
points,” hosted by the European Centre for Ecotoxicology and Toxicology of
Chemicals and organized by the International Council of Chemical Associa-
tions (ICCA) and the European Chemical Industry Council (CEFIC) held 4–6
March 2002 in Setubal. In November 2004, at the 37th Joint Meeting of Chem-
icals Committee and Working Party on Chemicals, Pesticides and Biotechnol-
ogy, the OECD Member Countries and the European Commission adopted five
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Directions in QSAR Modeling 205

principles for the validation of (Q)SARs intended for use in the regulatory as-
sessment of chemicals.

Accordant with these principles a (Q)SAR model for regulatory use should
be associated with the following information:

1. A defined endpoint;

2. An unambiguous and easily applicable algorithm;

3. A defined domain of applicability;

4. Appropriate measures of goodness-of–fit, robustness and predictivity;

5. A mechanistic interpretation, if possible.

The international agreement on a set of validation principles was impor-
tant, not only to provide regulatory bodies with a scientific basis for making
decisions on the acceptability of data generated by (Q)SARs, but also to pro-
mote the mutual acceptance of (Q)SAR models by improving the transparency
and consistency of (Q)SAR reporting (9).

Recently, the EC funded project DEMETRA addressed the specific case of
the QSAR models for the European legislation for pesticides (10).

Several major points have been defined. The QSAR model should clearly
mention the specific legislation involved. This point should be more extensively
considered in all QSAR models for regulatory purposes because different reg-
ulations have different ways to address and express the phenomenon. Related
to the legislation, in many cases there are specific guidelines that have to be
considered. In some legislations, these guidelines are strict, while in others,
a certain degree of freedom is given. The developer should be aware of this
fact.

DEMETRA addressed some other issues, not directly defined within the
OECD principles, which can be used to evaluate QSAR models for regulatory
purposes. For instance, DEMETRA dedicated efforts on the definition of the
model utility for regulatory purposes, in order to identify the QSAR models
which should be more useful for legislation. DEMETRA defined tools to address
and reduce false negatives. False negatives are very important in case of QSAR
models for regulatory purposes because regulators want to avoid predictions
that predict safety chemicals which are toxic; the reverse case is not so critical.
DEMETRA addressed the situation of model uncertainty in a detailed way. For
regulatory purposes, it is not enough to have a predicted value: its uncertainty
has to be characterized, and relation to its use and the uncertainty of the input
values. All these points have been thoroughly addressed and discussed within
DEMETRA (10).
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206 N. Fjodorova et al.

1.5 QSARs for Human Health and Environmental Endpoint
In the mini-monograph, Cronin et al. (11) reported the use of QSARs in

international decision-making frameworks to predict ecological effects and en-
vironmental fate. QSARs for prediction health effects of chemical substances
are presented in another mini-monograph (12).

Most expert systems, SARs, and QSARs are based on chemical classes or
on mode of action. More details on in silico methodologies with regard to their
usage in REACH is provided in report on the “Review of the Status of the
Development of Alternatives to using Animals in Chemical Safety Testing and
Identification of New Areas for Development or Research in the Context of the
Proposed REACH Regulation” (13).

The comprehensive investigation of quantitative methods of hazard char-
acterization used in food safety assessment and used for regulatory decision-
making in Europe was reported in monograph (14).

1.6 Difficulties to Validation of QSARs
It should be noted that there are many practical difficulties to the validation

of (Q)SARs, in particular obtaining data for a meaningful external validation, as
well as obtaining transparent models for some methodologies (e.g., commercial
expert systems, neural networks, etc.).

There are three main reasons why (Q)SARs and expert systems have not
been used to their full potential:

1. None have yet been formally validated;

2. They need to be improved to cover a wider spectrum of toxic mechanisms of
action, especially for endocrine disruption and non-genotoxic carcinogenesis
(that are both based on receptor-binding);

3. Their coordinated and combined use has not been explored sufficiently (15).

1.7 OECD’s Database on Chemical Risk Assessment Models
Models (computerized or capable of being computerized) that are used by

OECD countries to predict health or environmental effects, exposure potential,
and possible risks were organized into searchable database. But it should be
taken into account that this database is created for developmental use and the
methods described there have not been evaluated or validated by OECD; no
endorsement of the methods by OECD should be inferred by the inclusion of
certain methods in this database. This database is intended as an information
resource only. The models are listed by countries and by property or effect
included.

Screening level methods described there are useful, when chemical-specific
data are lacking, for establishing priorities for chemical evaluation and for
identifying issues of potential concern (16). Table 1 presents information in-
cluded in models.
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Directions in QSAR Modeling 207

Table 1: Information included in models of OECD’s database

Exposure/risk models for predicting human health or environmental exposure
potential and potential environmental, worker or consumer risk

Areas of assessment Human health, environment

Human health
Exposure covered • Indirect human exposure

via the environment
• Consumer product

exposure
• Worker exposure

Routes of exposure covered • Inhalation
• Ingestion
• Dermal
• Multi-media

Environment
Organisms covered • Freshwater organisms

• Marine organisms
• Sediment organisms
• Terrestrial organisms
• Micro-organisms in sewage

treatment plant
• Fish-and-worm eating

predators
Pathways of exposure covered Air, water, sediment, soil, biota,

sewage treatment plant,
multi-media

Type of information provided Daily intake, potential dose,
margin of safety, predicted
environmental
concentration, risk quotient
(predicted environmental
concentration/predicted
no-effect concentration)

Health or environmental effects models for predicting physical/chemical
properties, chemical and fate properties, and human and aquatic
hazard effects

Category of information provided

Physical/chemical properties
• Melting point, boiling point, vapor pressure
• Octanol-water partition coefficient (KOW)
• Water solubility
• Organic carbon adsorption coefficient

(KOC)
Environmental fate properties

• BCF (bioconcentration factor)
• AOP (atmospheric oxidation potential)
• Biodegradation
• Hydrolysis
• Percent removal in wastewater treatment

Hazard-human health Hazard-environmental
• Mutagenicity
• Neurotoxicity
• Reproductive toxicity
• Developmental toxicity
• Systemic toxicity
• Skin/eye irritation
• Oncogenicity

• Aquatic biota
• Terrestrial biota

(Continued on next page)
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208 N. Fjodorova et al.

Table 1: Information included in models of OECD’s database (Continued)

Type of Information Provided Endpoint(s)
• Qualitative
• Quantitative
• Range
• Point estimate
• Categorical information

• Reproduction
• Growth Mortality

Species/compartment addressed by model Model approach
• Air
• Water
• Sediment
• Soil
• Multi-media
• Aquatic biota
• Terrestrial biota

• Deterministic or probabilistic
• QSARs
• SARs

1.8 QSARs Based on Metabolism and In Vitro Data
Several in silico systems for predicting metabolism are available, including

(Q)SAR models and expert systems, but none of these have been compared ex-
tensively for their relative performances, and none have been formally accepted
for regulatory use, although some models can be used to provide supporting in-
formation in chemical risk assessments. There is currently no consensus on how
in silico models for predicting biotransformation should be validated. Also, a
variety of systems are in different stages of development, assessment and val-
idation. If they are to be of more practical use outside the pharmaceutical in-
dustry for regulatory testing, then further research needs to be undertaken to
make them more amenable for a wider range of chemicals. Problems with re-
gard to the availability of good quality data for benchmarking purposes, apply
to techniques for using in silico prediction systems and biokinetic models to
assess the metabolic fate of chemicals after uptake by different routes of expo-
sure in different species. Before these systems can be validated, more chemicals
with good quality data need to be found, for use as test sets. Nevertheless, it
was agreed that at least one biokinetic modeling system is, in principle, ready
for more formal consideration for validation. Clearly, in silico systems for pre-
dicting toxicity should take account of the possibility that biotransformation
could modulate toxicity. This could be achieved by modifying these systems, so
that they can model the toxicity of the principal metabolites of chemicals, or by
linking them with systems specifically designed to predict metabolite formation
(17).

An overall scheme for predictive toxicity testing has been discussed in the
manuscript (18). It has been emphasized that (Q)SAR analyses are used in
conjunction with expert system and biokinetic modeling, and information on
metabolism and identification of the principal metabolites in humans. Several
recommendations are made, the most important of which is that the Euro-
pean Union (EU) should actively promote the improvement and validation of
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Directions in QSAR Modeling 209

(Q)SAR models and expert systems, and computer-based methods for biokinetic
modeling.

In the monograph (15), it was highlighted that if mechanistically-based
toxicokinetic and toxicodynamic data are obtainable, risk characterization can
be improved considerably. This is illustrated by physiologically-based toxicoki-
netic modelling (pBTK models), which can be used at various stages of risk
assessment.

1.9 Perspectives in QSAR Modeling for Regulatory Use
Thousands of predictive models have been published in recent years, but

typically they are not suitable for regulatory purposes because they have not
taken into account essential factors for validation or quality assurance and
specific requirements for regulation.

The project CAESAR (computer assisted evaluation of industrial chemical
substances according to regulations) ongoing in the scope of FR6 Six Frame-
work Programme will develop (Q)SAR models as non-animal alternative tools
for assessment of chemical toxicity under REACH. CAESAR will include the
high quality factors that are needed to make the use of (Q)SARs acceptable for
regulatory purposes (such as the implementation of the REACH proposal) for
the prediction of the toxicity of chemical substances in a transparent manner
by applying new and unique modeling and validation methods. Five endpoints
will be addressed within CAESAR, chosen on the basis of the animal use that
is expected for the REACH legislation. In order to have high quality data sets,
data have been selected from high quality sources, and structures checked in-
dependently by at least two groups in the consortium. Preliminary results on a
model for the bioconcentration factor are superior to those previously published.
The predictions of properties together with all modeling details can be easily
used in chemical regulation. The CAESAR project goal is to design and develop
a web site incorporating the models developed. This site will be freely acces-
sible and (Q)SAR models and protocols will be available for non-commercial
use (18).

2. PREDICTION METHODS FOR REGULATORY USES AND DIRECTIONS
IN QSAR MODELING IN RUSSIA

2.1 Computational Methods in Toxicology to Assess Health
Effects from Exposure to Hazardous Substances

Computational Toxicology Methods Overview
The development of reliable computational methods for determination of

toxicity of chemical compounds is an intricate process that utilizes knowledge
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210 N. Fjodorova et al.

from many different scientific disciplines, including toxicology, chemistry,
mathematics and combination of listed sciences like chemometrics.

An outstanding Russian scientist toxicologist, professor Nikolay Vasilievich
Lazarev, introduced the computational methods in toxicology in Russia (19).

Prediction of toxicological properties of substances can be performed using
different physicochemical parameters. The description of computational meth-
ods for regulatory uses is reported in monograph (20).

Methods for substantiation, determination and calculation of maximum al-
lowable concentrations and tentative safe levels for different media (air, water,
soil) are given in guidelines called Methodical Instructions. Environmental and
occupational exposure levels (standards, norms) for chemicals in Russia are
approved by the Chief State Sanitary Doctor and are published as legislative
rules in official documents named Hygienic Norms (HN). Maximum allowable
concentrations (MAC), tentative safety exposure level (TSEL), tentative safety
levels (TSL) and tentative permissible levels (TPL) of chemicals in various en-
vironmental media are accepted as a permanent or temporary safe exposure
levels. Temporary norms are usually established for certain period of time (for
example, 2 years).

The determination of temporary norms or safety limits in different media
(air, water, soil) is based on calculation methods using regressions equations
(21–24).

In the monograph, Smirnov et al. (20) computational methods for sanitary
NORMs are divided into 3 groups:

1. On the basis of physico-chemical properties of substances;

2. Establishment of safety levels by toxicological parameters from short terms
experiments;

3. On the basis of safety levels found out in different media. In this case a data
transformation obtained in one media is done, applying the data to another
one.

The first step in risk assessment is estimation of toxicity parameters of
acute toxicity such as LD50, LC50 (lethal dose and concentration) values, Lim-
(threshold of hazardous effect of substances) and others. Safety levels (concen-
trations or doses) of substances used for regulatory purposes are calculated on
the bases of LD50, LC50 or Lim.

The calculation of LD50 or LC50 is divided into several sections:

1. For volatile organic compounds with boiling point below 200◦C (t ≤ 200◦C).

2. For low-volatile and non-volatile organic compounds with boiling point above
200◦C (t ≥ 200◦C)

3. For inorganic compounds of metals (oxides and salts).
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Directions in QSAR Modeling 211

The value of biological endpoint such as toxicity, strongly depends on the
aggregation state of substances (solid, liquid, gas) and route of administration
(oral, dermal, inhalation).

Thus, equations of regressions have been composed with LD50 or LC50 as
a response. As dependent variables the following physical and chemical prop-
erties of chemicals have been used:

M—molecular mass;
d—density (g/cm3);
RD—mole refraction;
t◦

boiling.
—boiling point (◦—);

t◦
melting.

—melting point (◦—);
C20—maximum saturated concentration of substances in the air at 20◦;
P—pressure of vapor at 20◦— (mm, millimeter of mercury);
S—dissolubility in water (g/l);
K—coefficient of distribution oil/water;
M.o.—molecular volume (M/d);
mM—millimole;
nD—refraction coefficient;
tflash—flashing point (◦—);
µ—dipole moment (debye);
Σα—sum of increments of nuclear quadrupole resonance (NQR);
Σσ—sum σ constant of Hammet.

In some cases, transformation of data from one species to another one or
from animal to human has been done.

Safety levels or NORMs can be found on the basis of the acute toxicity
values. Numerous regression equations have been composed.

Prediction of TPLs in Air
Parameters such as molecular weight (MW), boiling point and melting point

are used for prediction of safety levels in ambient air. Equations obtained for
non-congeneric sets of substances have been proposed. For organic substances
it was suggested to use the next equation:

log TSL = −8.0 log M + 14.75 + K,

where K is the correction factor dependent on MW, M is the molecular mass,
and TSL is the tentative safety level.

The values of correction factor depending on MW are presented in Table 2
(20).

TSLs in Air for Polybromo- and Chlorobenzenes using Electronic Parameters
The selection of substances with certain structure types suitable for cre-

ating predictive models for safety levels mainly determined accidently for



D
ow

nl
oa

de
d 

B
y:

 [F
jo

do
ro

va
, N

at
al

ja
] A

t: 
20

:1
4 

21
 J

un
e 

20
08
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Table 2: Correction factor values depending on MW

K—correction factor MW—molecular weight

K = −3 MW < 45
K = −1 45 ≤ MW ≤ 70
K = 0 70 < MW ≤ 146.9
K = 1 147 ≤ MW ≤ 199.9
K = 2 200 ≤ MW ≤ 265
K = 3 MW ≥ 265

example by scientific interest of researchers to a selected group of substances.
Thus, guidelines for development and establishment of TSL in ambient air con-
tain equations for prediction of safety level for polybromo- and polychlorbenzene
using electronic parameters is calculated by Hukkel method.

log TSL = −6.33 + 17.04|Qmax| − 16.20|�Q| + 12.24Nmax,

where Qmax is the maximum charge of carbon atom of benzene ring not con-
nected with substitute, �Q is the difference of sums of charge for atoms of ben-
zene ring of chlorine or bromine benzenes and their substituted derivatives,
and Nmax is the maximum index of free valency of benzene ring atoms.

TSLs in Air for Polybromo- and Polychlorobenzenes using Acute Toxicity Value
The prediction of safety levels can be done using acute toxicity value. For

polybromo- and polychlorobenzenes the following equation has been obtained:

log TSL = −8.0 log LD50 − 4.72

The multiple linear regression (MLR) equations have been suggested
for prediction of LD50 of new substances or poorly known chemicals of the
polybromo- and polychlorobenzenes series:

log LD50 = 3.34 − 0.25 − 0.25µ − 0.33|�σ |
log LD50 = 3.34 − 0.25 − 0.22µ − 0.52|�σ | − 0.0021|�α|
log LD50 = 3.69 + 0.0003M + 0.22µ − 0.0003tMelting − 0.22|µ − 0.53|�σ |

Where µ is the dipole moment, �σ is the sum of Hammet constants, and �α

is the sum of increments of nuclear quadrupole resonance of 35Cl and 79Br
nucleus.

TSLs for analogs of homologous series substances
For analogs within homologous series substances, it was suggested to use

the equation based on assumption of additivity of contribution of chemical bonds
to biological activity

TSL = 1000/�li , where �li is the additivity of chemical bonds.
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Directions in QSAR Modeling 213

In the guidelines for establishment of tentative safety levels for hazard
substances in the workplace air, the following equations are recommended for
calculation of TSL for halogenated toluenes containing halogen atoms in methyl
group or benzene ring.

In the case of irritating substances the following equation has been
proposed:

log(1/TSL) = −2.4 + 0.903EDA

while for toxic substances the equation below is applied:

log(1/TSL) = −0.2 + 0.027EDA,

where EDA is the parameter characterizing strength of bond with receptor and
can be calculated with the equation (hal = number of halogen atoms in the
molecule; OCC = number of occupied MO in the molecule):

hal occ

EDA = � �c2
ij/(εr − εi),

i j

where cij = coefficients for p-AO atom orbital of halogens in occupied MO, εr

energy of (p-type) acceptor level of receptor, and εi is the energy of occupied MO
of substance.

Equations were obtained on small samples, and coefficients of correlation
are not cited. However the coefficients of correlation for analogues equations for
prediction of LD50for the same group of substances are equal to 0.95–0.97 (25).

Prediction of TPLs in Water
Computational methods for prediction of TPLs in water are based on re-

gression equations with one parameter such as physicochemical descriptors
(electronic, hydrophobic or steric) or empirical parameters (solubility, melting
point, boiling point, spectroscopic descriptors, etc.). Table 3 contains parameters
used in regression equations for different groups of substances listed in (26).

Table 3: Parameters used in regression equation for different groups of substances

Parameters use in
Group of substances regression equation

Substitute benzenes µ-dipole moment
Amine and amide substances MW-molecular weight
Oxygen-containing substances Solubility in water
Solid hydrocarbon Melting point
Liquid organic compounds and gases (with

exception of acids and monohydric alcohols)
Boiling point
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It must be taken into account that guidelines in Russia didn’t contain
statistical characteristics of the reported equations (sample size, coefficient of
correlation, standard error, F-value). For this reason, the new models for acute
toxicity prediction and for calculation of safety levels have been developed,
which include statistical characteristics like: n = number of chemicals, r = cor-
relation coefficient, and s = standard error, etc. QSAR techniques are used to
estimate the toxicity of poorly characterized substances based on comparisons
to well-studied substances having similar chemical structures.

In this article, we focus on some aspects of QSAR modeling in Russia. Many
QSAR models have been developed for regulatory use, and establishment of
safety levels in different media as described below.

2.2 QSAR Methods used in Russia

Hansch and Free Wilson Methods
Between methods used in Russia we mention Hansch analysis (investiga-

tion of the quantitative relationship between the biological activity of a series
of compounds and their physicochemical substituent or global parameters rep-
resenting hydrophobic, electronic, steric and other effects using multiple re-
gression correlation methodology) and Free-Wilson (FW) analysis (a regression
technique using the presence or absence of substituents or groups as the only
molecular descriptors in correlations with biological activity).

For structural series of phenols, a regression equation was reported for
acute toxicity in rats in case of oral administration (n = 52, r = 0,887). For
MAC in air of work zone regression equations have been reported (n = 15,
r = 0,907) using the sum of Hammett electronic substituent constant, reflect-
ing the electron-donating or -accepting properties of a substituent (27). For
the same group of substances, 23 phenols were selected and data collected
from chronic toxicity experiment in rats in case of oral administration. A cor-
relation was found between MNED (maximum not effective dose) and loga-
rithm of octanol-water partition coefficient P, sum of Hammett substituent
constants and Free-Wilson indices for the fragments NO2, CH3 and Cl. The
statistical characteristics in this example were n= 23, r = 0.909, s = 0.577
(28).

Later topological descriptors were used for prediction models (29). The
molecular topology considers that biological activity is related to the molecu-
lar topological characteristics, numerically represented using the distance and
connectivity indices.

Pattern Recognition Technique
Pattern recognition is the identification of patterns in large data sets, us-

ing appropriate mathematical methodology. Examples are principal component
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analysis (PCA), SIMCA, partial least squares (PLS) and artificial neural
networks (ANN).

A computer-based system was developed for calculation of LD50 for drugs
on the basis of structural descriptors. Accuracy of prediction shows that in 91%
cases calculated values don’t differ from experimental by more then 3 times (30).

SAR Study
A model predicting toxicity level of organic substances by analyzing their

structural fragments was developed (31). Such a model determines hazardous
classes of substances through the MAC value. Substance with known priori
probability can be ranked in one of the four possible classes in relation to the
presence of some sets of fragments in the structure.

Hydrogen Bond Thermodynamics (HYBOT) Descriptors
Many program packages have been elaborated by Raevsky et al. They sug-

gested to use hydrogen bond thermodynamics (HYBOT) program for the estima-
tion of hydrogen bonds strength (32, 33) and developed the program package
molecular transform analysis (MOLTRA) (by Raevsky, Sapegin, Zefirov), the
QSAR discriminant-regression model conformational analysis (CONFAN), dis-
sociation constants (DISCO), and others. They also proposed a program for cal-
culating solubility, lipophilicity, and liposome penetrability (34). Most of these
programs are applied for pharmaceutical needs, but HYPOT descriptors have a
wide spectrum of application. Predictive models of aquatic toxicity of environ-
mental pollutants with different mechanisms of action were developed on the
basis of molecular similarity and HYBOT descriptors.

The molecular polarisability and hydrogen bond descriptors for the chem-
icals of interest and related compounds have been used to calculate any addi-
tional contribution in toxicity by means of linear regression relationships. Final
comparison of calculated and experimental toxicity values gave good results,
with standard deviation close to the experimental error (35).

The software program SLIPPER-2001 for prediction of the lipophilicity (log
P), solubility (log Sw), and oral absorption of drugs in humans (FA) has been
developed. It is based on structural and physicochemical similarity. Reliable re-
sults were obtained for simple compounds, for complex chemicals, and for drugs.
Thus, the principle of “similar compounds display similar properties” together
with estimating incremental changes in properties by using differences in
physicochemical parameters results in “structure-property” predictive models,
even in the absence of a precise understanding of the mechanisms involved (36).

Prediction by Infrared Spectrum
A computer-based system SPECTR for prediction of acute toxicity of pes-

ticides and intermediate products in the process of their manufacturing was
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developed, using infrared spectrum (37). The prediction is performed using the
method of closest neighbors in the space of spectrum features.

Another method was developed for acute toxicity prediction on the basis
of geometrical, topological, and quantum-chemical characteristics by means
of modified method of potential function and principle components analysis.
The accuracy of recognition was high enough, between 77 to 96% depending on
the structural series. The research was made for derivatives of thiazol, thiazo-
lidine and 1,3,4-thiazolidine (38). Logical structural approach for prediction of
acute toxicity hazardous class was also implemented (39, 40).

Neural Networks
Multi-level neural networks were used for prediction of toxicity, biological

activity, mutagenicity and carcinogenicity and were described by authors from
Laboratory of Organic Chemistry in Chemistry Department of M. V. Lomonosov
Moscow State University (MSU) (41).

2.3 QSARs Based on ADME and In Vitro Data

Pathogenetic Model of Intoxication
Pathogenetic model of intoxication was introduced by Zoldakova. For pre-

diction of toxicity parameters, a regression equation was used based on spline
approximation. Different stages of mechanism of toxicological action were sys-
tematized, and physico-chemical indices characterized each stage (such as ab-
sorbtion, distribution, overcoming the biological barriers, interaction with fer-
ments, included into cell’s membrane and others active centers, transformation,
cumulation, excretion) were applied (42).

The quantitative correlation for pathogenetical model can be expressed by
equation:

lgDE = A0 +
m∑

i=1

m∑

j=1

Ai,j xi xj +
m∑

i=1

Ai,xi

where DE = effective dose of substance (LD50, MAC, etc.), and xi = index.
Reliable correlations between acute toxicity and chronic toxicity (threshold

and safety levels) and physico-chemical parameters for 13 groups of congeneric
chemicals have been obtained.

The use of bioactivation processes in prediction of toxicity parameters was
also described in the following articles (43–45).

The hazardous class of substance in case of carcinogenicity of polycyclic
aromatic hydrocarbons and haloginated aliphatic hydrocarbons was predicted
using a logical combinatorial method and analysis of electronic parameters.
Structural and numerical descriptors have been used (46).
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QSARs Based on Bioactivation Processes of Metabolism
Structures and properties of single chemicals usually apply in QSAR mod-

els. However, the toxic effects are quite often determined by formation of
metabolites in the processes of bioactivation of chemicals by various enzymes.
Mechanism-based approach SARs for several toxic effects in various structural
series have been developed (43, 44).

Due to complexity of processes of biotransformation of chemicals in biologi-
cal systems, a single reaction of bioactivation cannot account for overall toxicity.
Therefore, a logical-combinatorial method of automatic hypothesis generation
was developed (47) based on the John Stuart Mills (JSM) logic. The JSM method
enables one to predict some property and provide the explanation of this pre-
diction. The prediction is based on the learning using the sets of positive and
negative examples. The method does not require big training sets. The stan-
dard JSM method does not operate with numerical parameters, but only with
chemical structure described by means of special descriptors named as func-
tional code of substructures superposition (FCSS). A combined approach has
been developed by Kharchevnikova, D’yachkov, Maksin, et al. They analyze not
only the similarity of structures, but also the closeness of numerical parameters
characterizing bioactivation process and/or stable metabolites (48–50).

A new approach has been developed for prediction of the most probable
metabolic sites on the basis of statistical analysis of various metabolic trans-
formations. It is related to the prediction of aromatic hydroxylation sites for
diverse sets of substrates. Training is performed using the aromatic hydroxyla-
tion reactions from the metabolism database (Accelrys). Validation was carried
out on heterogeneous sets of aromatic compounds reported in the metabolite
database (MDL). The average accuracy of prediction of experimentally observed
hydroxylation sites estimated for 1552 substrates from metabolite is 84.5%. The
proposed approach is compared with two electronic models for P450 mediated
aromatic hydroxylation: the oxenoid model using the atomic oxygen and the
model using the methoxy radical as a model for the heme active oxygen species.
For benzene derivatives, the proposed method is inferior to the oxenoid model
and as accurate as the methoxy-radical model. It was shown that for hetero- and
polycyclic compounds, the oxenoid model was not applicable, and the statistical
method was the most accurate (51).

An approach based on the oxenoid model of monooxygenase action and
semiempirical quantum chemical calculations was applied to the prediction of
aromatic hydroxylation sites of cytochrome P450 substrates. The results were
compared with experimental data on the metabolism in mammals and human
from metabolite database (52).

Fundamental review about application of quantum chemistry for toxicology
is given in the Russian magazine Toxicology (53). Knowledge of metabolic path-
ways of chemical can substantially enhance the accuracy of structure activity
analysis.
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Carcinogenicity Prediction Models
A version of logical-combinatorial JSM type intelligent system has been

developed to predict the carcinogenicity class of untested chemicals. This ver-
sion was based on the combined description of chemical substances including
both structural and numeric parameters. The new version relies on the fact
that the toxicity and danger caused by chemical substances often depends on
their biological activation in the organism. The classification of chemicals was
made according to their carcinogenic activity, for polycyclic aromatic hydrocar-
bons using a model of bioactivation via the formation of diolepoxides, and for
the halogenated alkanes using a model of bioactivation via oxidative dehalo-
genation. The system is able to define the limit (boundary level) of an energetic
parameter. The exceeding of this limit related to the inhibition of halogenated
alkanes’s metabolism and the absence of carcinogenic activity. Hazardous class
can be predicted by the value of carcinogenic potential, number of affected or-
gans (tissues) and the number of tumor bearing species (54).

Genotoxicity Prediction Based on Ames Test and Micronuclear Test Data
In 1974, Bruce Ames developed a bioassay performed on bacteria to as-

sess the capability of environmental chemicals to induce genetic mutation. In
genotoxicity prediction models as independent variable the results of battery
of tests with strain of Salmonella typhimurium and several possible tests, for
instance with activation of microsomal fraction of mammalian liver cells are
used. An original ensemble of structural descriptors was used, indicating si-
multaneously presence in molecule activating and deactivating groups. Some
chemicals that are known to cause cancer do not test positive in the Ames test,
and some chemicals that test positive do not cause cancer. Nonetheless, the
test is still considered an important part of assessing the safety of new chem-
icals. The test is useful as a screening tool for setting priorities because it is
an inexpensive and quick way to help single out chemicals that should be tar-
geted for further testing. It is also used in industry as a primary preventive
approach to eliminate potential carcinogens early in the process of developing
new commercial chemicals (55).

In Russia, the use of the Ames test is recommended in the course of step-
wise substantiation of safety levels. These results must help the investigator to
decide if it is necessary to carry out long-term experiments on carcinogenicity
using laboratory animals. A disadvantage of the Ames test is the difference
of bacterial and mammalian cells. The micronuclear test on genotoxicity is
widely used in vitro toxicological tests and is carried out using cells of mam-
mals. Usually the bone marrow cells are used. A new approach, the polyorgan
micronuclear test, is used in Russia for the evaluation of mutagenic effects of
chemicals (56). This test can be also used during multi-stage substantiation of
safety levels of chemicals.
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2.4 Computer Program PASS

Input and Output Content of PASS Program
Computer program PASS (prediction of activity spectra for substances) pre-

dicts simultaneously more than three thousand biological activities (main and
side pharmacological effects, mechanisms of action, specific toxicities, biotrans-
formations) (57–62).

PASS is based on the concept of biological activity spectrum of the com-
pound, which must reflect all kinds of its biological activity resulting from the
compound’s interaction with biological entities. Since not one compound has
been tested experimentally against all known kinds of biological activity, for
any real compound known biological activity spectrum contains only part of
such information. Biological activity spectrum for the compound under study
predicted in silico with PASS can identify some additional kinds of biological ac-
tivity, based on the structural similarity to the sub-sets of compounds, for which
the appropriate activities were determined experimentally. Biological activities
are described in PASS in qualitative mode (“active” and “inactive”), which pro-
vides the possibility of combing the heterogenous information collected from
literature in the PASS training set.

Therefore, PASS predictions are based on the results of structure-activity
relationships analysis accumulated in the SARBase, which is generated during
the training procedure. Currently (PASS 2007 version), PASS training set in-
cludes the information on ∼120000 biologically active compounds with ∼5000
kinds of biological activity. These molecules are presented by the completely
determined simply connected 2D structural formulae of uncharged molecules.
The user can explore the existing SARBase, provided with PASS, or create his
own SARBase using in house developed training set(s).

Since new information about biologically active compounds emerges con-
stantly, continual updating of the existing PASS training set is performed. The
first version of PASS (1995) was based on the data for ∼10000 biologically active
compounds with ∼100 kinds of biological activity; in 1998 these figures came
to ∼30000 and ∼500, respectively; in 2004 these figures came to ∼57000 and
∼1000, respectively; etc. (see Table 4).

Table 4: Computer program PASS versions

PASS versions Amount of biologically Number of biological
presented by years active compounds activity types

1995 ∼10,000 ∼100
1998 ∼30,000 ∼500
2004 ∼57,000 ∼1000
2007 ∼120,000 ∼5000
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Information about biologically active compounds is collected from papers
and electronic sources and, after the experts’ evaluation, is regularly added to
the PASS training set.

Statistical Performance of PASS Algorithm
In parallel with the extending of PASS training set, PASS algorithm is also

modified to provide more accurate results of prediction. The average accuracy
of prediction estimated on the basis of leave one out cross-validation (LOO CV)
for the whole training set and all predictable kinds of biological activity was
∼78% in 1995, ∼85% in 1998, and ∼94% in the current version of PASS.

PASS 2007 version predicts ∼3300 kinds of biological activity, while bio-
logically active compounds from the PASS training set are described by ∼5000
kinds of biological activity. However, some of these biological activities are rep-
resented by one or two compounds in the PASS training set, which is not enough
to provide an accurate estimation of biological activity (three is the minimum
number of compounds currently specified in PASS); also, for some kinds of bi-
ological activity accuracy of prediction in LOO CV procedure is less than 70%.
Such kinds of biological activity are not included into the default list of PASS
predictable activities.

Due to the unavoidable incompleteness of any training set, which can be
used for biological activity spectra prediction, a robustness of the used algo-
rithm is particularly important. By special computational experiments made
with a set of about 20000 principal compounds from the MDDR database it was
shown that, despite the random removal of up to 60% of structural or biological
information, PASS algorithm still provides a reasonable accuracy of prediction
(63).

Descriptors Used in PASS
Chemical descriptors used in PASS analysis, called Multilevel Neighbor-

hoods of Atoms (MNA) are described in detail elsewhere (64). They are auto-
matically generated on the basis of MOL-file of a molecule. The list of MNA
descriptors currently consists of more than 52,000 different items. The new
descriptors added to this list being found in a novel compound refreshing the
training set.

During the prediction of biological activity spectra the number of new (in
relation to the existing SARBase) descriptors is calculated for the compound
under study, which provides the possibility of broad definition of PASS ap-
plicability domain. If the compound under study contains three or more new
descriptors, the results of prediction give a rather crude estimaton of potential
biological activity spectrum for this compound.

MNA descriptors are effectively utilized in SAR, QSAR and similarity
analysis for drug-like compounds (64–71). Recently, new local integrative
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descriptors (QNA) were proposed (72), which may provide some advan-
tages in (Q)SAR/(Q)SPR analysis (73). On the basis of QNA descriptors and
self-consistent regression computer program GUSAR (general unrestricted
structure-activity relationships) is developed (76). For nine data sets, which
contain the information about biological activity, toxicity and metaboloism for
non-congeneric compounds, it was shown that GUSAR provides accuracy of pre-
diction comparable to that of CoMFA, CoMSIA, GRID, HQSAR, EVA and 2D
QSAR methods (74).

Prediction of Biotransformations
On the basis of PASS, the computer program for prediction of drug-like com-

pounds biotransformations by enzymatic systems in the organism was devel-
oped. It was shown that PASS Biotrafo provides reasonable accuracy of predic-
tion for about 1000 kinds of biotransformation (75). Also, it was demonstrated
(77) that use of PASS-like algorithms allow to predict the aromatic hydroxyla-
tion sites with accuracy close or better to those of quantum chemical methods
(78).

The Latest Results of PASS
One of the latest results concerning PASS was represented at the 12th

International Workshop on Quantitative Structure-Activity Relationships in
Environmental Toxicology (QSAR2006), 8–12 May 2006 in Lyon, France. It was
shown that toxicity of chemical compound is a complex phenomenon that may
be caused by its interaction with different targets in the organism. Two distinct
types of toxicity can be broadly specified: the first one is caused by the strong
compound’s interaction with a single target (e.g., AChE inhibition); while the
second one is caused by the moderate compound’s interaction with many various
targets. Since PASS predicts with reasonable accuracy several thousand kinds
of biological activity based on the structural formula of chemical compounds,
PASS provides an estimated profile of compound’s action in biological space.
Such profiles can be used to recognize the most probable targets, interaction
with which might be a reason of compound’s toxicity (79). Predicted biological
activity spectra were used recently as a secondary variable for modeling of
endocrine disruption profiles of xenobiotics (80).

PASS Availability in Internet
Since 2000, PASS predictions can be performed via Internet (62, 81, 82).

One may obtain the results of PASS INet prediction by submitting the MOL
file as an input data or drawing the molecule directly on the display using the
MARVIN applet. For about 3000 registered users, this service is provided free
of charge, and in 2007 alone, more than 70,000 molecules were submitted for
prediction. A dozen papers were published by the independent researchers, in



D
ow

nl
oa

de
d 

B
y:

 [F
jo

do
ro

va
, N

at
al

ja
] A

t: 
20

:1
4 

21
 J

un
e 

20
08

 

222 N. Fjodorova et al.

which PASS predictions were later confirmed by the experiments (for the review
see (83)).

2.5 Expert System SARET-TERA

SARET
Expert system SARET (structure-activity relationships for environmental

toxicology) has been developed for quantitative analysis of structure-property
(QSPR), structure-activity (QSAR) and property-property (QPPR) relationships
and prediction of toxicity and environmental effects of chemical compounds. It
was introduced by Prof. Sergey Novikov, MRC “MEDTOXECO”, Department of
General Hygiene, Moscow, Russia and by Prof. Vladimir Poroikov, IBMC RAMS,
Moscow, Russia, http://www.ibmh.msk.ru (84–85).

The expert system SARET consists of

1. SARETbase—data bank that includes toxicological parameters of chemicals,

2. SARETmodel—special computer system for modeling and calculations,

3. Computer programs for calculation of descriptors (sub-structural, electronic,
topological, etc.),

4. The integrated risk assessment program for determination of health haz-
ardous of chemicals.

Input Content of SARET
SARETbase includes the information on more than 190 characteristics

for 8500 substances: chemical structure, physico-chemical properties (density,
boiling and melting points, partition coefficients of octanol/water, etc.), adverse
effect doses and concentrations for acute and chronic exposure, odor thresholds
in water and air, character of odor, some of threshold limit values for occupa-
tional and environmental exposure (air, water), etc. (86).

Output Content of SARET
SARETmodel is designed for statistical analysis of data and calculation of

unknown parameters of substances on the basis of (Q)SARs. The application
of SARET provides the information necessary to evaluate the hazard of chem-
icals and to estimate their unknown characteristics. Mathematical models for
prediction of toxicological properties of chemicals have been developed. Maxi-
mum allowable concentrations for hazard substances in different environmen-
tal compartments (air, water, etc.) for different classes of chemical compounds
have been calculated. The relationship between physicochemical properties and
safe exposure limits have been studied. The new methods for prediction of
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maximum allowable concentrations for air pollutants have been introduced.
The distinguishing characteristics of biological activity of chemicals was taken
into account.

SARET programs was written in DOS. Application of operation system
Windows stimulated renovation of prediction programs and development of
expert system TERA (tools for environmental risk assessment).

TERA
TERA is aimed at risk assessment of different pollutants. TERAbase is a

part of expert system created by prof. S.M.Novikov and coauthors from the
A.N.Sysin Research Institute of Human Ecology and Environmental Health of
Russian Academy of Medical Sciences. TERA contains information useful for
human, environmental and ecological risk assessment and management.

Input Content of TERA
TERA includes the information on approximately 200 characteristics for

more than 13,000 chemical substances. The information collected in SARET
and TERA is verified and specified on the basis of both Russian and foreign
literature data including official documents, open publications, and “grey” lit-
erature. TERA contains information for 194 mixtures, 182 polymers, 346 dyes,
1080 non-organic compounds, 1407 remedies, 1260 agrochemicals (including
pesticides). More than 1000 compounds contained in TERA are not presented
in the Registry of Toxic Effects of Chemical Substances (RTECS).

TERA contains the following characteristics:
� Chemical structures and their codes (SMILES), the CAS and RTECs num-

bers;

� Physicochemical properties;

� Human health toxicity values (adverse effect doses and concentrations for
acute and chronic exposure);

� Odor thresholds in water and air;

� Skin, eye irritating properties of substances;

� Threshold limit values for occupational and environmental exposure in dif-
ferent media such as maximum allowable concentration used in Russia,
safe limits set by American Conference of Governmental Industrial Hygien-
ists (ACGIH), Occupational Safety and Health Administration (OSHA), Na-
tional Institute for Occupational Safety and Health (NIOSH) and risk as-
sessment values such as Immediately Dangerous to Life and Health (IDLH);

� Target organs and systems;
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� Characteristics of specific effects such as carcinogenicity, mutagenicity, ter-
atogenicity, embryotoxicity, etc. Evaluation of carcinogenic potency is given
in accordance with Russian classifications as well as those set by the fol-
lowing agencies and bodies: International Agency for Research on Cancer
(IARC); National Institute for Occupational Safety and Health (NIOSH);
Office of Environmental Health and Hazard Assessment (OEHHA); Occu-
pational Safety & Health Administration (OSHA); American Conference
of Governmental Industrial Hygienists (ACGIH); National Toxicology Pro-
gram (NTP);

� Hazardous classes of chemicals according to international classifications;

� Epidemiological data and human health risk assessment;

� Toxicological properties of substances for different kinds of biosystems, etc.;

� Ecological effects such as acute fish, long-term toxicity, acute Daphnid, Alga,
terrestrial toxicity.

Besides TERA contains more than 50 special databases, i.e., on cancer
slope factors, the regional USA safety levels, reference doses (RfDs), refer-
ence concentrations (RfCs) from integrated risk information system (IRIS),
the EPA superfund health effects assessment summary tables (HEAST), Cali-
fornia Environmental Protection Agency (Cal EPA), etc. Exposure standards
as defined by World Health Organization (WHO) and agencies and regula-
tory bodies of EU, Canada, Sweden and United States (US) are presented in
TERA.

Output Content of TERA
TERA is integrated system which incorporates:

� Calculation of physical and chemical properties;

� Assessment of multi-domain risk;

� Assessment of carcinogenic potency risk;

� Prediction of lead concentrations in blood of fetus, children, adults (system
LRISK);

� Health risk connected with lead exposure;

� Prediction of emission of chemical substances and there distribution in dif-
ferent media;

� Parameters used for setting priority of chemical substances in risk assess-
ment;

� Risk assessment using epidemiological data;
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� Health risk assessment of air pollutants;

� Health risk assessment of chemicals in case of emergency;

� Evaluation of industrial chemicals emission, etc.

TERA includes additionally biokinetic models taken from US Environ-
mental Protection Agency (EPA) and simple risk assessment model CalTOX
(CalEPA) that calculates the emissions of a chemical, the concentration of a
chemical in soil, and the risk of an adverse health effect due to a chemical.

Continuous Development of TERA
TERA is continuously updating. The new substances structures and prop-

erties are inserting into database.
The main ongoing activities of TERA are listed below:

1. Development of new models for air pollutants emissions;

2. Improvement of predictive models on behavior and fate of chemicals in en-
vironment;

3. Improvement of predictive models on physicochemical toxicological proper-
ties of chemicals in relation to human exposure;

4. Health care costs calculation in case of exposure to harmful chemicals.

For regulatory use introduction of models for calculation of tentative safe
exposure levels of unknown chemicals will be done (87, 88).

Chemical Substances Information Resources in Russia

Registers of Chemical Substanses in Russia
Registers of chemical substances in Russia are databases where chemicals

are collected and registered.
The biggest registers are listed below:

� National register of pesticides and agrochemicals;

� National register of potentially hazardous chemical and biological sub-
stances;

� National register of human and veterinary medicinal products;

� National register on hazardous industrial sites;

� National register on waste disposal facilities and federal classification
catalogue of wastes;

� Regional Toxicological Information Center “TOXI”, St-Petersburg.
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Russian register of potentially hazardous chemical and biological
substances in Moscow, Russia “

” includes on-line
“ ” data base which contains information about 2977 substances
(05.06.2007) and is available at http://www.rpohv.ru/arips/online/ (89).

Harmful Chemical Substances Encyclopedic Editions
The outstanding Russian scientist toxicologist, profes-

sor Nikolay Vasilievich Lazarev published in 1933 the first
reference book Harmful Chemical Substances in Industry
(“ ”- in Russian), which
included encyclopedic information about chemical substances and pesticides
and their properties. His book has been published 7 times from 1933 to
1977 and content has been updated. Later the publishing house Chemistry
published a few reference books edited by V.A. Filov (90–97).

The common name of all books is Harmful Substances.
The content of books is listed below:

� Oxygen-containing organic substances;

� Nonorganic substances of elements by group I–IV;

� Nonorganic substances of elements by group V–VIII;

� Radioactive substances;

� Carbohydrates. Halogen containing carbohydrates;

� Nitrogen-containing organic substances;

� Halogen- and oxygencontaining organic substances;

� Natural organic substances.

This is the biggest collection of chemicals substances. It contains IUPAC
names of substances, trade names and synonyms. Articles in the books contain
information about chemicals pollutants, physico-chemical properties, synthesis,
application, information about toxic properties of substances in environment
and concerned with effect to human health. The reference book includes also
hygienic norms, i.e., safety levels of substances in different media. It includes
references to test methods of substances from 1970 (98).

Publishing house “Professional” (“ “ ”) prepared for
publishing 11 volumes of Filov V.A. reference book Harmful Chemical Sub-
stances in Environment (“ ”)
and a book Hygienic normatives of chemical substances in environment
(“ “ ”).

Volumes 1–6 of Filov’s reference book have been published.
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Volume 7 and 8 will be published soon. Information about publishing edi-
tions (98–101) is avalable at web http://www.naukaspb.ru/Podpiski/VHV.htm

The biggest collection of hygienic norms approved by Ministry of Health
until 2007 is represented in the book of Rahmanina et.al Hygienic Norms of
Chemical Substances in Environment (102).

In the book, the data for more than 4000 substances have been collected
including MACs, TSLs, TPLs for different media (air, water, soil), safety levels
for food, data for pesticides, etc. Each chemical has chemical abstracts service
(CAS) numbers and an IUPAC name.

Authors are experts in chemistry, biology, toxicology, biochemistry, ecology,
etc.

Hazard Database
The database HAZARD includes data on teratogenicity, carcinogenicity

and mutagenicity of chemicals and is available at web http://www.iephb.
nw.ru/∼spirov/hazard/ (103).

HAZARD Project was supported by Russian Foundation for Basic Re-
searches (Grants No 98-07-90373, 01-07-90373). The database contains data
on carcinogenicity for about 400 chemicals, data for teratogenicity (results of
tests on embryotoxicity, palatal cleft, neural system abnormalities, skeletal ab-
normalities) for about 1000 chemicals and data on mutagenic activity for about
700 chemicals.

Conclusion

Development of reliable QSARs models in Europe for the regulatory needs is
actual in the light of the REACH and at the international level in the scope
of OECD chemical assessment programs and Globally Harmonized System of
Classification and Labeling of Chemicals (GHS). QSAR models for most end-
points will undoubtedly be used to provide us with test expectations for thou-
sands of untested chemicals. In so doing, QSAR will complement the 3Rs (re-
placement, refinement and reduction of animals in research) with a powerful
new tool to minimize animal testing. The integration of QSAR models with in
vitro methods holds great promise in the prudent use and interpretation of our
testing and assessment resources. Improved QSAR models will follow quickly.
Sharing knowledge about QSAR modeling in different countries helps to choose
the optimal decision in future implementation of QSARs for regulatory uses.
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Terms

Artificial Neural Networks–Artificial neural networks (ANN) are algo-
rithms simulating the functioning of human neurons and may be used for pat-
tern recognition problems, e.g., to establish a quantitative structure-activity
relationship.

Chemometrics–Chemometrics is the application of statistics to the anal-
ysis of chemical data (from organic, analytical or medicinal chemistry) and
design of chemical experiments and simulation.

Computational Chemistry–Computational chemistry is a dis-
cipline using mathematical methods for the calculation of molecu-
lar properties or for the simulation of molecular behavior. It also in-
cludes, synthesis planning, database searching, and combinatorial library
manipulation.

Free-Wilson (FW) Analysis–Free-Wilson analysis is a regression tech-
nique using the presence or absence of substituents or groups as the only
molecule descriptors in correlations with biological activity.

Hammett Constant–The Hammett constant is an electronic substituent
descriptor reflecting the electron-donating or -accepting properties of a sub-
stituent.

Hansch Analysis–Hansch analysis is the investigation of the quantitative
relationship between the biological activity of a series of compounds and their
physicochemical substituent or global parameters representing hydrophobic,
electronic, steric and other effects using multiple regression correlation method-
ology.

Hansch-Fujita Constant–The Hansch-Fujita constant describes the con-
tribution of a substituent to the lipophilicity of a compound.

Hydrophilicity–Hydrophilicity is the tendency of a molecule to be solvated
by water.

Hydrophobicity–Hydrophobicity is the association of non-polar groups or
molecules in an aqueous environment that arises from the tendency of water
to exclude non-polar molecules.

LC50Lethal Concentration–The concentration of chemical that causes
the death of 50% of test animals.

LD50 Lethal Dose–(50% of population is expected to die) The quantity of
material what will result in death of 50% of the test animals.

Molecular Descriptors–Molecular descriptors are terms that character-
ize a specific aspect of a molecule.

Multivariate Statistics–Multivariate statistics is a set of statistical tools
to analyze data (e.g., chemical and biological) matrices using regression and/or
pattern recognition techniques.

Pattern Recognition–Pattern recognition is the identification of patterns
in large data sets, using appropriate mathematical methodology. Examples are
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principal component analysis (PCA), SIMCA, partial least squares (PLS) and
artificial neural networks (ANN).

QSAR–Quantitative structure–activity relationship (QSAR). A quantita-
tive functional relation between an activity (e.g., toxicity) and one or more
other structural descriptors. The generic term is quantitative structure–
property relationship (QSPR), and specific sub-terms are used, such as quan-
titative structure–toxicity relationship (QSTR) and quantitative structure–
biodegradability.

3Rs–Refinement: minimize suffering and distress; Reduction: minimize
number of animals used; Replacement: avoid the use of living animals. The
principle of the 3Rs was first enunciated by William Russell and Rex Burch in
1959.

Regression Analysis–Regression analysis is the use of statistical meth-
ods for modeling a set of dependent variables, Y, in terms of combinations of
predictors, X. It includes methods such as multiple linear regression (MLR) and
partial least squares (PLS).

Risk Assessment (in the context of human health)-The evaluation of scien-
tific information on the hazardous properties of environmental agents (hazard
characterization), the dose-response relationship (dose-response assessment),
and the extent of human exposure to those agents (exposure assessment). The
product of the risk assessment is a statement regarding the probability that
populations or individuals so exposed will be harmed and to what degree (risk
characterization).

SAR–Structure–activity relationship (SAR); a qualitative relationship be-
tween molecular structure and biological activity.

SMILES–Simplified molecular input line entry system (SMILES) is a
string notation used to describe the nature and topology of molecular struc-
tures.

Topological Index–A topological index is a numerical value associated
with chemical constitution for correlation of chemical structure with various
physical properties, chemical reactivity or biological activity. The numerical ba-
sis for topological indices is provided (depending on how a molecular graph is
converted into a numerical value) by either the adjacency matrix or the topolog-
ical distance matrix. In the latter the topological distance between two vertices
is the number of edges in the shortest path between these.

Toxicity–Deleterious or adverse biological effects elicited by a chemical,
physical, or biological agent.

Toxicodynamics–The determination and quantification of the sequence
of events at the cellular and molecular levels leading to a toxic response to an
environmental agent (sometimes referred to as pharmacodynamics).

Toxicokinetics–The determination and quantification of the time course
of absorption, distribution, biotransformation, and excretion of chemicals
(sometimes referred to as pharmacokinetics).
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Toxicometry–Term sometimes used to indicate a combination of investiga-
tive methods and techniques for making a quantitative assessment of toxicity
and the hazards of potentially toxic substances.
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