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Summary

Both society and industry are interested in increasing the safety of pharmaceuticals. Potentially dangerous
compounds could be filtered out at early stages of R&D by computer prediction of biological activity and
ADMET characteristics. Accuracy of such predictions strongly depends on the quality & quantity of
information contained in a training set. Suggestion that some relevant chemical information can be added
to such training sets without disclosing chemical structures was generated at the recent ACS Symposium.
We presented arguments that such safety exchange of relevant chemical information is impossible. Any
relevant information about chemical structures can be used for search of either a particular compound itself
or its close analogues. Risk of identifying such structures is enough to prevent pharma industry from
relevant chemical information exchange.

Introduction

Chemical information is equal to almost 50% of
all available information, and about half of
chemical data are related to biology & medicine.
Currently, approximately 25 million organic
chemical structures are presented in CAS databas-
es [1], 8 million can be found in Beilstein databases
[2], 14 million unique chemical structures, which
are available as samples, are searchable by Chem-
Finder [3]. However, all these correspond to only a
small fraction of general chemical space: combi-
nations from only 30 C, N, O, and S atoms already
give about 1060 molecules [4].

A lot of chemical information related to biolog-
ical activity has not ever been published. Possessed

by the pharmaceutical industry, this information is
stored in ‘‘in house’’ databases, and only a small
part of this information is disclosed to public by
patents and publications. Such proprietary infor-
mation constitutes essential assets of companies
providing them with significant advantages at
highly competitive pharmaceutical market.

After the Thalidomide’s tragedy happened in
1959–1962, many pharmaceuticals have been with-
drawn from the market due to their adverse effects
and toxicity. Baycol and Vioxx are just two recent
examples of cases that badly influenced on the
reputation of companies and decreased the cost of
their shares at the stock market. Even more impor-
tant that, according to the statistics, about 100,000
annual deaths of patients in US are currently
associated with adverse effects of drugs [5].

Therefore, it is obvious that both society and
industry are interested in increasing the safety of
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pharmaceuticals. One way to achieve this goal is to
filter out potentially dangerous chemical com-
pounds at the early stage of R&D by computer
prediction of biological activity [6, 7], and AD-
MET characteristics [8]. However, the accuracy
and reliability of computational estimates strongly
depend on the quality & quantity of information,
which is used as the basis for computer-aided
prediction. Since the amount of information about
biologically active compounds in public domain is
limited, the question arises: Could it be possible to
improve the accuracy of computational models by
adding the information available within companies
to the public data? As nobody is naive enough to
suggest that every company readily discloses all its
proprietary structural data to the public, the topic
of recent Symposium ‘‘Safe exchange of chemical
information: can relevant chemical information be
exchanged without disclosing chemical struc-
tures?’’ [9] is really vital. Two answers were given
at the Symposium, positive and negative one. Our
arguments, why relevant chemical information
cannot be exchanged without disclosing of struc-
tures, are presented below.

Results and discussion

General reflections

First of all, what is relevant chemical information
without chemical structure? ‘‘Relevant’’ means
‘‘having a bearing on or connection with the
subject at issue’’. Since structure is one of the main
issues in modern chemistry, relevant information
detached from the chemical structure looks like the
Cheshire cat’s smile.

Secondly, everyday practice of analytical chem-
istry clearly provides the evidence that structure of
molecule could be reconstructed on the basis of
data on its properties. Otherwise, no information
about structure of millions of compounds could be
available today from databases like CAS, Beil-
stein, etc.

Certainly, there are 100s of descriptors associ-
ated with chemical structures that can be used to
build predictive models. However, information
about such descriptors could serve as the basis for
reverse engineering or identification of com-
pound’s class (see below).

Reverse engineering or identification of compound’s
class?

The basic hypothesis of SAR/QSAR/QSPR is
based on the suggestion that molecular property
can be presented as a function of molecular
structure: Property = Function(Structure). The in-
verse problem (reverse engineering) requires a
solution of another equation: Structure=Func-
tion(Property). Actually, the main purpose of
reverse engineering is design of compounds with
the required properties.

The most general representation of both func-
tions is the structure–property relationship or, in
other words, the set of tuples {<Structure, Prop-
erty>}. So, any chemical database includes the
partial functions {<Structure, Property1>},
{<Structure, Property2>}, .... Since the relevant
information is presented by the values of descrip-
tors (that could be exchanged), the set of these
descriptors can be used as a fingerprint, to search
for a particular molecule itself or class of mole-
cules with a particular property. Let us consider
some examples that illustrate such possibility.

Experiments with MDDR database and PASS
training set

First of all, we tried to compare two sub-sets of
compounds with molecular weight less than
1500 D. The first sub-set that is called SET1
includes 31,644 principal compounds from the
MDDR database [10]; the second one that is
called SET2 includes 41,602 compounds from the
training set of computer program PASS [6, 7].
Both SET1 and SET2 are relatively small in size
comparing to the large databases provided by
CAS, ChemFinder, etc. Distribution of molecular
weights for compounds from SET1 and SET2 is
shown on Figure 1. Median values are 422 D and
390.5 D for SET1 and SET2 respectively. Smaller
median value for SET2 could be probably
explained by removing counter ions in com-
pounds from PASS training set. Neighborhoods
of median values are the most populated in both
sub-sets.

The data presented in Table 1 illustrates that
even molecular weight could be successfully used
as a parameter to search for a particular
compound in databases. All compounds in two
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sub-sets with the same molecular weight have also
the same molecular formula. These compounds
likely have the same structural formula but might
differ as stereoisomers.

Complexity of chemical structures comparing to the
complexity of scientific text

Is this just an occasional result or reverse engi-
neering of chemical structures is not so difficult in
general? To estimate the complexity of chemical
structure, we used a compression procedure in
accordance with the Shennon’s theorem of coding.
Structure samples were exported for both SET1
and SET2 from ISIS/Base as SDfiles, and were
further converted into SMILES format with
ConSystant software. The SMILES format is
probably one of the most compact representation
of chemical structures. At the next step we
compressed the text files with chemical structures
represented by the SMILES format with free
software 7zip, which allows optimization of tuning
parameters to obtain the maximal compression
ratio. The results represented a number of bits per
molecule for compounds with different molecular
weights are presented in Figure 2.

The complexity of chemical structure varies in
range 60–150 bit/molecule for molecular weights
variation in range 250–675 D. Median equals to
100 bit/molecule at 400 D. It must be stressed
that this value is the upper estimation, and
therefore the real chemical structure complexity
is less.

For comparison we performed such procedure
with the text file included all abstracts of the Sym-
posium [9]. As a result we obtained 2.4 bit/letter or
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Figure 1. Molecular weight distributions for compounds from SET1 and SET2.

Table 1. Molecular formula and molecular weight (MW) of
compounds in SET1 and SET2 found in neighborhood of
MW median value for principal compounds from MDDR
database.

C23H22N2O6 422.44159

C23H22N2O6 422.44159

C22H25F3N2O3 422.45135

C25H23FO5 422.45746

C23H23FN4O3 422.46316

C23H23FN4O3 422.46316

C25H23N2NaO3 422.46346

C24H19FO4S 422.47903

C25H26O6 422.48237

C24H26N2O5 422.48522

C20H30N4O6 422.48530

C27H22N2O3 422.48799

C23H26N4O4 422.48807

C23H26N4O4 422.48807

C23H26N4O4 422.48807

C26H22N4O2 422.49084

C22H26N6O3 422.49092

C22H26N6O3 422.49092

C25H22N6O 422.49369

C25H22N6O 422.49369

C17H23N2NaO5S2 422.50106

C26H27FO4 422.50109
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about 16 bit/word. So, chemical structure of
typical drug-like compound has complexity, which
is equivalent to those of usual scientific text of
6 words (40 letters). Of course, the number 2100 is
rather great, but the complexity order of �100 bit
is not a problem that could not be solved by
modern cryptographic analysis. Based on these
estimations, one may conclude that even direct
reverse engineering with the use of complete
enumeration (‘‘brute force method’’) is possible.

Of course, our experiments only demonstrated
the principal possibility of reverse engineering.
They could not guarantee that in any particular
case the structures will be reconstructed unambig-
uously. However, while the positive answer to the
question posed in the title of the ACS Symposium
should be proved for a general case, the negative
answer does not require such evidences. Demon-
stration that significant risk of structure disclosing
exists is already a sufficient argument for pharma
industry, to avoid such ‘‘safety’’ exchange of
chemical information.

How many molecular descriptors represent a
relevant information about chemical structure?

The next question is: How many descriptors are
necessary to get a relevant information about
chemical structure? We considered this problem by

case study of Multilevel Neighborhood of Atoms
(MNA) descriptors [11] used in PASS [6, 7]. A
number of MNA descriptors per one molecule in
SET1 scattering close to lognormal distribution
with an average value equals to 30 MNA/molecule
(Figure 3).

We also calculated an average numbers of
structures, which includes 1, 2, ... common with
MNA descriptors of a particular molecule. The
results are presented in Figure 4.

It is clear, that on average 10 of 30 randomly
chosen MNA descriptors is enough to find one
unique structure in the set included more than
10,000,000 structures. So, even part of MNA
descriptors, which represent a compound, is enough
to identify this compound in the database. Cer-
tainly, we suggest that this compound is included
into the database used for the search, but even if it is
not so, the close analogs of the compound will be
probably found. But this is in themost cases enough
to identify the compound’s class, to generate a
plausible hypothesis about its activity/property,
and finally to create a ‘‘me-too-drug’’.

Experiments with open NCI database

We have investigated a possibility of reverse
engineering or identification of the appropriate
compound’s class on the basis of some other types
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Figure 2. Complexity of chemical structure for compounds from SET1 and SET2.
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of descriptors available in open NCI database [12].
Since this database is freely available via Internet,
it is widely used for validation of various database
mining methods [13–15].

Molecular weight and logP represent rather
simple kinds of descriptors that are widely used in
QSAR/QSPR studies. Both descriptors are avail-
able in the NCI database in a searchable mode
using toolkit CACTVS [12]. We have calculated
how many chemical compounds from NCI data-
base correspond to different ranges of molecular
weight and logP (calculated by KOW method).
The results are presented in Table 2.

As one may conclude from the results presented
in Table 2, only four chemical structures belong to

MW & logP range 400–401 & 3.65–3.75 or 400–
400.5 & 3.65–3.75. This result clearly demonstrates
that using only combination of two very simple
molecular descriptors it is possible to identify a
few compounds that correspond to the values of
descriptors. In the majority of cases this means the
disclosure of structure itself or at least their
chemical class.

Biological activity spectra components used as a
query

Computer program PASS (version 1.913.2) pre-
dicts 986 kinds of biological activity on the basis of
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Figure 4. Average numbers of structures, which includes 1, 2, ... common with particular molecule MNA descriptors.

Figure 3. Distribution of MNA descriptors number for one molecule in SET1.
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compound’s structural formula with reasonable
accuracy (�85% in leave one out cross-validation)
[6, 7]. Example of such prediction for one com-
pound taken by chance from Prestwick database
[16] is given in Figure 5. The result of prediction is
presented as the list of activities with appropriate
Pa and Pi, sorted in descending order of the
difference (Pa–Pi)>0. Pa is the probability of
belonging to the class of ‘‘actives’’, and Pi is the
probability of belonging to the class of ‘‘inactives’’.
Only activities for which the predicted probability
Pa>0.5 are given in Figure 5.

As one may see from Figure 5, this compound
is presented in PASS training set but during the
prediction the compound with all its known
biological activities (Antiallergic; Antiinflamma-
tory; Antipruritic; Antipruritic, allergic; Antipru-
ritic, non-allergic; Antipsoriatic; Arachidonic acid
antagonist; Dermatologic; Glucocorticoid agonist;
Immunosuppressant; Steroid-like) have been ex-
cluded, to provide more objective results of pre-
diction. The structure contains 50 different MNA
descriptors. 23 of 986 kinds of biological activity
are predicted with Pa>0.5. The majority of known
kinds of biological activity are successfully pre-
dicted. Only one activity ‘‘Arachidonic acid antag-
onist’’ is not predicted.

PASS represents the properties of molecules in
biological space in contrast to many other de-
scriptors, which reflect the structural properties of
molecules. PASS parameters can be used for
clustering of compounds according to their

Table 2. Number of chemical structures in NCI database
corresponding to the particular ranges of molecular weight
and logP values.

MW N LogP N MW & logP N

400–402 903 3.67–3.73 2019 400–402 & 3.6–3.8 21

400–401 536 3.68–3.72 1338 400–402 & 3.65–3.75 10

400–400.5 338 3.69–3.71 644 400–402 & 3.67–3.73 8

400–401 & 3.4–4.0 31

400–401 & 3.6–3.8 12

400–401 & 3.65–3.75 4

400–400.5 & 3.4–4.0 21

400–400.5 & 3.6–3.8 7

400–400.5 & 3.65–3.75 4

Here: MW is the range of molecular weights; logP is the range
of logarithm of n-octanol/water distribution coefficients cal-
culated by KOW method; N is the number of chemical struc-
tures fallen into the appropriate range of the descriptors.

Figure 5. Structure and results of biological activity spectra
prediction for Triamcinolone (No 438 in Prestwick database).
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biological properties, not according to their struc-
tural similarity.

We tried to apply PASS predictions for three
molecules chosen randomly from Prestwick data-
base as a search queries to analyze NCI database.
One molecule was Triamcinolone discussed above,
two others were Proadifen Hydrochloride and
Oxybutinine Chloride (numbers 124 and 621 in
Prestwick database). Biological activity spectra
were predicted by PASS 1.913.2. Top four activ-
ities with Pa range 0.7–1.0 were used as a query to
Enhanced CACTVS Browser. For example, the
query for Triamcinolone has the following form:
(Antiinflammatory and Pa�0.7–1.0) and (Antial-
lergic and Pa�0.7–1.0) and (Antipruritic and
Pa�0.7–1.0) and (Antipruritic, allergic and
Pa�0.7–1.0).

As a result, we found in NCI database one
coincidence with the query for Proadifen Hydro-
chloride (Figure 6) and several structures similar

to the structures used as a query (e.g., see Figure 7
for Oxybutinine Chloride).

It should be emphasized that PASS predictions
used as a query were obtained using PASS version
1.913.2, whereas PASS prediction stored in the
NCI database were obtained with PASS version
1.41 [17]. PASS version 1.41 was able to predict
only 565 kinds of biological activities [12], while
the current version of PASS predicts 986 kinds of
biological activity. Also, Prestwick database is not
too close to NCI database. The first one contains
about 1000 approved drugs [16], but the second
one contains about 250,000 chemical compounds
that were selected for study as potential antineo-
plastic and anti-HIV leads.

However, despite of these differences for three
structures randomly selected from Prestwick data-
base we found either the same structure or its close
analog in NCI database, using only four kinds of
biological activity predicted by PASS with the

Figure 6. Coincidence of randomly chosen structure from Prestwick database with the structures from NCI database.
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highest probability. This experiment clearly dem-
onstrates that using molecular descriptors in
biological space it is possible to identify at least a
compound’s class, and therefore to disclose the
structures of interest.

Conclusions

Based on the data discussed above it is obvious
that a significant risk of structure disclosing exists
when relevant chemical information (descriptors
etc.) becomes publically available. Using the infor-
mation about relevant descriptors as a query, it is
possible to find either compound itself in the
existing databases or at least identify their chem-
ical class that will be in many cases enough to
recognize what are target compounds.

Even if particular compounds classes are absent
in the available databases like MDDR, NCI,

Beilstein, ChemFinder or CAS, chemical structure
generators can be applied that might provide more
appropriate virtual structures under the restric-
tions of known descriptors’ values.

In general, according to Bruce Schneider the
problem of information security cannot be solved
forever [18]. Struggle for security of information is
permanent process, and nobody could be sure that
he already won. Security of information vs.
security threats is always a tradeoff between time
and costs of the first and the second issue.

Keeping in mind that people from pharmaceu-
tical industry are more than just careful concern-
ing the confidentiality of its research and
development, it is not realistic to expect that they
would be ready to present any relevant informa-
tion about compounds even if a very small risk of
structure disclosing exists. Only increasing require-
ments of society to the drugs safety and strong
legal measures could provide reasonable stimuli

Figure 7. Similarity of randomly chosen structure from Prestwick database with the structures from NCI database.
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for pharmaceutical industry to provide access to
information that might help to improve signifi-
cantly methods for filtering off potentially danger-
ous compounds.
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