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6.1 Introduction 

Biological activity has the probabilistic nature, and the most appropriate approaches in activity prediction are based 

on the theory of probability. The statistical nature of maximum likelihood method and Bayesian approach is well 

recognized, but many other methods (multiple regression, factor analysis, pattern recognition methods such as linear 

discriminant analysis, linear learning machine, support vector machines etc.)
1-3

 can also be considered as 

probabilistic ones.
4,5

 An informational search in PubMed Central with the queries “(probabilistic approach) OR 

(probabilistic method)” or “(statistical approach) OR (statistical method)”, will find 3,477 documents or 180,475 

documents, respectively. It is impossible to analyze all these publications, particularly taking into account that, 

despite of the presence of this term in their titles many of them are not really probabilistic (see, for instance, 

refs 6−20). We propose the following definition of probabilistic approaches: “The methods that use probabilities as 

an essential part of the algorithm, and/or for which the results of application are presented as probability estimates”. 

Thus, many approaches that do not correspond strictly to the definition, are not considered in this chapter. 

Since data on general dose-response relationships are not available in many cases, biological activity is often 

represented by a single quantitative or even qualitative characteristic. Therefore, many training sets are created with 

activity data presented in such mode. These probabilistic ligand-based drug design methods are further used for 

virtual screening. Existing training sets are not ideal, not just due to the simplified definition of biological activity, 

but also because (i) no one activity is represented by all relevant chemical classes and (ii) no one compound has 

been tested against all kinds of biological activity. So, the probabilistic character of biological activity is caused not 

only by experimental errors of its determination but also by incompleteness of available information.  

Typically, virtual screening methods are used to select  hits with a single required activity,
21-24

 while the final aim 

of pharmaceutical R & D is to identify  safety and potent leads and drug-candidates.
25-28

 To overcome this problem, 

the authors have developed a method for prediction of many kinds of biological activity simultaneously based on the 

structural formula of chemical compound, which is realized in the computer program PASS (Prediction of Activity 

Spectra for Substances).
29,30

 PASS provides the means for evaluation of general biological activity profile at the 

early stages of R & D, and thus its prediction can be used as a basis for the selection of compounds with the required 

kinds of biological activity but without unwanted ones.
31,32

  

In this chapter we overview some probabilistic methods used for biological activity prediction, paying particular 

attention to the problems of creation of the training and evaluation sets, validation of (Q)SAR models, estimation of 

prediction accuracy, interpretation of the prediction results and their application in virtual screening. 

 



2 
 

In: Chemoinformatics Approaches to Virtual Screening. Eds. Alexandre Varnek and Alex Tropsha. RSC Publishing, 2008, pp. 182 – 216. 

 

6.2 Biological Activity 

Biological activity is the result of chemical compound’s interaction with biological objects. It depends on the 

characteristics of (i) compound (structure of molecule and its physical-chemical properties), (ii) biological object 

(kind, sex, age, etc.), (iii) way of exposure (route of administration, dosage), (iv) peculiarities of the experimental 

terms and conditions.  

The major paradigm of the twentieth century was based on the concept “one disease – one target”,
27,33

 therefore,  

at first chemical compounds were tested against the targeted activity, and only for those leads that passed through 

this “filter” was a more general biological activity profile was estimated. Currently, it is recognized that most 

pharmaceutical agents interact with several or even many targets in the organism, and thus their selectivity is rather 

relative. For example, by analysis of the available literature one may find that biological activity of caffeine (CAS 

No. 58-08-2) is described by the terms related to the following: 

 ten pharmacotherapeutic effects (analeptic, antihypertensive, antihypotensive, cardiotonic, diuretic, 

immunosuppressant, psychostimulant, respiratory analeptic, saluretic, spasmolytic);  

 18 biochemical mechanisms of action (ATP diphosphatase inhibitor, adenosine deaminase inhibitor, cyclic 

AMP phosphodiesterase inhibitor, cytochrome P450 inhibitor, “dATP(dGTP)-DNA purinetransferase 

inhibitor, glycogen (starch) synthase inhibitor, guanylate cyclase inhibitor, hydroxyacylglutathione 

hydrolase inhibitor, lactoylglutathione lyase inhibitor, nucleotide metabolism regulator, P-glycoprotein 

inhibitor, phosphatidylinositol kinase inhibitor, phosphodiesterase inhibitor, phosphorylase inhibitor, purine 

nucleosidase inhibitor, thymidine kinase inhibitor, urate oxidase inhibitor, xanthine-like agent);  

 nine adverse/toxic effects [arrhythmogenic, spasmogenic, convulsant, non mutagenic (salmonella), 

embryotoxic, teratogen, carcinogenic, carcinogenic (group 3), toxic];  

 16 metabolic terms (CYP1 substrate, CYP1A inhibitor, CYP1A substrate, CYP1A1 substrate, CYP1A2 

inhibitor, CYP1A2 substrate, CYP2 substrate, CYP2B substrate, CYP2B1 substrate, CYP2B2 substrate, 

CYP2E substrate, CYP2E1 substrate, CYP3A substrate, CYP3A1 substrate, CYP3A4 substrate, CYP3A5 

substrate).  

Some apparent contradictions in terms representing the biological activity of caffeine can be explained either by 

its opposite effects in different doses or by peculiarities of experimental terms and conditions in the appropriate 

studies. A similar picture can be observed also for most well-known pharmaceuticals. 
On the other hand, even acting on the same target, different chemical compounds can bind to them in different 

modes.
34

 Therefore, any individual chemical structure exhibits many biological activities, and vice versa a particular 

biological activity can be caused by many different chemical structures.
35,36

 

Biological activity is tested both in vivo and in vitro. In the past 20 years, due to advances in preparative and 

measuring techniques, a significant part of assays is the testing of ligand binding to the macromolecular target in 

vitro. It is necessary to keep in mind that such binding can occur not with the site of macromolecule that is 

responsible for its biological activity or for suppressing of this biological activity. As a result, many ligands found in 

high-throughput assays may appear to be nonspecific or “promiscuous” inhibitors.
37

 Moreover, binding is not a 

sufficient condition for ensuring that a beneficial function will ensue in the cell or in the organism as a whole.
38

 

After the deciphering of the human genome and first results in postgenomic studies it became obvious that many 

diseases have a complex etiology,
27

 while drug action on a certain target often leads to activation/inhibition of other 

elements in the appropriate regulatory network. As a consequence of negative feedback, expected pharma-

cotherapeutic action may be significantly decreased or even completely suppressed.
39

 Therefore, specially designed 

multi-targeted drugs may have certain advantages over single-targeted medicines.
33 

Since the final purpose of pharmaceutical studies to find hits & leads with the required, but without unwanted, 

properties the virtual screening should provide the estimation of general biological activity profile because such 

experimental studies are highly expensive and time-consuming. 
We proposed the biological activity spectrum of a substance concept, which seems to be a fundamental basis for 

description of biologically active substances.
29,30,32,40-43

 The “biological activity spectrum” of a substance is the set 

of different kinds of biological activity, which reflect the results of chemical substance's interaction with various 

biological entities. This more general concept was introduced earlier than “biospectra”
44,45

 or other “activity spec-

tra”.
46

 Biological activity is defined qualitatively (“yes” /“none”), suggesting that the “biological activity spectrum” 

represents the “intrinsic” property of a substance, depending only on its structure and physicochemical 
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characteristics. Certainly, this is a simplified definition because the exhibition of biological activity depends on the 

presence and state of the corresponding targets and experimental conditions (object, route of administration, dose, 

etc.). However, such approximation provides a possibility for combining of information from many different 

sources, which is necessary because no one particular publication represents comprehensively different aspects of 

biological action of a compound. For example, to collect information on the biological activity profile of caffeine 

discussed above, an extensive information search was performed of the available literature and databases. 

 

6.2.1 Dose-Effect Relationships 

In the most general form the description of biological activity of a certain chemical compound can be represented as 

a probability of occurrence of a certain biological response, depending on the experimental conditions (object, its 

state, means of exposure) and “dosage” of the compound (“dosage” can be represented in many different ways, in 

particular a single per os administration or fixed amount of a substance): Test)Pr(Doze, . Under the fixed 

experimental conditions one obtains a simple relationship “dose-effect”: )(Pr(Doze) DP . It must be stressed 

that P(D) is the probability of occurrence of a certain effect, which depends on a dose D as a parameter. 

According to the recommendations,
47

 in quantitative measurements of biological activity drug action is expressed 

in terms of the effect, E , produced when an agonist, A , is applied at a concentration ][A . The relationship 

between E  and ][A  can be often described empirically by the Hill’s equation,
48,49

 which has the form: 

 
   nHnH

nH

AA

A

E

E

50max 
 ,      (6.1) 

where maxE  is the maximal action of A , nH  is the Hill coefficient and 50][A  is the concentration that produces 

an effect that is 50% of maxE . In Figure 6.1 shows an example of effect-concentration relationships estimated 

according to the Hill equation (Equation 6.1). Clearly, if ][A = 50][A , all curves pass through the point at which the 

effect is half of its maximal value. 

 

Figure 6.1 Relative values of effect depending on relative agonist concentration calculated according to the Hill equation.  

nH are the different values of Hill coefficient. 
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Unfortunately, Hill's equation (Equation 6.1) is only a convenient mathematical idealization, which can be 

realized for ligand binding to the pure isolated receptor in vitro. In an intact biological object a ligand interacts with 

several or even many different macromolecules,
50

 and the final biological effect may dramatically differ from the 

simple relationship presented in Figure 6.1. For example, if some effect may be caused by two mechanisms, and a 

ligand interacts with the appropriate receptors, both activating and inhibiting them, then either activating or 

suppressing of the effect E  can be observed depending of the concentration ][A  of the ligand (Figures 6.2 and 6.3). 

 
   

 
   5050max 4 AA
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Figure 6.2 Relative effect vs. concentration of agonist provided the agonist simultaneously acts on another target  

as a weak antagonist. 
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Figure 6.3 Example of relative effect dependence on the agonist's concentration provided the agonist acts on another target as 

antagonist with equal semi-effective concentrations and different Hill coefficients. 
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In experimental testing of toxicity the results are presented by the numbers of surviving (n) and dying (m) 

biological objects within the fixed period of time under the fixed doses of acting substance D. The conditional 

probability )|,( DnmP  of certain numbers m  and n  at the certain D  corresponds to the Bernoulli distribution: 

 

!!

))(1()(
)!()|,(

nm

DPDP
nmDnmP

nm 
 ,   (6.2) 

where P(D) is the probability of death of a biological object at the obtained dosage D. Based on the experimental 

results, P(D) can be estimated only approximately by calculation of parameters for a definite parameter relationship 

P(D), for instance Equation (6.1). 

Usually, the dose-effect relationship )(DP  is simplified to the single quantitative or even qualitative 

characteristic. For example, for a certain level of probability q  it is possible to determine an appropriate 

characteristic dose (quantile) })({ qDPArgDq  . Most often, the 50ED  for 5.0q  values are used, but 

16.0q , 75.0q , 84.0q  are also considered sometimes. However, in case of non-monotonic dependence 

)(DP  the value qD  can be ambiguous or even not exist if qDP )( ; for instance if (i) the part of population is 

resistant to the acting compounds and (ii) the suggested threshold q exceeds the fraction of the responsible part of 

population. 

In accordance with the probabilistic nature of the biological activity concept, the most relevant methods for 

prediction of activity are those based on probabilistic theory and mathematical statistics, and the purpose of 

prediction is the complete relationship )(Pr(Doze) DP .  

Unfortunately, in practice, the application of such approaches is strongly limited by the available experimental 

data, which in most cases are presented by semi-effective doses and even by qualitative characteristics 

“active/inactive”.
51,52

 

 

 

6.2.2   Experimental Data 

The determination of biological activity is always associated with some experimental errors, which may be caused 

by variability of biological objects, inaccuracy of measurements due to the limited precision of the used equipment, 

inaccuracy of the personnel doing manual and mental work.  

If the experimental measurements have been repeated several times, the resultant data are presented as average 

values and standard deviations (SDs) of the measurements. In many cases numerical data in the literature and, parti-

cularly, in databases are presented without SDs even in cases where such values could be calculated on the basis of 

primary data. Also, the results of testing in high-throughput assays for inactive compounds typically mean that the 

compound does not cause the studied effect at a certain threshold, e.g., at 10 M, 1 M, etc.
52

 

Experimental errors associated with human error may be introduced both in experimental procedures (e.g., 

inaccuracies of sample preparation) and in theoretical analysis of the study results (e.g., errors in data drawing in 

publications, errors during the input of data into a computer).  

As was concluded by Christoph Helma et al.:
53

  

After summarizing our experiences with the quality assurance of chemical data in predictive toxicology, we 

conclude that the currently available databases and computational chemistry programs are too faulty to be trusted 

without further inspection. The development of reliable quality control procedures definitely needs more discussion, 

exchange of experience, and research activity. In this sense, we hope that we will raise some awareness in regard to 

data quality issues and quality assurance in predictive toxicology. 

The necessity of quality control for chemical structures, particularly when the data are aggregated from different 

sources, was recently emphasized in another publication.
54

 

However, the main source of scattering in experimental data is certainly determined by the variability of 

biological response. As was shown by comparison of results obtained in rodent carcinogenicity experiments, the 

concordance between the results taken from general literature and the results obtained from US National Toxicology 
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Program is only about 57%.
55  

Therefore, the reproducibility of biological assays may be quite poor. It is well known 

that LD50 values for rodents obtained in different laboratories may vary significantly (e.g., in LD50 studies performed 

by eleven laboratories to standardize a type A botulinum toxin assay for accessing the toxin in food contaminations, 

up to a ten-fold difference in results was shown).
56

 

Notably, in actual practice training sets are not ideal: in addition to a simplified definition and high variability of 

biological activity they do not contain all chemical classes relevant to a particular biological activity, and 

information about all kinds of biological activity that can be revealed by a particular compound is always 

incomplete (no one compound is tested against all kinds of biological activity, and there is no one activity for which 

all possible ligands are known). Consequently, the probabilistic character of biological activity is caused not only by 

experimental errors of its determination but also by the incompleteness of available information. 

 

 

6.3 Probabilistic Ligand-Based Virtual Screening Methods 

Virtual screening methods are based on the modeling of the biological phenomenon of molecular recognition, either 

by the principle of complementarity or by the principle of similarity.
57

 

Probabilistic ligand-based virtual screening methods look rather simple and fast; however, for their successful 

application it is necessary to have a training set of compounds with known activity. Probabilistic methods are based 

on the achievements of machine learning and have a long history, starting from pattern recognition methods.
4,5,58-63

 

Especially for the purposes of drug design, probabilistic methods were developed by Golender and Rozenblit,
64

 and 

realized later in the expert system OREX.
65

 In Section 6.4 we describe in detail the probabilistic method developed 

by our team, and to which the methods
7,66-74 

and binary QSAR
51,52,75,76

 are rather close in basic characteristics. 

An important component of probabilistic ligand-based virtual screening methods is the design of the training set, 

which is the set of ligands available or selected to develop the virtual screening system.
77-81

 The selection of this set 

and its usage strongly influence the overall performance of the final system.
82,83 

Also, it is necessary to use the 

appropriate evaluation of prediction accuracy and reliability, and the representation and interpretation of biological 

activity prediction results is very important. Based on the probabilistic approach, it is possible to solve all these 

problems. 

 

 

6.3.1   Preparation of Training Sets 

Training sets should be representative for the compounds to be classified by the ligand-based virtual screening 

system.
83

 Virtual screening is usually performed on a set containing a large number of ligands with a high diversity 

of molecular structure. For successful results, the diversity of structures from the training set must be comparable to 

those from the corresponding set used for virtual screening. As a rule, any training set must include sufficient active 

compounds as well as inactive ones.  

It seems obvious that an “ideal” training set must include all tested active and inactive compounds. However, in 

practice it is necessary to be very careful during the design of training set because “a data set consisting of database 

chemical drawings and HTS assay measurements may be very misleading”.
52

 

There exist some other peculiarities, for instance every compound in the MDDR database (MDL® Drug Data 

Report
84

) has one or several records in the field “activity class”, indicating that the compound is related to a certain 

therapeutic area. However, because of “umbrella patents”, not each substance in MDDR was actually tested in 

biological assays. Those substances for which biological activity was studied in detail are called “principal 

compounds”, and they have some records in the field “Action”, such as experimental data on activity, LD50, IC50, Ki, 

etc. There are some publications, in which the training set is prepared on the basis of the MDDR database but this 

peculiarity is not taken into account. 
7,73,74,85-87

 In these publications, for each ligand from the training sets that was 

actually tested in biological assays there are several structurally similar molecules for which biological activity was 

assigned with the purpose of umbrella patenting. Therefore, unsurprisingly, structure similarity methods studied in 

these publications were shown to be rather successful during the validation. 
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In a well-designed training set the structural diversity must be as uniform as possible. It is very difficult to control 

such uniformity; however, the presence of closely similar compounds series in the set could (and have to) be 

checked, to avoid degeneracy. 

In general, any ligand-based virtual screening method is based on direct or generalized similarity between the 

screened compound and compounds from the training set. Therefore, if such similarity is absent at all, no reasonable 

prediction of screened compound's properties can be made by using this training set. 
 

 

6.3.2   Creation of Evaluation Sets 

There are two fundamental problems in ligand-based virtual screening systems development: model selection and 

performance estimation. Almost invariably, all ligand-based methods have one or more adjustable parameters. To 

select the “optimal” parameter(s) or model for a given classification problem, it is necessary to utilize the 

independent evaluation set that was not used in the training procedure. Once the predictive system is developed, to 

estimate its performance, one must utilize the test set that was not used during the development process. To obtain 

the precise estimation of system performance, the test set must be large, ideally infinite. However, for a good choice 

of a model or its parameter(s), the number of compounds in training and evaluation sets must also be large. For 

theoretical analysis one can subdivide all available data into two (training and test) or three (training, evaluation and 

test) sets, which have to be approximately equal in size. However, to develop the actual working virtual screening 

system one must used all available data for the training; therefore, nothing remains for the evaluation and test sets. 

To overcome this contradiction, the most suitable methods for construction of evaluation (test) sets are K-Fold 

Cross-Validation (KF CV) and Leave-One-Out Cross-Validation (LOO CV).
87-90

 

To perform KF CV a K-fold partition of the data set is created. For each from К experiments, K-l folds are used 

for training and the remaining one for testing. The true error estimate is obtained as the average of the separate К 

estimates. LOO CV is the degenerated case of KF CV, where К is chosen as the total number of examples. For a 

data set with N examples, perform N experiments, for each experiment use N-1 examples for training and the 

remaining one example for testing. The true error is estimated as the average error value on test examples – on all 

existing examples. Vapnik
4
 proved several theorems, which stated unbiasedness and consistency of LOO CV 

estimation, if LOO CV is carefully performed: no information about the excluded compound is used for training and 

tuning the system based on a residual part of data set. Unfortunately, in the general case the computational time for 

LOO CV or even for KF CV will be very large due to the large number of sequential experiments. Fortunately, the 

probabilistic approaches usually have a small or zero number of tuned parameters and the LOO CV procedure can 

be performed quite easily. Thus, all available data can be used both for training and for evaluation of probabilistic 

ligand-based virtual screening systems. Earlier we have shown
91 

that LOO CV provides a more rigorous accuracy 

estimation than the repeated many times 2-Fold (or jack-knife) CV. 

 

 

6.3.3   Mathematical Approaches 

Many different methods can be applied to virtual screening, and such methods are described in other chapters of this 

book and/or in the Handbooks of Che-minformatics.
3
 Here we discuss the methods based on a probabilistic 

approach. Unfortunately, there are many publications in which the “probabilistic” or “statistical” approach items are 

farfetched. The Binary Kernel Discrimination
8-10,17,20

 and the Bayesian Machine Learning Models
6
 are actually 

special cases of Artificial Neural Networks; whereas the Probabilistic Neural Networks
14-16

 are really similarity-

based methods, which do not take into account the results of well-developed nonparametric regression methods.
92

 

In virtual screening of the chemical structures set called the Screening Set (SS) for each compound CSS any 

proposed method P should give the estimate P(C), which, being compared with a certain criterion, provides the basis 

for decision about the advisability of further testing of the chemical compound C. In other words, it is necessary to 

recognize whether compound С belongs to the class of compounds in which we are interested in, i.e., to solve the 

task of pattern recognition (PR), which is a typical problem of Machine Learning (ML). There are a lot of 

publications, monographs and specialized journals devoted to the problems of ML and PR; machine learning 

approaches are widely used in cheminformatics (see, for example, refs. 11,67,69-71,73,87,93,94). Notably, the 

fundamentals of machine learning were developed much earlier than the informational technologies (IT) became 
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widely introduced. For example, Nilsson
61

 noted, referring to Kanal,
59

 that the engineers rediscover for themselves 

well-known methods of statistics. Later, in machine learning these methods were discovered for a second time, and 

now the same situation is observed in cheminformatics: methods well known to engineers and IT specialists are 

rediscovered once again. Mathematically, the estimate P(C) in many cases can be represented as:
1, 61 

)C(fa)C(P ii i ,      (6.3) 

where )C(f i  are the different functions of chemical structure of compound C , independent from the coefficients 

ia . Various methods differ in the values of estimates )(CP , in the choice of functions )C(f i , and in approaches 

that are used to determine the coefficients ia . Without restriction of generality, let us suggest that the estimate 

)(CP  is a real quantity, and decision about advisability of further testing of chemical compound C  is taken if 

)C(P , where   is a threshold value. If the functions )C(f i  represent physical-chemical parameters or 

other quantitative characteristics of molecular structure and/or every possible function of these characteristics, and 

coefficients ia  are determined on the basis of regression, PLS, SVM etc., then the estimate )(CP  is the results of 

QSAR method. If, at the same time, )C(f i  are determined as a measure of similarity of structure of molecule C  

with another molecule iC  from the training set, it is a QSAR method based on similarity. If the functions )C(f i  

possess only the values 0 and 1, and coefficients ia  are determined on the basis of probabilistic approach, it is the 

method described in this Chapter. 

It is widely accepted that probabilistic approach was first developed and applied in expert systems MYCIN
95,96

 

and PROSPECTOR.
97

 In these expert systems the likelihood estimates are calculated for several competitive hypo-

thesis H on the basis of available evidences E. In expert system MYCIN each hypothesis was estimated by a 

confidence factor  ,...E,E|HCF 21  as a difference of estimates for measure of belief  ,...E,E|HMB 21  and 

measure of distrust  ,...E,E|HMD 21 : 

 

     ,...E,E|HMD,...E,E|HMB,...E,E|HCF 212121  , (6.4) 

where MB  and MD  were calculated by aggregation of values for separate evidences iE   iE|HMB  and 

 iE|HMD  according to the theory of probability rules. In fact, these aggregation rules are piecewise-linear 

approximations of simple formula: 

 
   

   mm

mm

m
E|HCFE,...,E,E|HCF

E|HCFE,...,E,E|HCF
E,...,E,E|HCF

121

121

21
1 






  (6.5) 

These equations follow directly from the approach, which is very popular in recent times in Machine Learning, Data 

Mining, Text Mining and Knowledge Data Discovery, bioinformatics and cheminformatics, and called “naive Bayes 

classifier”.
7,63,66,68,98,99

  Such approach was applied for virtual screening by Labute and Gao,
51,52,75,76

 and other 

researchers
67,69-71, 73

, and also by the authors of this Chapter.
91,100-104

 

When applied to virtual screening the naive Bayes classifier consists in the following. 

Let a molecular structure of compound C  to be represented by the set of descriptors { mD,...,D,D 21 }, and the 

probability that it belongs to a given class A  is estimated by a conditional probability 

   mD,...,D,D|APC|AP 21 . 

Using Bayes' theorem, we write: 

 
   

 m

m

m
D,...,D,DP

A|D,...,D,DPAP
D,...,D,D|AP

21

21

21


 ,   (6.6) 
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where  A|D,...,D,DP m21  is the conditional probability of the descriptors set { mD,...,D,D 21 } occurrence in 

a compound C  from class A ;  AP  is the class A  prior probability,  mD,...,D,DP 21  is the descriptors set   

{ mDDD ,...,, 21 } prior probability. The “naïve” conditional independence assumptions mean that each descriptor 

iD  is conditionally independent of every other descriptor jD  for ij   . This means that: 

         



m

i

imm A|DPA|DP...A|DPA|DPA|D,...,D,DP
1

2121   (6.7) 

As a result, the log-likelihood ratio of the conditional probability  mD,...,D,D|AP 21  of the class A  and 

 mD,...,D,D|AP 21  of its complement A  can be expressed as: 

 

 
 

 
 

 
  































 i
i

i

m

m

A|DP

A|DP
ln

AP

AP
ln

D,...,D,D|AP

D,...,D,D|AP
ln

21

21    (6.8) 

Taking into account that    mm D,...,D,D|APD,...,D,D|AP 2121 1  and using Bayes' theorem for 

ratio    A|DP/A|DP ii  , we find: 
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11121

21  (6.9) 

In terms of the general formula (6.3) )C(fa)C(P ii i  we can write: 

 
 
 










m

m

D,...,D,D|AP

D,...,D,D|AP
lnCP

21

21 ,      (6.10.a) 
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1
0 ,     10 Cf ,       (6.10.b) 
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11
,     (6.10.c) 

  1Cf i  if iD { mD,...,D,D 21 } and   0Cf i  if iD { mD,...,D,D 21 }. (6.10.d) 

Clearly, the constant 0a  can be included into threshold value  , so that the function   10 Cf  is not 

necessary. We must stress that in such form the probabilistic approach has no tuned parameters at all. Some tuning 

of naive Bayes classifier can be performed by selection of the molecular structure descriptors (or  Cf i ) set. This 

is a wonderful feature in contrast to QSAR methods, especially to Artificial Neural Networks.  

The describing functions   1Cf i  if iD { mD,...,D,D 21 } (and   0Cf i  otherwise) can be constructed 

on the basis of very wide approaches. In our investigations we use as descriptor sets { mD,...,D,D 21 } substructure 

fragment descriptors (see below). For quantitative parameters the describing function  Cf i  can be equal to 1 if 

molecule parameter(s) jx  satisfies the same condition k , e.g., if value of jx  belongs to some interval or 

multidimensional jx  belongs to some region in appropriate space, and so on. Like this, naive Bayes approach was 

proposed and developed by Labute and Gao.
51,52,74,75,76,105 
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The naive Bayes approach has several well known difficulties. The conditional independence of descriptors of a 

molecule structure is not true as a rule. The probability  iD|AP  estimations can be close or even equal to 0 or 1 

and in such case coefficients ia  become too large or infinite. To overcome this problem, we have substituted the 

logarithms of probabilities ratios      ii D|AP/D|APln 1  for   12 iD|APArcSin . The 

  12 iD|APArcSin  shape coincides with the shape of      ii D|AP/D|APln 1  for almost all values 

of  iD|AP , but   12 iD|APArcSin  values are bounded by the values 2/ . 

Interestingly, the naive Bayes approach is “too simple”, but as a rule it provides high accuracy of 

recognition
7,63,68

. 

 

 

6.3.4   Evaluation of Prediction Accuracy 

When a classifier that provides the estimation of P(C) is constructed, its performance must be estimated. The most 

important estimation is of the prediction accuracy. To do this, an evaluation set (test set or validation set - see 

Section 6.3.2) must be used. The evaluation set (ES) must be relevant and include both type of examples - positive 

and negative (“active” and “inactive” compounds). For all compounds  C ES estimations P(C) are calculated, 

and obtained values are analyzed using knowledge about the “true” classification of compounds in ES. Figure 6.4 

shows the main features of this task. 

Let us suggest that for compounds in ES we have values of some targeted molecular property. “Expert” divides 

ES into two parts: positive and negative examples. Using a constructed estimator we calculate P(C) values and, 

selecting the threshold value, divide ES into two other parts: predicted positive if )C(P  and predicted 

negative if )C(P . We compare prediction results with known data and calculate four numbers: TP is the 

number of true positives, FP is the number of false positives, TN is the number of true negatives, and FN is the 

number of false negatives (Figure 6.4) 

 

 

 

Figure 6.4 An artificially generated relationship between observed and calculated values of effect is shown as points with binomial 

distribution. Compounds are divided by the vertical line into actives and inactives according to the experimental values and by the 

horizontal line into predicted actives and inactives, at the selected threshold value. Compounds that fall into the appropriate 
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quadrants are classified based on the test as  “True Positives” (TP), “True Negatives” (TN), “False Positives” (FP), and 

“False Negatives” (FN). 

It is important to keep in mind that the situation illustrated in Figure 6.4 is a common case and it has symmetry in 

relation to errors: errors can be both in estimations P(C) and in experimental values. The result like that shown in 

Figure 6.4 occurs, even if the classifier is ideally true but experimental values are known with finite accuracy. 

For pattern recognition or classification, usually, the following characteristics of recognition accuracy are used 

(see, for example, refs. 66,106-108): 
 

Sensitivity   
FNTP

TP


  

Specificity   
FPTN

TN


  

Accuracy (Concordance)   
FNTNFPTP

TNTP




  

Predictive value positive  
FPTP

TP


  

Predictive value negative  
FNTN

TN


  

False Negative Rate   
FNTP

FN


  

False Positive Rate   
FPTN

FP




 
 

and others; each of them has some disadvantages. To minimize the disadvantages, Youden's index was proposed in 

1950.
109

 Youden's index summarizes the test accuracy into a single numeric value, Sensitivity + Specificity - 1, or: 

 

   FPTNFNTP

FNFPTNTP

FPTN

TN

FNTP

TP
YI










 1    (6.11) 

The recognition accuracy estimation described above faces one very important problem: what is the best choice 

for the threshold value  ? To solve this problem, statistical decision theory is used.
110-113

 The basis for this is an 

analysis of the so-called the Received Operating Characteristic (ROC) curve. By tradition, ROC is plotted as a 

function of true positive rate  FNTP/TP   (or sensitivity) versus false positive rate  FPTN/FP   ) (or 1-

Specificity) for all possible threshold values  . Figure 6.5 presents an example of such a ROC curve for the results 

obtained with our computer program PASS in predicting antineoplastic activity. 

Estimation of the optimal threshold value is provided by minimizing a risk function, which depends on a priori 

probabilities of positive and negative examples and loss values for all four (TP, FP, TN and FN) possible results. If 

a priori probabilities or losses are not known, the optimal choice is MiniMax (Mimimizing the Maximum possible 

loss) according to which the optimal threshold value must satisfy the condition “Sensitivity = Specificity”. Another 

choice may be the maximum of Youden's index. 

In any case, this approach uses several additional assumptions. For this reason in the last time in ML the 

recognition accuracy criterion of the Area Under the ROC Curve (AUC), which is free of additional assumptions, 

becomes very popular.
7,63,68-71,106-108,112-116

 Mathematically, AUC equals the probability that the estimation )(CP  

assigns the higher value to a randomly drawn positive example C  than to the randomly drawn negative example 

C : 

        CPCPYPROBABILITPAUC    (6.12) 
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Figure 6.5 Relationships between the Sensitivity [TP/(TP + FN)] (shown by the curve), Specificity [TN/(TN + FP)] and accuracy 

(concordance) [(TP+TN)/(TP + FP + TN + FN)], as functions of False Positive Rate = [FP/(TN + FP)]. The 

estimations were obtained by PASS 2007 in leave-one-out cross-validation procedure for antineoplastic activity.  

 

 

In our papers
91,117

 we have used the Invariant Accuracy of Prediction ( IAP ) criterion, which exactly coincides 

with AUC , and it is calculated as: 

    
   








CNumberOfCNumberOf

CPCPNumberOf
IAP     (6.13) 

In our computer program PASS (Section 6.4) we also use the Invariant Error of Prediction (IEP) criterion:  

IAPIEP  1 . 

Computationally, it is more convenient to calculate the estimate of prediction accuracy on ES as an Invariant 

Accuracy {IA), which equals   12 PAUC  and can be calculated as a result of comparison of estimates
 

)( CP  

for positive and )( CP  for negative examples through all pairs (each positive example and each negative example) 

in a form: 
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)z(Sgn   (6.14) 

which is the difference of numbers of cases of true )()(   CPCP  and false )()(   CPCP  divisions of 

pairs of positive and negative examples, divided on the number of all pairs NN . These are the following general 

cases: 

 If all objects are predicted with the same value )(CP , then 0IA . 

 If the prediction is random and the estimates )()(   CPCP  and )()(   CPCP  have equal 

probabilities, then 0IA  on average of probability. 

 If all outcomes )()(   CPCP  or )()(   CPCP , then 1IA  or 1IA , respectively. 
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If inaccuracy of division of ES onto two classes exists, then: 



















N

m

N

m
AIA 1  

where 1A  is the potential accuracy of the method, m  is the number of compounds mistakenly described as 

negative examples (not found yet or not studied positive examples), and m  is the number of compounds 

mistakenly described as positive examples, for instance due to the errors in data used for creation of the sets, 

mistakes of personnel, etc. With:  



















N

m

N

m
AIA 1  

it is possible to compare the accuracy of several classifiers using ES with “errors of the teacher” correctly. 

The IA  ( IAP , AUC )) criterion gives a robust estimation of general classifiers performance, but in the case of 

virtual screening to find several ligands at a top of ranked compounds list, the minimal number of decoys may be 

more important.
116,118

 For this purpose, Enrichment Factor,
7,115,119-122

 analysis of the robust initial enhancement 

(RIE)
116,118

 and Boltzmann-Enhanced Discrimination ROC (BEDROC)
116

 criteria were proposed. 

 

 

6.3.5   Single-Targeted vs. Multi-Targeted Virtual Screening 

Most existing virtual screening methods have been developed to be used for selection of hits with a single targeted 

activity.
22-24

 However, most discovered pharmaceutical agents have several or even many kinds of biological 

activity. Some of these biological activities represent adverse/toxic effects, some others can be considered as a 

reason for utilization of known medicines according to new indications, which is called repositioning of drugs.
123-126

 

Both new pharmacotherapeutics and adverse/toxic effect can be discovered on the basis of computer predictions 

with probabilistic methods. Different methods can be applied either sequentially or simultaneously. Early attempts 

to predict many kinds of biological activity simultaneously using such an approach were performed by Avidon and 

co-authors,
127

 Golender and Rozenblit,
64,65

 and Vassiliev and co-authors.
128

 

Since the early 1990s, the authors have been developing the computer program PASS, which predicts many kinds 

of biological activity based on the structural formula of a compound.
29,30,32,40,41,43,100

 This program, the present version 

of which predicts over 3000 kinds of biological activity with a mean accuracy of about 95%, is described in more 

detail below. Different PASS applications in virtual screening of multi-targeted ligands have been presented in 

several publications.
100-104,129

  

The Prous Institute for Biomedical Research
130

 is developing a computational method based on a wide range of 

molecular descriptors and binding profiles, called BioEpisteme
®
, which is claimed to facilitate the discovery of new 

medicines and new uses for existing drugs. Pre-requisites of the BioEpisteme approach are quite close to the PASS 

concept: “A drug may interact with multiple targets and produce more than one therapeutic response and/or adverse 

effect.” Unfortunately, we could not find a detailed description of the method used in BioEpisteme in the available 

literature - only the very general scheme presented on the web-site.
130

 Recently, the number of different molecular 

mechanisms covered by BioEpisteme was reported to be about 400.
131

 

Quantum Pharmaceuticals
132

 recently proposed a new method for toxicity prediction based on computation of 

small molecules' affinity to about 500 human proteins. The analysis of binding profiles for about 1000 known phar-

maceutical agents led to establishment of a relation between the toxicological properties of a molecule and its 

activity against the selected representatives of approximately 50 protein families. This activity profile was further 

used as a “natural” set of descriptors for various toxicological endpoints predictions, including human-MRDD, 

human-MRTD, human-TDLo, mouse-LD50 (oral, intravenous, subcutaneous), rat-LD50 (oral, intravenous, 

subcutaneous, intraperitoneal), etc.
46

 

Thus, probabilistic biological activity prediction methods can be used for both estimation of adverse/toxic effects 

in molecules under study and for finding the multi-targeted ligands, which might “yield drugs of superior clinical 

value compared with monotargeted formulations”.
33 
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6.4 PASS Approach 

The computer program PASS was designed to predict many kinds of biological activity simultaneously based on the 

structural formulae of chemical compounds. Thus, PASS may estimate the biological activity profiles for virtual 

molecules, prior to their chemical synthesis and biological testing.  

 

 

6.4.1   Biological Activities Predicted by PASS 

The latest version of PASS (2007) predicts 3300 kinds of biological activity with a mean prediction accuracy of 

about 95%. PASS could predict about 1000 kinds of biological activity in 2004,
32

 only 541 activities in 1998,
133

 and 

114 activities in 1996.
30

 

The default list of predictable biological activities currently includes 374 pharmacotherapeutic effects (e.g., 

antihypertensive, hepatoprotectant, nootropic, etc.), 2755 mechanisms of action, (e.g., 5-hydroxytryptamine 

antagonist, acetylcholine Ml receptor agonist, cyclooxygenase inhibitor, etc.), 50 adverse and toxic effects (e.g., 

carcinogenic, mutagenic, hematotoxic, etc.) and 121 metabolic terms (e.g., CYP1A inducer, CYP1A1 inhibitor, 

CYP3A4 substrate, etc.). Information about novel activities and new compounds can be straightforwardly included 

into PASS. 

In PASS biological activities are described qualitatively (“active” or “inactive”). Qualitative presentation allows 

integrating information concerning compounds tested under different terms and conditions and collected from many 

different sources, as in the general PASS training set. Any property of chemical compounds that is determined by 

their structural peculiarities can be used for prediction by PASS. Clearly, the applicability of PASS is broader than 

the prediction of biological activity spectra. For example, we used this approach to predict drug-likeness
134

 and the 

biotransformation of drug-like compounds.
135

 

 

 

6.4.2   Chemical Structure Description in PASS 

The 2D structural formulae of compounds were chosen as the basis for description of chemical structure because 

this is the only information available in the early stage of research. Plenty of characteristics of chemical compounds 

can be calculated on the basis of structural formulae.
3,67,136-139

 Earlier
29

 we applied the Substructure Superposition 

Fragment Notation (SSFN) codes.
140 

But SSFN, like many other structural descriptors, reflects rather abstraction of 

chemical structure by the human mind than the nature of the biological activity revealed by chemicals. The 

Multilevel Neighborhoods of Atoms (MNA) descriptors
91,141,142

 have certain advantages over SSFN. These 

descriptors are based on the molecular structure representation, which includes the hydrogens according to the 

valences and partial charges of present atoms and does not specify the types of bonds. MNA descriptors are 

generated as a recursively defined sequence: 

 zero-level MNA descriptor for each atom is the mark A  of the atom itself; 

 any next-level MNA descriptor for the atom is the sub-structure notation  ......21 iDDDA , 

where iD  is the previous-level MNA descriptor for i –th immediate neighbours of the atom A . 

The mark of atom may include not only the atomic type but also any additional information about the atom. In 

particular, if the atom is not included into the ring, it is marked by “-”. The neighbour descriptors  are 

arranged in uniquely, e.g., in lexicographic order. Iterative process of MNA descriptors generation can be continued, 

covering first, second, etc. neighborhoods of each atom. MNA descriptors have a more general background than the 

descriptors,
67,137

 which look like MNA. 

The molecular structure is represented by the set of unique MNA descriptors of the 1st and 2nd levels. The 

substances are considered to be equivalent in PASS if they have the same set of MNA descriptors. Since MNA 

......21 iDDD
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descriptors do not represent the stereochemical peculiarities of a molecule, substances whose structures differ only 

stereochemically are formally considered as equivalent. 

 

 

6.4.3   SAR Base 

The PASS estimations of biological activity spectra of new compounds are based on the Structure-Activity 

Relationships data and knowledge-base (SAR Base), which accumulates the results of the training set analysis. The 

in-house developed general PASS training set currently (December 2007) includes about 117000 known 

biologically active substances (drugs, drug-candidates, leads, and toxic compounds). Since new information about 

biologically active compounds is discovered regularly, we perform a special informational search and analyze the 

new information, which is further used for updating and correcting the PASS training set. 

 

 

6.4.4   Algorithm of Activity Spectrum Estimation 

The algorithm of activity spectrum estimation is based on the above-mentioned Bayesian approach, but differs in 

several details. For each kind of activity kA , which can be predicted by PASS, on the basis of a molecule's structure 

represented by the set of MNA descriptors { mDDD ,...,, 21 } the following values are calculated: 

 

  120  kk APS ,      (6.15.1) 

  







  1|2ArcSin

1
Sin ikk DAP

m
S ,   (6.15.2) 
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kk
k

SS

SS
B

0

0

1


 ,      (6.15.3) 

where  kAP  is a priori probability to find a compound with activity of kind kA ;  ik DAP |  is a conditional 

probability of activity of kind kA  if the descriptor iD  is present in a set of molecule's descriptors. For each kind of 

activity, if for all descriptors of molecule   1| ik DAP , then 1kB ; if for all descriptors of molecule 

  0| ik DAP , then 1kB ; if the relationship between descriptors of molecule and activity kA  does not exist 

and    ikk DAPAP | , then 0kB . 

The simplest frequency estimations of probabilities  kAP ,  ik DAP |  are given by: 

 

 
N

N
AP k

k  ,   
i

ik
ik

N

N
DAP | ,    (6.16) 

where N  is the total number of compounds in the SAR Base;  is the number of compounds containing the 

activity kA  in the activity spectrum;  is the number of compounds containing descriptor iD  in the structure 

description; ikN  is the number of compounds containing both the activity kA  and the descriptor iD . 

In PASS version 1.703 and later the estimations of probabilities  kAP ,  ik DAP |  are calculated as: 

 

kN

iN
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where  kn Af  is the generic function of compound n  belonging to a set of compounds containing the activity kA  

in the activity spectrum,  kn Af  is equal to 0 or 1;  in Dg  is the measure of compound n  belonging to the set of 

compounds containing descriptor iD  in the structure description, now  in Dg  is equal to 0 or 

nm

1
, where nm  is 

the number of descriptors for the molecule n , and  in this case.  

The estimations Equations (6.17a, b) of probabilities  kAP ,  ik DAP |  not only increase the algorithm’s 

prediction accuracy, but also open up new possibilities. For example, function  kn Af  in the range [0, 1] can be 

considered as a measure of molecule n  belonging to a fuzzy set of molecules that reveal activity . The 

descriptor weight
 

 in Dg  can be considered in the same manner, and then the molecule structure descriptors can 

be of arbitrary nature, e.g., such as in the refs. 51 and 52. 

The main purpose of PASS is the prediction of activity spectra for new, possibly not yet synthesized compounds. 

Therefore, the general principle of the PASS algorithm is the exclusion from SAR Base of substances that is 

equivalent to the substance under prediction. So, if molecule n  is equivalent to the molecule under prediction then 

this substance is excluded from sums in (Equations 6.17a,b). 

To obtain the qualitative (“Yes/No”) results of prediction, it is necessary to define the threshold
 kB  values for 

each kind of activity kA . On the basis of statistical decision theory (Section 6.3.4) it is possible using the risk 

functions minimization, but nobody can a priori determine such functions for all kinds of activity and for all 

possible real-world problems. Therefore the predicted activity spectrum is presented in PASS by the list of activities 

with probabilities “to be active” aP  and “to be inactive” iP  calculated for each activity. The list is arranged in 

descending order of ia PP  ; thus, the more probable activities are at the top of the list. The list can be shortened at 

any desirable cutoff value, but ia PP   is used by default. If the user chooses a rather high value of aP  as a cutoff 

for selection of probable activities, the chance to confirm the predicted activities by the experiment is high too, but 

many activities will be lost. For instance, if >80% is used as a threshold, about 80% of real activities will be lost; 

for aP >70%, the portion of lost activities is 70%, etc. 

An example of prediction results for sulfathiazole is shown in Figure 6.6. This substance was found in SAR Base 

and was excluded from the SAR Base on prediction of its activity spectrum. The known (contained in SAR Base of 

PASS version 2007) activity spectrum includes the following activities: antibacterial, antibiotic, dihydropteroate 

synthase inhibitor, iodide peroxidase inhibitor. In Figure 6.6 the predicted activity spectrum includes 65 of 374 

pharmacological effects, 176 of 2755 molecular mechanisms, 7 of 50 side effects and toxicity, 11 of 121 metabolism 

terms at default ia PP   cutting points. All activities included in SAR Base are predicted with ia PP  . The activity 

of as a dihydropteroate synthase inhibitor is the second among the 176 predicted molecular mechanisms. 

The probabilities aP  and iP  are functions of the initial estimation  defined by the equations: 

  kak BPFA  ,   kik BPFI  ,    (6.18) 

where the functions kFA , kFI  are obtained as the final result of the training procedure which consists in the 

following. 

  
i in Dg 1

kA

aP

kB
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>  <PASS_MNA_COUNT> 

   32 

 

>  <PASS_KNOWN_ACTIVITIES> 

              Antibacterial 

              Antibiotic 

              Dihydropteroate synthase inhibitor 

              Iodide peroxidase inhibitor 

 

>  <PASS_RESULT_COUNT> 

   65 of   374 Possible Pharmacological Effects at Pa > Pi 

  176 of  2755 Possible Molecular Mechanisms at Pa > Pi 

    7 of    50 Possible Side Effects and Toxicity at Pa > Pi 

   11 of   121 Possible Metabolism at Pa > Pi 

 

>  <PASS_EFFECTS> 

0.886  0.004  Antiobesity 

0.769  0.004  Antidiabetic 

0.766  0.008  Antieczematic atopic 

0.738  0.010  Antiprotozoal (Toxoplasma) 

0.752  0.027  Antineoplastic (colorectal cancer) 

0.727  0.002  Antiprotozoal (Coccidial) 

0.651  0.043  Antineoplastic (brain cancer) 

0.601  0.072  Antinephritic 

0.601  0.091  Antiviral (Arbovirus) 

0.578  0.083  Antineoplastic (lymphocytic leukemia) 

0.578  0.083  Antineoplastic (non-Hodgkin's lymphoma) 

0.418  0.005  Hypoglycemic 

0.484  0.093  Allergic conjunctivitis treatment 

0.408  0.019  Diuretic inhibitor 

0.395  0.016  Antibacterial 

0.421  0.043  Hematopoietic inhibitor 

     ... 

0.253  0.059  Antiprotozoal (Trichomonas) 

0.209  0.021  Antibiotic 

0.267  0.093  Anticoagulant 

     ... 

0.008  0.005  Histone acetylation inducer 

 

>  <PASS_MECHANISMS> 

0.732  0.004  Para amino benzoic acid antagonist 

0.675  0.004  Dihydropteroate synthase inhibitor 

0.661  0.028  Chloride peroxidase inhibitor 

0.592  0.025  5 Hydroxytryptamine 6 agonist 

0.591  0.062  Phthalate 4,5-dioxygenase inhibitor 

     ... 

0.265  0.227  Pterin deaminase inhibitor 

0.138  0.100  Iodide peroxidase inhibitor 

0.166  0.129  Cathepsin H inhibitor 

     ... 

0.141  0.140  3-Hydroxybenzoate 4-monooxygenase inhibitor 

 

>  <PASS_TOXICITY> 

0.555  0.112  Hematotoxic 

0.442  0.139  Hepatotoxic 

0.392  0.135  Nephrotoxic 

0.275  0.066  Carcinogenic, female rats 

0.205  0.114  Carcinogenic, female mice 

0.341  0.269  Torsades de pointes 

0.162  0.123  Carcinogenic 

 

... 

 

 

Figure 6.6 Structure of sulfathiazole and part of its predicted activity spectrum. Activities contained in the SAR Base of PASS 

version 2007 are marked in bold. 
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For each kind of activity and each MNA descriptor the estimations of probabilities  kAP ,  ik DAP |  are 

calculated by Equations (6.17a,b). For each kind of activity , for each p  of kN  active, and for each q  of 

 inactive compound in SAR Base, after excluding this compound, the estimates kpB  and  are 

calculated. The kN  estimates of kpB  for active compounds are sorted in the ascending order; the kNN   

estimates of kqB  for inactive compounds are sorted in the descending order. The functions ,  are 

calculated as conditional expectations: 
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where  nmm

n FFC 1  is the binomial distribution, 
 !!

!

mnm

n
Cm

n


  is the binomial coefficient,  

F is in the range [0, 1]. Clearly, kFA  and kFI  are estimations of the quantile functions of the probability 

distributions of the estimations kpB  and kqB . Thus, the probabilities aP  and iP  are both the measures of belonging 

to subsets of “active” and “inactive” compounds and the probabilities of the 1st and 2nd kinds of prediction error, 

respectively. These two interpretations of the probabilities aP  and iP  are equivalent and can be used in 

understanding the results of prediction. 

In Figure 6.7 shows an example of probabilities  BPa  and  BPi  estimation as functions of В value, and in 

terms of Sensitivity, Specificity and Youden's index, for antihypertensive activity in the SAR Base of PASS version 

2007. 

Leave one out cross-validation for 3300 kinds of biological activity and 117332 substances provides the estimate 

of PASS prediction accuracy during the training procedure. The average accuracy of prediction is about 94.7% 

according to the LOO CV estimation, while that for particular kinds of activity varies from 65% [System lupus 

erythematosus treatment, Immunomodulator (HIV)] to 99.9%) (Allergic rhinitis treatment, histone acetylation 

inducer). The estimated accuracy of prediction for all kinds of biological activity predicted by PASS is presented at 

the web site.
143 

The accuracy of PASS predictions depends on several factors, of which the quality of the training set seems to be 

the most important (Section 6.3.1). A perfect training set should include comprehensive information about biolo-

gical activities known or possible for each compound. In other words, the whole biological activity spectrum should 

be thoroughly investigated for each compound included into the PASS training set. Actually, no database exists with 

information about biologically active compounds tested against each kind of biological activity. Therefore, 

information concerning known biological activities for any compound is always incomplete. We investigated the 

influence of the information's incompleteness on the prediction accuracy for new compounds. About 20000 

“principal compounds” from the MDDR database (Section 6.3.1) were used to create the heterogeneous training and 

evaluation sets. At random, 20, 40, 60, 80% of information were excluded from the training set. Either structural 

data or biological activity data were removed in two separate computer experiments. In both cases it was shown that 

even if up to 60% of information is excluded the results of prediction are still satisfactory.
91

 Thus, despite the 

incompleteness of information in the training set, the method used in PASS is robust enough to get reasonable 

prediction results. 

 

kA

kNN  kqB

kFA kFI
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a) 

 

b) 

Figure 6.7 Estimations of probabilities  BPa  and  BPi  as functions of B  value (a) and in terms of sensitivity, specificity 

and Youden's index (b). The curves are obtained for activity antihypertensive based on data presented in SAR Base 

PASS version 2007. 

 

 

6.4.5   Interpretation of Prediction Results 

Only activities with ia PP   are considered as possible for a particular compound.  

It is necessary to remember that probability aP  first of all reflects the similarity of molecule under prediction 

with the structures of molecules that are the most typical in a sub-set of “actives” in the training set. Therefore, 

usually, there is no direct correlation between the aP  values and quantitative characteristics of activities.  
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Even an active and potent compound, whose structure is not typical of the structures of “actives” from the training 

set, may obtain a low aP  value and even ia PP   during the prediction. This is clear from the way the functions 

 BPa  and  BPi  are constructed: the values aP  for “actives” and iP  for “inactives” are distributed fully 

uniformly. Taking this into account, the following interpretation of prediction results is possible. 

If, for instance, aP  equals to 0.9, then for 90% of “actives” from the training set the В values are less than for this 

compound, and only for 10% of “actives” is this value higher. If we decline the suggestion that this compound is 

active, we will make a wrong decision with probability 0.9.  

If aP  is less than 0.5, but ia PP   then for more than half of “actives” from the training set the В values are 

higher than for this compound. If we decline the suggestion that this compound is active, we will make a wrong 

decision with a probability of <0.5. In such a case the probability of confirming this kind of activity in the 

experiment is small, but there is a more than 50% chance that this structure has a high degree of novelty and may 

become a New Chemical Entity (NCE). 

If the predicted biological activity spectrum is wide, the structure of the compound is quite simple, and does not 

contain peculiarities that are responsible for the selectivity of its biological action. 

If it appears that the structure under prediction contains a few new MNA descriptors (in comparison with the 

descriptors from the compounds of the training set), then the structure has low similarity with any structure from the 

training set, and the results of prediction should be considered as very rough estimates. 

Based on these criteria, one may choose which activities have to be tested for the studied compounds on the basis 

of a compromise between the novelty of pharmacological action and the risk of obtaining a negative result in experi-

mental testing. Certainly, one will also take into account a particular interest in some kinds of activity, experimental 

facilities, etc.  

 

 

6.4.6   Selection of the Most Prospective Compounds  

A fundamental limitation must be kept in mind: any observation, estimation or calculation has only restricted 

accuracy. In absolutely all cases instead of the desirable unknown intrinsic Real value we have only: 

 

Observation = Real + Noise 

This is critically important for (virtual) screening especially. To highlight this, Figure 6.8 presents the generated 

data of 1000 points with binormal distribution and correlation coefficient square R
2
 = 0.95 and R

2
 = 0.5. Clearly, for 

R
2
 = 0.5 the relationship looks like a weak tendency only. Figures 6.9-6.11 show the results of the selection of the 

100 Bests (with the highest Real values) and the 100 Winners (with the highest Estimation values) among 1000000 

“screened” examples. Clearly, only for R
2
 = 0.95 is coincidence of the Winners and the Bests relatively good (about 

60%), while for R
2
 = 0.5 it is practically zero. 

It is possible to perform a complete analysis of such relationships, but even the presented data provide enough 

evidence for the following conclusion: the method for (virtual) screening must be highly accurate, and/or many 

different virtual screening methods must be used in combination and/or the number of selected candidates must be 

sufficiently large at all stages of screening (in Figures 6.9 and 6.10, the number 100 is not “sufficiently 

large”).
99,116,144,145

 

 

 

6.5  Conclusions 

Since the predicted with PASS biological activity spectra contain the estimates of probabilities for the 

pharmacological main and side effects, molecular mechanisms of action and specific toxicity, the choice of the most 

prospective compounds from the available samples of chemical compounds can be realized on the basis of complex 

criteria. Both the presence of targeted biological effects with desirable mechanisms of action and the absence of 

unwanted adverse effects and toxicity have to be taken into account. In such studies, the search for leads with the 

required properties and their optimization to decrease the adverse and toxic effect, usually performed sequentially, 
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will be solved simultaneously. Moreover, it was shown that the algorithms used in PASS can be successfully applied 

for discrimination between the so-called drug-like and drug-unlike compounds,
134

 which provides the possibility for 

extension of the applicability of the program by “filtering” in early stages chemical compounds, for which 

probability of becoming a drug is rather small. 

 

 

 

 

 

 

 a) 

 b) 
Figure 6.8 An example of relationships between the available measured values and unavailable true values. 1000 points are 

presented, all values have a normal distribution. Error of measurement (calculation) corresponds to square of 

correlation coefficient 9502 .R   (a) and 502 .R   (b). 
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Figure 6.9 Example of relationship between the available measured (calculated) values and unavailable true values. The100 

Winners and the100 Bests of 1000000 are presented. All compounds have a normal distribution, error of 

measurement (calculation) corresponds to the square of correlation coefficient 502 .R  . 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 An example of relationship between the available measured (calculated) values and unavailable true values. The100 

Winners and the100 Bests of 1,000,000 are presented, all values have a normal distribution, error of measurement 

(calculation) corresponds to the correlation coefficient 802 .R  . 
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Figure 6.11 Example of relationship between the available measured (calculated) values and unavailable true values. The 100 

Winners and the 100 Bests of 1 000 000 are presented. All values have a normal distribution; the error of 

measurement (calculation) corresponds to the correlation coefficient R2 = 0.95. 

 

The evolution of any molecule from hit to lead and from lead to drug-candidate typically is associated with the 

detailed evaluation of pharmacodynamics and pharmacokinetics of the compound. Using several different 

probabilistic methods for virtual screening together it might be possible to increase significantly the rate of 

promising substances in the selected subset.
101,103

 A challenging task is to optimize simultaneously both 

pharmacodynamics and pharmacokinetics of lead compounds because it is very difficult to modify the appropriate 

molecular determinants that define the desired compound characteristics in a consistent manner. However, even this 

task might be solved using "an integrated software framework that monitors ligand (or library) alterations in the 

context of 'fitness landscape"”.
26
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