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In the existing quantitative structure–activity relationship (QSAR) methods any
molecule is represented as a single point in a many-dimensional space of
molecular descriptors. We propose a new QSAR approach based on Quantitative
Neighbourhoods of Atoms (QNA) descriptors, which characterize each atom of
a molecule and depend on the whole molecule structure. In the ‘Star Track’
methodology any molecule is represented as a set of points in a two-dimensional
space of QNA descriptors. With our new method the estimate of the target
property of a chemical compound is calculated as the average value of the
function of QNA descriptors in the points of the atoms of a molecule in QNA
descriptor space. Substantially, we propose the use of only two descriptors rather
than more than 3000 molecular descriptors that apply in the QSAR method.
On the basis of this approach we have developed the computer program GUSAR
and compared it with several widely used QSAR methods including CoMFA,
CoMSIA, Golpe/GRID, HQSAR and others, using ten data sets representing
various chemical series and diverse types of biological activity. We show that
in the majority of cases the accuracy and predictivity of GUSAR models appears
to be better than those for the reference QSAR methods. High predictive ability
and robustness of GUSAR are also shown in the leave-20%-out cross-validation
procedure.

Keywords: QNA; QSAR; biological activity; toxicity; GUSAR

1. Introduction

Quantitative structure–activity relationships (QSARs) have been employed in numerous
areas from drug design to the assessment of chemical toxicity. Many QSAR methods have
been developed over the past years. These methods differ by the particular molecular
descriptors used to extract structural information in the form of a digital representation
that is suitable for model development, and by the mathematical approaches used for
finding the best predictive QSAR model. From a general point of view, the estimate ypred
of activity for an organic molecule can be represented as

ypred ¼ a0 þ
X

i
ai fiðS Þ, ð1Þ

where a0, a1, . . . are the variable coefficients, f1ðS Þ, f2ðS Þ, . . . , fiðS Þ, . . . are independent
from the coefficients a0, a1, . . . different functions of organic molecule’s structure S.
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In classic QSAR methods, the functions f1ðS Þ, f2ðS Þ, . . . represent physical-chemical
parameters or other quantitative characteristics of molecular structure, and the coefficients
a0, a1, . . . are determined using multiple linear regression (MLR), partial least squares
(PLS) analysis, or support vector regression (SVR), etc. [1]. QSAR methods based on the
similarity between a certain molecule Si with known biological activity and the molecule S
use the value fiðS Þ of their similarity [2–4].

More than 3000 molecular descriptors are currently used in QSARs [5–7]. Some
authors have proposed universal descriptors [8–10] while others have used unique
descriptors [7].

Earlier, we developed the uniform Multilevel Neighbourhoods of Atoms (MNA)
descriptors [11] for prediction of the biological activity spectra for substances [12,13].
Recently, we have proposed Quantitative Neighbourhoods of Atoms (QNA) descriptors,
which reflect better the nature of intermolecular interactions [14,15]. It appears that the
specific nature of QNA descriptors requires the appropriate algorithm for their efficient
application.

In this paper, we describe a QNA-based ‘Star Track’ QSAR approach, which differs
significantly from other known methods. In these methods any molecule is represented as a
single point in a many-dimensional space of molecular descriptors, where f1ðS Þ, f2ðS Þ, . . . ,
fiðS Þ, . . . are the coordinates of this point (Equation (1)). On the contrary, in the ‘Star
Track’ methodology any molecule is represented as a set of points in two-dimensional (2D)
space of QNA descriptors. In this space biological activity can be considered as a
‘potential’ whose value, averaged through the points corresponding to the atoms of a
certain molecule, gives the estimation of the biological activity of this molecule. In this
study 2D Chebyshev polynomials are used for approximation of this ‘potential’ of
biological activity.

To create the QSAR models, we applied the self-consistent regression (SCR) method
which we developed earlier [15,16]. It has been demonstrated that SCR provides the
selection of the optimal set of descriptors for creation of a reliable QSAR model [16].

The QNA-based ‘Star Track’ approach described in this paper is implemented in the
computer program GUSAR. We have compared GUSAR with several widely used QSAR
methods including CoMFA, CoMSIA, Golpe/GRID, HQSAR and others, using ten data
sets representing various chemical series and diverse types of biological activity. Since
in the majority of cases the accuracy and predictivity of GUSAR models appeared to be
better than for the reference QSAR methods, GUSAR can be recommended as a tool
for QSAR problem solving.

2. Methods

The 2D structural formula represents the atomic composition and the structure of the
molecule, but it is in practice some abstraction of reality. On the other hand, the
traditional 2D structural formula forms the basis for any calculation in molecular
mechanics or quantum chemistry. Many characteristics of chemical compounds can be
calculated on the basis of structural formula [1,5,17–21]. Hence, it can be concluded that
the structural formula uniquely determines the properties of a molecule. Moreover, the 2D
structural formula is the only information available in the early stages of research.

Neighbourhoods of Atoms descriptors (QNA as well as MNA) are calculated based on
the structural formula representation, which, according to the valences and charges
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of atoms, includes explicitly all hydrogen atoms and does not specify the type of bonds.
This form of structural formula is uniquely determined, e.g. it does not depend on
alternative methods of aromatic structure presentation.

The intermolecular interaction determines molecular recognition, the major cause of
biological activity of organic molecules. In fact, interatomic and intermolecular forces are
electrical in nature according to the Hellman–Feynman theorem [22]. On this fundamental
basis we have developed topoelectrical indices [23] and, later, QNA descriptors [14,15].

2.1 QNA descriptors

QNA descriptors are calculated based on the connectivity matrix (C) and the standard
values of the ionization potential (IP) and electron affinity (EA) of atoms in a molecule.
For any given atom i, the QNA descriptors are calculated as follows:

Pi ¼ Bi

X
k

Exp �
1

2
C

� �� �
ik

Bk, ð2Þ

Qi ¼ Bi

X
k

Exp �
1

2
C

� �� �
ik

BkAk, ð3Þ

where Ak ¼
1
2ðIPk þ EAkÞ, Bk ¼ ðIPk � EAkÞ

�1
2. The values of EA and IP collected from

many different sources and used in this work are represented in Appendix 1 (Table A1).
Although the value �P�Q can be considered by convention as the partial atomic charge,
where � is the chemical potential, in general the P and Q values are not the estimate of
partial atomic charges or hardness, etc.

The QNA descriptors describe each of the atoms in a molecule and, at the same time,
each of the P and Q values depend on the whole composition and structure of a molecule
(Figure 1).

From Figure 1(c) it is clear that any atom influences the others, although the influence
decreases with the increase of the distance between them; for example, components of
matrix Expð�1

2CÞ for atom 1 (C) are: 1.40 for atom 1 itself, �0.59 for its immediate
neighbour atom 2 (O), �0.57 for atoms 3 (O) and 4 (H), and 0.14 for atom 5 (H).

The algorithm of the QNA descriptor calculation is really very simple due to the
uselessness of the matrix Expð�1

2CÞ itself, the fact that the product of Expð�
1
2CÞ by a vector

is needed only, and the fact that the matrix C consists of 0 and 1 only. Appendix 1 includes
the listing (in the Delphi 5.0 language) of the QNA descriptor calculation procedure.

2.2 The ‘Star Track’ approach

The main feature of QNA descriptors is that they represent a molecule as a set of P and Q
values, or, in another words, as a ‘constellation’ in QNA descriptor space. It is important
to emphasize that in this approach each of the atoms in a molecule is peering to the others.
Each ‘star’ (an atom of a molecule) has a fixed unique position in QNA descriptor
space, which does not depend on the method of the structural formula presentation.
Such ‘constellations’ are shown in Figure 2 for acetylsalicylic acid and sulfathiazol in the
normalized QNA descriptor space.
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C
1 O

2

O
3

H4

H5

 0 1 1 1 0

 1 0 0 0 1

C = 1 0 0 0 0

 1 0 0 0 0

0 1 0 0 0

1.40 –0.59 –0.57 –0.57 0.14

–0.59 1.27 0.14 0.14 –0.54

( )C
2
1Exp −  = –0.57 0.14 1.13 0.13 –0.02

–0.57 0.14 0.13 1.13 –0.02

0.14 –0.54 –0.02 –0.02 1.13

 (c) (b)(a)

EA IP A B P Q 

C 1.263 11.26 6.262 0.316 –0.00218 –0.1820

O 1.461 13.62 7.541 0.287 0.02944 0.3019

O 1.461 13.62 7.541 0.287 0.06199 0.5297

H 0.754 13.60 7.177 0.279 0.05812 0.4706

H 0.754 13.60 7.177 0.279 0.05304 0.3533

(d)

Figure 1. Example of the QNA descriptor calculation for a molecule of formic acid: (a) structural
formula; (b) connectivity matrix; (c) exponent of the connectivity matrix; (d) electron affinities (EA),
ionization potentials (IP), variables of Equations (2) and (3), and P and Q values for each of the
atoms of formic acid molecule.
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Figure 2. The acetylsalicylic acid and sulfathiazole ‘constellations’ in the normalized QNA
descriptor space. Heteroatoms and hydrogens are explicitly presented, carbons are presented as
points only, and bond types are not specified.

682 D.A. Filimonov et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
E
I
C
O
N
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
0
5
:
3
4
 
1
8
 
D
e
c
e
m
b
e
r
 
2
0
0
9



This ‘stellar’ feature of QNA descriptors means that they differ from those commonly

used in QSAR descriptors, such as universal 4D fingerprints [8]. On the other hand,

this feature of the QNA descriptors creates a problem of their use in Equation (1).

Previously we have used QNA descriptors in another QSAR method [15] with QNA

quantile functions. We showed that the QSAR method based on QNA quantile functions

and SCR provided a reasonably accurate prediction for three training sets of acute aquatic

toxicity [15]; nevertheless, this method appeared to be less accurate for some other

biological activities compared to traditional QSAR methods. Therefore, we changed the

algorithm of the QNA application. We propose to calculate each fiðS Þ function of

the structure of a molecule in Equation (1) as the average value of the giðP,QÞ function of

the P and Q variables for those m molecule atoms that have two or more immediate

neighbours:

fiðS Þ ¼
1

m

X
k
giðPk,QkÞ: ð4Þ

After substitution of expression (4) into Equation (1) and interchange of summations

we find

ypred ¼ a0 þ
X

i
ai
1

m

X
k
giðPk,QkÞ ¼

1

m

X
k

a0 þ
X

i
aigiðPk,QkÞ

� �
: ð5Þ

According to Equation (5) the estimate ypred for a molecule can be interpreted as an

average of the values predicted for particular atoms in a molecule. Formally, QNA

descriptors represent a molecule structure by two descriptors only (P and Q), in contrast

to the numerous traditional descriptors used in QSAR.
For all molecules from the data sets used in this work we have calculated 16,617 QNA

descriptors for the atoms that have two or more immediate neighbours. In Figure 3(a) they

are presented as points in QNA descriptor space: the white shading corresponds to the

number of QNA descriptors in a cell (pixel). Figure 3(a) shows that the P and Q values are

Figure 3. Distribution of the 16,617 QNA descriptors in 300� 300 cells (pixels): (a) initial P
(abscissa axis) and Q (ordinate axis) values within the boundaries (�0.0579, 0.0784) for P and
(�0.581, 0.666) for Q; (b) normalized QNA within the boundaries (�3, 3) for both U and V.
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strongly correlated (r¼ 0.903). Since the P and Q values have different scales (the standard
deviations are 0.023 and 0.208, respectively), we made the normalization to optimize a
family of functions giðP,QÞ.

Normalization has been performed by calculation of the average values (EP and EQ),
the standard deviations (DP and DQ), and correlation between the P and Q values (RPQ):

P 0 ¼
P� EP

DP
, Q 0 ¼

Q� EQ

DQ
, ð6Þ

U ¼
P 0 þQ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ RPQÞ

p , V ¼
P 0 �Q 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� RPQÞ

p : ð7Þ

The orthonormal U and V have zero mean, unit variance, and they are uncorrelated, which
is shown in Figure 3(b).

In this study we chose Chebyshev polynomials as the family of functions giðP,QÞ, and
the orthonormal U and V values have been additionally transformed by using a hyperbolic
tangent, so the ‘normalized QNA’ vary from �1 to 1. After this, the functions giðP,QÞ
in Equation (5) are represented using Chebyshev polynomials as

giðP,QÞ ¼ TuvðP,QÞ ¼ Cosðu�ArcCosðTanHðUÞÞÞ � Cosðv�ArcCosðTanHðVÞÞÞ, ð8Þ

where the integers u, v¼ 0, 1, 2, . . . define the 2D Chebyshev polynomial degree. The final
equation for estimate ypred using QNA descriptors is

ypred ¼
1

m

X
k

a0 þ
X

uv
auvTuvðPk,QkÞ

� �
¼ a0 þ

X
uv
auvTuv,

Tuv ¼
1

m

X
k
TuvðPk,QkÞ:

ð9Þ

QNA descriptors and their polynomial transformations (6)–(8) do not provide
information on the shape and volume of a molecule although this information may be
important for determination of the SARs. Therefore, these parameters were added to the
QNA descriptors. The topological length of a molecule was calculated as the maximal
distance between any two atoms and the volume of a molecule as the sum of each atom’s
volume, 4

3�R
3, where R is the atomic radius (see Appendix 1, Table A1).

The Chebyshev polynomials are arranged in ascending order of their degrees uþ v. For
uþ v¼ 1 they are T1,0, T0,1; for uþ v¼ 2 they are T2,0, T1,1, T0,2; for uþ v¼ 3 they are T3,0,
T2,1, T1,2, T0,3, etc. The first, second and third power of topological length and volume of a
molecule were used. The number of initial variables equals the number of Chebyshev
polynomials plus the number of the first, second and third power of topological length and
volume of a molecule. It is significantly less comparing to the number of molecules in the
training set. The number of final variables in the QSAR equation selected after self-
consistent regression procedure is also significantly less comparing to the number of initial
variables (see sections 2.3, 5.1 to 5.10).

2.3 Self-consistent regression

The classical MLR has a number of limitations. In particular, the number of objects in the
training set should significantly exceed the number of independent variables, and it is
important to use non-collinear variables only. To overcome these limitations we have
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Table 1. Comparison of the prediction accuracy of GUSAR and other methods.

Methods R2 Q2 R2
test

CDK2 inhibitors [24]*
GUSAR 0.84 0.77 0.87

CoMFA 0.94 0.56 0.86

DHFR inhibitors [25]
GUSAR 0.78 0.73 0.60
CoMFA 0.79 0.65 0.59
CoMSIAbasic 0.76 0.63 0.52
CoMSIAextra 0.75 0.65 0.53
HQSAR 0.81 0.69 0.63
EVA/PLS 0.81 0.64 0.57
2D Cerius2/PLS 0.61 0.51 0.47
3D Cerius2/PLS 0.65 0.53 0.49

ACE inhibitors [25]
GUSAR 0.83 0.78 0.54
CoMFA 0.80 0.68 0.49

CoMSIAbasic 0.76 0.65 0.52
CoMSIAextra 0.73 0.66 0.49
HQSAR 0.84 0.72 0.30
EVA 0.84 0.70 0.36
2D Cerius2/PLS 0.76 0.68 0.47
3D Cerius2/PLS 0.82 0.72 0.51

Alpha-2 adrenoreceptors [26]
GUSAR 0.82 0.71 N/A
CoMFA 0.92 0.69 N/A

Estrogenic receptors [27]
GUSAR 0.93 0.89 N/A

MLR/E-states descriptors 0.82 0.77 N/A

Vibrio fischeri toxicity [28]
GUSAR 0.88 0.84 N/A

SCR-qQNA 0.91 0.87 N/A
CoMFA 0.92 0.79 N/A
PCR, MLR/ETA descriptors 0.84 0.73 N/A
PCR, MLR/different 2D descriptors 0.80 0.76 N/A
PCR, MLR/ETA and 2D descriptors 0.80 0.76 N/A
Factor score, PCR, MLR/ETA descriptors 0.89 0.82 N/A
Factor score, PCR, MLR/different 2D descriptors 0.87 0.83 N/A
Factor score, PCR, MLR/ETA and 2D descriptors 0.91 0.85 N/A
GFA/ETA descriptors 0.86 0.77 N/A
GFA/ different 2D descriptors 0.82 0.81 N/A
GFA/ETA and 2D descriptors 0.87 0.78 N/A

Chlorella vulgaris toxicity [29]
GUSAR 0.93 0.89 N/A

SCR-qQNA 0.89 0.85 N/A
MLR/different 2D descriptors 0.84 0.82 N/A
PLS/different 2D descriptors 0.86 0.84 N/A

Tetrahymena pyriformis toxicity [30]
GUSAR 0.80 0.75 0.67

SCR-qQNA 0.69 0.65 N/A

(Continued )
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employed the approach based on statistical regularization of ill-posed problems [15,16].

This resulted in a regularized least-squares method:

a ¼ ArgMin
Xn
i¼1

yi �
Xm
k¼0

xikak

 !2

þ
Xm
k¼1

vka
2
k

2
4

3
5 ð10Þ

where a is the regression coefficients, n is the number of objects, yi is the response value of

the ith object, m is, here and below, the number of the independent variables, xik is the

value of the kth independent variable of the ith object, ak is the kth value of the regression

coefficients, and vk is the kth value of the regularization parameters. Equation (10) has the

following solution:

a ¼ TXTy, T ¼ ðXTXþ VÞ�1 ð11Þ

where XT is the transposed regression matrix X and V is a diagonal matrix of the

regularization parameters. The best regularization V satisfies the equations

vk a2k þ s2tk
� �

¼ s2, k ¼ 1, . . . ,m ð12Þ

where s is the standard deviation of residuals and tk is the kth diagonal element of

matrix T.

Table 1. Continued.

Methods R2 Q2 R2
test

MLR/different 2D descriptors 0.54 0.53 0.48
SWR1/different 2D descriptors 0.65 0.63 0.58
PLS/different 2D descriptors 0.76 0.75 0.64
GA single/different 2D descriptors 0.65 0.64 0.71
SWR2/different 2D descriptors 0.66 0.64 0.72
Neural Network/different 2D descriptors 0.71 N/A 0.73

CYP2A5 inhibitors [31]
GUSAR 0.90 0.88 0.93

CoMFA 0.94 0.79 0.83
GRID/GOLPE 0.94 0.86 0.90

CYP2A6 inhibitors [31]
GUSAR 0.90 0.84 0.93

CoMFA 0.97 0.81 0.77
GRID/GOLPE 0.93 0.78 0.76

R2 is the square of the regression coefficient;
Q2 is the cross-validated R2;
R2

test is the R2 value for the test set, if it is available;
*– literature references;
N/A – Not available;
PCR – principal component regression;
MLR – multiple linear regression;
Factor score – factor scores were used as independent variables so that the backward stepwise
regression method could be applied;
GFA – genetic function approximation;
SWR – stepwise regression.

686 D.A. Filimonov et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
E
I
C
O
N
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
0
5
:
3
4
 
1
8
 
D
e
c
e
m
b
e
r
 
2
0
0
9



We called this method ‘self-consistent regression’ (SCR) because the same data samples

(X and y) are used to estimate both the regression coefficients and the regularization

parameters. Unlike the stepwise regression and other methods of combinatorial search,
the initial SCR model includes all the regressors. Nevertheless, the final model may contain

a few variables only, correctly representing the existing relationship.

3. Evaluation sets

The proposed method was validated using ten data sets and it was compared with several

well-known QSAR methods: CoMFA, CoMSIA, HQSAR, EVA, GRID/GOLPE and

others. The data sets were collected in such a way that they significantly varied

in molecular flexibility, size, and structural heterogeneity for estimation of the proposed
method. The types of biological endpoints and ranges in the activity measures also varied

across the ten training sets. These sets represent the following types of biological activities:

ligand–enzyme interactions (cyclin-dependent kinases 2 (CDK2) inhibitors [24], dihy-

drofolate reductase (DHFR) inhibitors and angiotensin-converting enzyme (ACE)
inhibitors [25]), ligand–receptor interactions (alpha-2 adrenoreceptor ligands [26], estrogen

receptor ligands [27]), acute toxicity (Vibrio fischeri [28], Chlorella vulgaris [29] and

Tetrahymena pyriformis [30]) and interaction with drug-metabolism enzymes (CYP2A5

inhibitors and CYP2A6 inhibitors [31]). Brief descriptions of the sets are represented

below.

3.1 CDK2 inhibitors

A training set of 29 and a test set of seven CDK2 inhibitors (CDK2train and CDK2test,

respectively) extracted from the literature [24] were used. These compounds are

bisarylmaleimide derivatives. CDK2 is an enzyme belonging to the family of serine/

threoinine kinases that play a key role in the regulation of the complex processes of cell
division, apoptosis, transcription, and differentiation. CDK inhibitors are known to have

a wide spectrum of applications ranging from protozoan infections (malaria, leishmania,

trypanosomiasis), viral infections (human cytomegalovirus (HCMV), herpes simplex virus

(HSV), human immunodeficiency virus (HIV), human papillomavirus (HPV)), reproduc-
tion disorders, cardiovascular diseases (atheroscelorosis, restenosis, cardiac hypertrophy),

glomerulonephritis, cancers and nervous system diseases (Alzheimer’s disease, stroke,

amyotrophic disease, drug abuse) [32]. The experimental data are represented by IC50

values (50% inhibitory concentration) in mol/L (M), which are presented as pIC50¼�log
IC50, and they varied from 5.057 to 8.194.

3.2 DHFR inhibitors

A training set of 237 and a test set of 124 DHFR inhibitors [IC50, M] belonging to 11

structural classes were taken from Jeffrey et al. [25] (DHFRtrain and DHFRtest,

respectively). DDHFR plays an important role in the biosynthesis of nucleic acids.
Inhibition of the enzyme leads to the damage of DNA synthesis and cell death. The pIC50

values of these sets for rat liver enzymes ranged from 3.3 to 9.8.
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3.3 ACE inhibitors

A training set of 76 and a test set of 38 ACE inhibitors [IC50, M] were used (ACEtrain and
ACEtest, respectively). These compounds, taken from Jeffrey et al. [25], are carboxylic acid
derivatives, including different heterocyclic groups (pyrrolidine, indole, imidazole, etc.).
ACE involves in the action of the renin–angiotensin–aldosterone system. ACE inhibitors
are effective antihypertensive agents. The pIC50 values of these sets ranged from 2.1 to 9.9.

3.4 Alpha-2 adrenoreceptor ligands

A training set ADRENtrain consisting of 30 structures with binding affinities to alpha-2
adrenoreceptor [Ki, mM] was taken from Lopez-Rodriguez et al. [26]. Adrenoreceptors are
involved in the regulation of metabolism, secretion, contraction of muscles, and arterial
pressure. Alpha-adrenoceptor agonists are effective analgesics and anxiolytics, and they
have sedative and antihypertensive effects. The log (Ki) values of this set varied from 3.33
to 6.66.

3.5 Estrogen receptor ligands

A training set ESTRtrain consisting of 21 tetrahydroisoquinoline derivatives with binding
affinities [IC50, mM] to estrogenic receptor-� was obtained from Mukherjee et al. [27].
Estrogenic ligands are endocrine regulators of the male and female reproductive system.
They also play a protective role in the tissues of bone, liver, and the cardiovascular
system. Estrogen receptor ligands are used for breast cancer and osteoporosis treatment.
The pIC50 values of this set varied from �0.567 to 0.983.

3.6 Vibrio fischeri

We used the training set VIBRIOtrain that consisted of 56 phenylsulfonyl carboxylates
with acute toxicity to Vibrio fischeri. Vibrio fischeri is a marine bacterium which is used
as a test system for assessment of acute aquatic toxicity of chemicals. Toxicity values were
presented as log EC50 [15 min – EC50, mM] [28] with the log EC50 values ranging
from �0.44 to 2.28.

3.7 Chlorella vulgaris

A training set ALGAEtrain on acute toxicity to Chlorella vulgaris of 65 aromatic
compounds [log (1/EC50), mM] was taken from Netzeva et al. [29] with the log (1/EC50)
values ranging from �1.46 to 3.10. The set included phenols, anilines, benzaldehydes,
and nitrobenzenes, as well as alkyl-substituted phenols, halogenated phenols and
anilines, nitro-substituted phenols and anilines, and halogenated nitrobenzenes.
Chlorella vulgaris is an alga which is used as a test system for the assessment of aquatic
toxicity of chemicals.

3.8 Tetrahymena pyriformis

The training and test sets (TETRAtrain and TETRAtest, respectively) on acute toxicity to
Tetrahymena pyriformis of 200 and 50 phenols [log (1/IGC50), mM], respectively, were
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taken from Cronin et al. [30] with the log (1/IGC50) values ranging from �1.50 to 2.71.
The compounds varied in structure from phenol itself, its relatively inert alkyl and halogen
derivatives, through to reactive multisubstituted phenols. Tetrahymena pyriformis is
a ciliate protozoan which is used as a test system for the assessment of aquatic toxicity
of chemicals. Toxicity values were obtained in the population growth impairment assay
on the ubiquitous freshwater ciliate Tetrahymena pyriformis (strain GL-C).

3.9 CYP2A5 inhibitors

A training set of 23 and a test set of five diverse competitive inhibitors of CYP2A5 [IC50,
M] (CYP2A5train and CYP2A5test, respectively) were taken from Poso et al. [31].
Cytochrome P450 (CYPs) form a large superfamily of heme enzymes which catalyse the
oxygenation of many endogenous and exogenous compounds. CYP2A5 inhibitors
result in toxic effects and side effects in mice. The pIC50 values of these sets ranged
from 1.73 to 5.68.

3.10 CYP2A6 inhibitors

A training set of 23 and a test set of five diverse competitive inhibitors of CYP2A6 [IC50,
M] (CYP2A6train and CYP2A6test, respectively) were taken from Poso et al. [31]. CYP2A6
inhibitors may lead to toxic effects and side effects in humans. The pIC50 values of these
sets ranged from 0.46 to 4.52.

4. Evaluation of predictive accuracy

The QSAR models were built by the program GUSAR for all the training sets. The
accuracy of prediction was calculated by the leave-one-out cross-validation procedure.
Moreover, the models were evaluated by prediction of the appropriate test sets (CDK2,
DHFR, ACE, Tetrahymena pyriformis, CYP2A5, and CYP2A6). Some original authors
do not provide any test sets for certain data sets (Vibrio fischeri, Chlorella vulgaris, alpha-2
adrenoreceptor, estrogenic receptor). However, it has been shown that to obtain a
predictive QSAR it is necessary to use an external evaluation set [33]. Therefore,
we decided to leave a part of the initial data as an external test set, to be used to estimate
the performance of the model [34]. Random selection of compounds was performed by
splitting the initial data into the external test and the training sets in the proportion 20%
and 80%, respectively. Data splitting was repeated 20 times to obtain an objective
assessment of the predictive accuracy and the robustness of the developed method for all
data sets. For each splitting the training set was used to build the model and the external
set for the assessment of model predictivity.

4.1 Y-randomization test

Several data sets used in this study contained less than 25 compounds (estrogenic receptor,
CYP2A5, and CYP2A6). Therefore, we used a Y-randomization technique to ensure that
the developed method did not suffer from overfitting. In this test the dependent-variable
vector, the Y-vector, is randomly shuffled and a new QSAR model is developed using the
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original independent-variable matrix [35]. The process was repeated 20 times. It is expected

that the resulting models should generally have low Q2 values.

5. Results and discussion

All the QSAR models were obtained using the GUSAR program and compared with the

other above-mentioned methods.
The regression equation obtained by GUSAR contained the following values:

g Tuv, the Chebyshev polynomial in Equation (9) (see Equations (6)–(8));
g L, the topological molecule length;
g V, the sum of each atom’s volume.

The quality of the models was estimated by the following parameters:

g n is the number of compounds in the training set;
g R2 is the square of the regression coefficient;
g Q2 is the cross-validated R2;
g F is the value of the Fisher statistics;
g SD is the standard deviation;
g D is the number of variables in the final regression equation.

Cross-validated Q2 values are typically smaller than the usual R2 values, and the Q2

values are considered to be more indicative of the predictive ability of a model. Therefore,

the value of Q2 is more important than the value of R2. Whereas R2 is a measure of

Figure 4. CDK2train data set, GUSAR predicted versus observed values.

690 D.A. Filimonov et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
E
I
C
O
N
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
0
5
:
3
4
 
1
8
 
D
e
c
e
m
b
e
r
 
2
0
0
9



goodness of fit, Q2 is a measure of prediction accuracy. It should also be noted that an
accurate QSAR model should have close Q2 and R2 values.

5.1 CDK2 inhibitors

The QSAR equation obtained by GUSAR was as follows:

pIC50 ¼ 12:8T3,1 þ 8:5T2,2 þ 3:07T2,0 þ 5:42T1,3 � 3:14T1,2 þ 7:95,

n ¼ 29, R2 ¼ 0:84, F ¼ 24:776, SD ¼ 0:486, Q2 ¼ 0:77, D ¼ 5:

This equation contains five variables represented by Chebyshev polynomials Tuv. This
means that the CDK2 inhibition is well described by the QNA descriptors only. Figure 4
presents a plot of the predicted versus observed pIC50 values of the CDK2 inhibitors.

Comparison of the prediction accuracy of GUSAR with that of CoMFA [24] applied
to the same data is presented in Table 1. The best CoMFA results were obtained with steric
and electrostatic fields using the CoMFA_STD scaling option. The CoMFA model
showed a high R2 value (0.94) which was better than that of the GUSAR model, but the
Q2 (0.56) value of the CoMFA model was less than the Q2 value of the GUSAR
(0.77) model. The CoMFA model R2 value for the test set was lower compared with the
GUSAR model R2 value: 0.86 and 0.87, respectively. Thus, GUSAR showed
better accuracy of prediction compared to the CoMFA method on the CDK2train
and CDK2test sets.

5.2 DHFR inhibitors

The QSAR equation obtained by GUSAR was as follows:

pIC50 ¼ 4:87T0;6� 5:45T1;8þ 0:000312L3þ 4:29T4;9� 2:16T0;13� 3:81T6;7þ 2:7T6;0

þ 3:1T5;6� 3:28T11;3þ 3:91T4;7� 3:49T2;8� 2:53T0;5� 3:05T0;2þ 2:28T4;0

� 1:38T12;0� 4:22T2;5� 2:29T7;6� 1:84T5;7� 2:17T3;0� 4:08T7;1� 1:4T0;11

� 2:17T6;4þ 2:85T2;3þ 1:86T9;4� 1:87T7;4þ 0:96T3;8þ 0:942T1;10� 1:34T5;1þ 6:1;

n¼ 237, R2 ¼ 0:78, F¼ 26:825, SD¼ 0:663, Q2 ¼ 0:73, D¼ 28:

This equation contains 28 variables: 27 Chebyshev polynomials Tuv and third power of
molecular length L. The DHFRtrain contains 237 compounds and many of the variables
show the complex relationship between structure and activity. Figure 5 presents a plot of
the predicted versus observed pIC50 values of the DHFR inhibitors.

Table 1 presents a comparison the prediction accuracy of GUSAR with the other
QSAR methods applied to the same data. The DHFRtrain set was used for QSAR
modelling by PLS regression on the basis of different descriptors calculated by the other
authors [25] using CoMFA, CoMSIAbasic, CoMSIAextra, HQSAR, EVA, 2D and 3D
descriptors of Cerius2. 2D descriptors were generated by the ‘Combichem’ defaults in
Cerius2 (e.g., � indices, counts of rotatable bonds, molecular weight, etc.) and also
included E-state indices (both sums of indices and counts for each atom type). In addition,
whole-molecule 3D descriptors, such as molecular volume and charged partial surface
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area (CPSA) descriptors, were calculated using Gasteiger–Marsili charges implemented
in Cerius2 (the Polygraph set) and the CORINA structures generated from SMILES
strings. The CoMFA, EVA, and HQSAR methods have R2 values slightly better
(0.79, 0.81, and 0.81, respectively) than GUSAR (0.78), but the Q2 values are worse
(0.65, 0.64, and 0.69) than in GUSAR (0.72). The CoMSIAbasic, CoMSIAextra, 2D
and 3D descriptors have poor statistical parameters for both R2 (0.76, 0.75, 0.61, and
0.65, respectively) and for Q2 (0.63, 0.65, 0.51, and 0.53, respectively). Table 1 shows
that GUSAR provides accurate prediction for the test set, which is maximum dissimilar to
the training set: DHFRtest�R2

¼ 0.60. For the heterogeneous sets (DHFRtrain and
DHFRtest) the GUSAR predictive accuracy was comparable to the accuracy of
CoMSIAbasic, CoMSIAextra, EVA, and CoMFA. The accuracy was less than that of
HQSAR and better than accuracy of 2D and 3D Cerius2 descriptors.

5.3 ACE inhibitors

The QSAR equation obtained by GUSAR was as follows:

pIC50 ¼ 0:139Vþ 5:54T4;3 � 4:98E-06V3 þ 3:43T1;0 þ 3:95T3;1

� 1:95T0;6 þ 2:58T1;5 þ 1:82T5;0 � 1:15T4;0 � 0:545T1;4 þ 0:00695;

n ¼ 76, R2 ¼ 0:83, F ¼ 32:032, SD ¼ 1:083,

Q2 ¼ 0:78, D ¼ 10:

This equation contains ten variables: eight Chebyshev polynomials Tuv and the first and
third powers of the molecular volume V. Figure 6 presents a plot of the predicted versus
observed pIC50 values of the ACE inhibitors.

Figure 5. DHFRtrain data set, GUSAR predicted versus observed values.

692 D.A. Filimonov et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
E
I
C
O
N
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
0
5
:
3
4
 
1
8
 
D
e
c
e
m
b
e
r
 
2
0
0
9



Table 1 shows that ACEtrain was used for QSAR modelling by PLS analysis on
the basis of different descriptors calculated by other authors [25] using CoMFA,
CoMSIAbasic, CoMSIAextra, HQSAR, EVA, 2D and 3D descriptors of Cerius2.
The GUSAR model has the best statistical parameters of the correlation compared
to other methods (Table 1). The difference between the value of R2 of the GUSAR model
and that of the other methods is considerable for one case: CoMSIAextra. The difference
between the value of Q2 of the GUSAR model and the other methods is considerable
in four cases: CoMFA, CoMSIAbasic, CoMSIAextra, and 2D descriptors of Cerius2,
where such a difference exceeds 0.1. Table 1 shows that for the test set, which is maximum
dissimilar to the training set, GUSAR has reasonable predictive accuracy. Thus, the
GUSAR model had comparable or better prediction accuracy than the other methods.

5.4 Alpha-2 adrenoreceptor ligands

The QSAR equation obtained by GUSAR was as follows:

log ðKiÞ ¼ 11:9T1;2 � 6:7T1;3 þ 3:06T5;0 þ 2:48T2;1 þ 0:821T4;0 � 0:969T3;1 þ 5:31;

n ¼ 30, R2 ¼ 0:82, F ¼ 17:924, SD ¼ 0:471,

Q2 ¼ 0:71, D ¼ 6:

This equation contains six variables represented by Chebyshev polynomials Tuv. Figure 7
presents a plot of the predicted versus observed log (Ki) values of the ADRENtrain

data set.

Figure 6. ACEtrain data set, GUSAR predicted versus observed values.
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The accuracy of GUSAR and CoMFA for the same set of compounds is presented

in Table 1. The CoMFA analysis was performed with a Csp3 probe atom [26]. The

following results were obtained by CoMFA: R2
¼ 0.92 and Q2

¼ 0.69. The results obtained

by GUSAR are comparable with those of CoMFA. The value of R2 of GUSAR is less

than that of CoMFA, but at the same time the value of Q2 of GUSAR is higher than that

of CoMFA.

5.5 Estrogen receptors ligands

The QSAR equation obtained by GUSAR was as follows:

pIC50 ¼ �0:000289L
3 � 7:14T2;1 þ 3:15T5;0 � 3:78T3;2 þ 2:5T4;1 þ 0:5;

n ¼ 21, R2 ¼ 0:93, F ¼ 42:800,

SD ¼ 0:155, Q2 ¼ 0:89, D ¼ 5:

This equation contains five variables: four Chebyshev polynomials Tuv and third power of

the molecular length L. Figure 8 presents a plot of the predicted versus observed pIC50

values of the ESTRtrain data set.
The results obtained by GUSAR were compared with the 2D QSAR model based on

E-states descriptors and MLR [27]. Table 1 shows that the value of R2
¼ 0.82 for 2D

QSAR is less than that of GUSAR; at the same time the value of Q2 of 2D QSAR (0.77)

is less than that of GUSAR. The difference between R2 and Q2 of the GUSAR model

Figure 7. ADRENtrain data set, GUSAR predicted versus observed values.
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and models obtained with 2D QSAR methods is significant. The results obtained
by GUSAR are better than those obtained by another 2D QSAR model.

5.6 Vibrio fischeri

The QSAR equation obtained by GUSAR was as follows:

logEC50 ¼ �0:0406Vþ 2:49T1;5 þ 1:34T4;2 þ 1:42T1;2 � 1:78T2;4 � 0:693T4;0

þ 0:573T3;4 þ 2:94;

n ¼ 56, R2 ¼ 0:88, F ¼ 48:185, SD ¼ 0:186,

Q2 ¼ 0:84, D ¼ 7:

This equation contains seven variables: six Chebyshev polynomials Tuv and the molecular
volume V. Figure 9 presents a plot of the predicted versus observed log (EC50) values of
the VIBRIOtrain data set.

The studied set of compounds was analysed by other authors (Table 1) using CoMFA
[36], MLR analysis, principal component regression (PCR) analysis, and the genetic
function approximation (GFA) on the basis of extended topochemical atom (ETA) indices
and non-ETA (physicochemical) parameters [28,37]. Non-ETA parameters included
topological indices such as the Wiener, Hosoya Z, molecular connectivity, kappa shape,
Balaban J, and E-State parameters, as well as physicochemical parameters such as the
AlogP98, MolRef, and H-bond-acceptor. Factor scores were used as independent

Figure 8. ESTRtrain data set, GUSAR predicted versus observed values.

SAR and QSAR in Environmental Research 695

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
E
I
C
O
N
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
0
5
:
3
4
 
1
8
 
D
e
c
e
m
b
e
r
 
2
0
0
9



variables for the backward stepwise regression method (Factor score, PCR, MLR) on the
basis of a combination of ETA indices and non-ETA descriptors. Table 1 shows that the
R2 and Q2 values of the GUSAR model are close to the best values obtained by the
backward stepwise regression method (Factor score, PCR, MLR) on the basis of a
combination of ETA indices and non-ETA descriptors. The difference between the R2 and
Q2 values obtained by these methods is not considerable. The results obtained by GUSAR
are similar to those obtained by our previous SCR-qQNA method [15].

5.7 Chlorella vulgaris

We obtained a reasonable correlation between the observed and predicted values of acute
toxicity. The following regression equation was obtained by GUSAR:

log ð1=EC50Þ ¼ 0:183Vþ 3:01T3;1 � 2:55T3;0 � 2:79T1;0 � 2:28T1;4

þ 1:38T2;2 þ 0:787T7;0 þ 1:98T0;1 þ 1:03T6;1

� 1:92E-05V3 � 0:399T0;6 þ 0:668T1;5 � 4:93,

n ¼ 65, R2 ¼ 0:93, F ¼ 60:131, SD ¼ 0:336,

Q2 ¼ 0:89, D ¼ 12:

This equation contains 12 variables: 10 Chebyshev polynomials Tuv and the first and third
powers of the molecular volume V. Figure 10 presents a plot of the predicted versus
observed log (1/EC50) values of the ALGAEtrain data set.

The set of compounds tested on Chlorella vulgaris toxicity was used for QSAR
modelling by MLR and PLS analysis on the basis of 102 molecular descriptors calculated
by ClogP, MOPAC93, TSAR 3.3 (Oxford Molecular Limited, Oxford, England) and
QSARis version 1.1 software (SciVision – Academic Press, San Diego, CA). MLR was

Figure 9. VIBRIOtrain data set, GUSAR predicted versus observed values.
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carried out by MINITAB version 13.1 (Minitab Inc., State College, PA) and PLS analysis
was carried out in SIMCA-P version 9.0 (Umetrics AB, Umeå, Sweden) [29]. The
statistical characteristics of GUSAR are better than those achieved by MLR and PLS
analysis. The difference between the values of R2 and Q2 of the GUSAR model and those
of other models is not significant in all cases (Table 1). The results obtained by GUSAR
are comparable with those obtained by our previous SCR-qQNA method [15].

5.8 Tetrahymena pyriformis

The QSAR equation obtained by GUSAR was as follows:

log ð1=IGC50Þ ¼ 0:0975V� 2:61T1;6 � 1:67T4;5 þ 3:14T0;1 þ 1:48T0;3 � 1:17T2;9

þ 1:08T5;0 þ 1:16T2;3 � 1:05T7;1 þ 0:766T5;7 � 0:603T2;5 � 0:819T4;1

� 0:655T2;0 þ 1:08T3;1 � 0:719T5;1 þ 0:653T4;8 þ 0:512T8;0

þ 0:551T3;9 þ 0:489T8;3 � 0:557T1;2 � 0:192T0;12 � 2:44,

n ¼ 200, R2 ¼ 0:80, F ¼ 33:427,

SD ¼ 0:413, Q2 ¼ 0:75, D ¼ 21:

This equation contains 21 variables: 20 Chebyshev polynomials Tuv and the molecular
volume V. Figure 11 presents a plot of the predicted versus observed log (1/IGC50) values
of the TETRAtrain data set.

Table 1 shows a comparison of the GUSAR accuracy with those achieved by the other
QSAR methods. The set of compounds tested on Tetrahymena pyriformis toxicity was used
for QSAR modelling by different QSAR approaches. At first this set was studied [30] by
MLR, PLS analysis, and stepwise regression (SWR1) on the basis of 108 physicochemical
descriptors calculated by ACD/Labs software, Chem-X version 2000.1, MOPAC version

Figure 10. ALGAEtrain data set, GUSAR predicted versus observed values.
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6.49, TSAR 3.3, and QSARis version 1.1 software. MLR and stepwise regression were
carried out by MINITAB version 13.1, and PLS analysis was carried out in TSAR 3.3 [30].
Second the same data set was also analysed by a genetic algorithm (GA) on the basis
of different descriptor types calculated by TSAR V3.3, HYBOT v2.1.0.706, Dragon
Professional v5.3, and ACD Labs V9.08. The GA was calculated by MOBYDIGS
software and used to develop a large number of models [38]. The authors used the best
model and top 10 models for consensus prediction. GUSAR could also create the different
models and make the consensus prediction, but the aim of this investigation was the
comparison of separate models only. Thus, in this paper we used statistical characteristics
for the best GA model. In another article the authors used neural network and stepwise
regression (SWR2) based on 168 descriptors obtained from ACD/Labs software, Chem-X
version 2000.1, MOPAC version 6.49, TSAR 3.3, and QSARis version 1.1 software for
the analysis of the same data set [39]. The statistical characteristics of these QSAR
methods are represented in Table 1. This table shows that our results are better than those
achieved by the MLR, SWR1, and PLS models on the heterogeneous set TETRAtrain. The
results obtained by the GA single models, SWR2, and neural network are slightly better
than the GUSAR results. The results obtained by GUSAR are better than those obtained
by our previous SCR-qQNA method [15].

5.9 CYP2A5 inhibitors

The QSAR equation obtained by GUSAR was as follows:

pIC50 ¼ 0:461V� 0:000149V3 � 4:37,

n ¼ 23, R2 ¼ 0:90, F ¼ 94:484,

SD ¼ 0:452, Q2 ¼ 0:88, D ¼ 2:

Figure 11. TETRAtrain data set, GUSAR predicted versus observed values.
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This equation contains two variables: first and third powers of molecular volume V only;

it does not contain the Chebyshev polynomial of QNA descriptors. Figure 12 presents a

plot of the predicted versus observed pIC50 values of the CYP2A5train data set.
A comparison of GUSAR accuracy with that of the 3D QSAR methods [31] (CoMFA

and GRID/GOLPE) used for the same set of compounds is presented in Table 1. The

differences between the R2 and Q2 values of CoMFA, GRID/GOLPE, and GUSAR were
not considerable. All models had Q2 values over 0.7. R2 values for the test set (CYP2A5test)

by the CoMFA and GRID/GOLPE models were 0.83 and 0.90, respectively, whereas for

GUSAR it was 0.93. The results obtained by GUSAR are close to those of the 3D-QSAR
analysis.

5.10 CYP2A6 inhibitors

The QSAR equation obtained by GUSAR was as follows:

pIC50 ¼ 0:252V� 0:0028L3 � 1:94T0;2 � 0:426T3;0 � 0:992T2;2 þ 0:135T2;3 � 1:71;

n ¼ 23, R2 ¼ 0:90, F ¼ 25:278,

SD ¼ 0:439, Q2 ¼ 0:84, D ¼ 6:

This equation contains six variables: four Chebyshev polynomials Tuv, first power of

molecular volume V and third power of molecular length L. This model, in contrary to

the model obtained for the CYP2A5train data set, does not contain descriptors of the
topological length and the volume of the molecule. Thus, these descriptors are not

Figure 12. CYP2A5train dataset, GUSAR predicted versus observed values.
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important for modelling of the CYP2A6train data set. Figure 13 presents a plot of the
predicted versus observed pIC50 values of the CYP2A6train data set.

A comparison of GUSAR accuracy with that of 3D QSAR methods [31] (CoMFA
and GRID/GOLPE) used for the same set of compounds is presented in Table 1. The
R2 value of GUSAR is less than the R2 values of CoMFA and GRID/GOLPE.
The differences between the Q2 values of CoMFA, GRID/GOLPE, and GUSAR were
not considerable. All models had Q2 values over 0.7. The R2 values for the test
set (CYP2A6test) obtained by the CoMFA and GRID/GOLPE models were 0.77 and
0.76, respectively, whereas for GUSAR it was 0.93. The results obtained by GUSAR
are better than those of the 3D-QSAR analysis (for the Q2 value and the R2 of the test
set value).

5.11 Statistical validation of comparison

The analysis of the above-mentioned models showed that GUSAR has comparable
or better accuracy of prediction for the studied sets. We compared R2

test and Q2 values of
GUSAR models with other models. There are 38 Q2 values and 25 R2

test values. If GUSAR
does not differ from other methods and all these methods are taken from the same parent
entity, then we can expect that GUSAR will have the best Q2 (R2

test) value in half of the
cases and the worst value in half of the cases: that is the zero hypothesis. Thus, the
probability of obtaining m or higher success numbers in n comparisons at the zero
hypothesis condition is given by:

PrðmjnÞ ¼ 2�n
Xn
k¼m

n!

k!ðn� kÞ!
:

Figure 13. CYP2A6train data set, GUSAR predicted versus observed values.
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For Q2 there are 36 successes in 38 comparisons and Prð36j38Þ ¼ 0:00000000971. For
R2

test we have Prð21j25Þ ¼ 0:000455. Thus both probabilities are less than 0.0005.
Therefore, these estimations show that the accuracy of GUSAR certainly exceeded the
accuracy of the other 2D and 3D QSAR methods used for comparison.

It is interesting to note that for R2 there are 25 successes in 39 comparisons and
Prð25j39Þ ¼ 0:054. This fact can be explained by considering that GUSAR is less overfitted
in comparison with other methods.

5.12 Y-randomization test

We used a Y-randomization technique as described above to ensure that the developed
method did not have overfitting. The results of this test are shown in Table 2. The average
Q2 value for all ten data sets is 0.08. The maximum value Q2

¼ 0.28 was obtained for the
ADRENtrain data set. These results demonstrate that the developed method is free of any
overfitting effects.

5.13 Random multiple splitting procedure

At present many authors usually apply only one test set for evaluation of the predictive
ability of a QSAR method. We believe that one test set is not enough for the assessment of
predictivity for the obtained QSAR model and for evaluation of the QSAR method
in general. One of the most common approaches for model validation in the QSAR area
is the leave-one-out cross-validation procedure (LOO CV). Vapnik [40] proved the
theorem of unbiasedness and the justifiability of the LOO CV criterion, but this is so if
only the correct LOO CV procedure is used. ‘Correct’ means the requirement to recalcu-
late the number of components for the PLS analysis or reselect the number of descriptors
after elimination of each compound for the GA stepwise regression, etc. Some authors
do not do this [41,42]. In the current research we decided to perform an alternative
validation procedure which allows us to assess not only the predictive ability of the method
but also its robustness. For this purpose a multiple splitting procedure was performed,
because such a validation obligates the recalculation of the model using the same approach
for each split. Six training sets (CDK2train, DHFRtrain, ACEtrain, TETRAtrain,
CYP2A5train, and CYP2A6train) were combined with the appropriate test sets (CDK2test,
DHFRtest, ACEtest, TETRAtest, CYP2A5test, and CYP2A6test). After that, the random

Table 2. Y-randomization procedure.

Set Average Q2 Min Q2 Max Q2

CDK2 inhibitors 0.07 �0.07 0.21
DHFR inhibitors 0.06 0.02 0.12
ACE inhibitors 0.06 �0.03 0.19
Vibrio fischeri 0.07 �0.04 0.20
Chlorella vulgaris 0.07 �0.02 0.17
Tetrahymena 0.07 0.01 0.11
Alpha-2 adrenoreceptor 0.12 �0.07 0.28
Estrogen 0.06 �0.10 0.26
CYP2A5 0.09 �0.08 0.26
CYP2A6 0.08 �0.11 0.26

Average value 0.08 �0.05 0.21
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multiple splitting procedure described above was performed for each of the ten training

sets. Table 3 shows the average, maximum, and minimum R2
pred values obtained in the

prediction for the test sets. These values are compared to the Q2
whole set values of the models

obtained before multiple splitting for the ten training sets. The average R2
pred values for

three data sets exceeded 0.6, for two sets exceeded 0.7, and for the remaining five data sets

exceeded 0.8. Thus, these results showed high predictivity of GUSAR. In addition, the

difference between the average value of R2
pred (0.78) and the average value of Q2

whole set

(0.82) was only 0.04, which indicates the high robustness of the developed method.

5.14 Approximation of length and volume by QNA

As stated above, QNA descriptors are local by construction and, for this reason, do not

provide information on the shape and volume of a molecule. Therefore, in GUSAR

the topological length and the volume of a molecule were added to the QNA descriptors.

The results of the study show the validity of this addition. The volume descriptors are

included in six of the ten final models, and the topological length descriptors are included

in three final models. The addition of these descriptors lead to an increase of the model

accuracy.
However, fundamentally, are the topological length and the volume of a molecule

essentially different descriptors or might they also be approximated by QNA descriptors?

To investigate this interesting question we have built the QSAR models for the topological

length and the volume of a molecule based on QNA descriptors only using all unique

molecules from the data sets used in this study. The obtained models have the following

parameters:

topological length : n ¼ 989, R2 ¼ 0:950,

SD ¼ 1:070, Q2 ¼ 0:931, D ¼ 142,

volume of a molecule : n ¼ 989, R2 ¼ 0:947,

SD ¼ 4:708, Q2 ¼ 0:925, D ¼ 151:

Table 3. Assessment of the prediction accuracy of GUSAR by a random
multiple splitting procedure.

Sets Average R2
pred Min R2

pred Max R2
pred Q2

whole set

CDK2 inhibitors 0.81 0.60 0.97 0.86
DHFR inhibitors 0.65 0.52 0.79 0.71
ACE inhibitors 0.70 0.59 0.83 0.75
Vibrio fischeri 0.83 0.67 0.94 0.84
Chlorella vulgaris 0.81 0.58 0.95 0.89
Tetrahymena 0.66 0.53 0.80 0.75
Alpha-2 adrenoreceptor 0.73 0.51 0.89 0.71
Estrogen 0.86 0.56 0.99 0.89
CYP2A5 0.94 0.83 0.99 0.89
CYP2A6 0.83 0.54 0.96 0.87

Average value 0.78 0.59 0.91 0.82
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Therefore, the use of these additional descriptors is insignificant for QSAR modelling;
it may be convenient for QSAR model building only, especially in the case of a small data
set size such as that for CYP2A5train and CYP2A6train with n¼ 23.

6. Conclusions

We have proposed a new QNA-based ‘Star Track’ QSAR approach, in which any
molecule is represented as a set of points in 2D space of QNA descriptors. Our approach
significantly differs from other known methods. In contrast to the classic QSAR methods
it does not require the selection of the best set of descriptors among numerous descriptors
used in QSAR.

The new ‘Star Track’ QSAR approach is realized in a computer program GUSAR,
which is based on self-consistent regression, QNA descriptors, and the topological length
and volume of a molecule. GUSAR predicts the quantitative values of biological activity
of chemical compounds on the basis of their structural formulae and does not require the
use of information about the 3D structure of ligands and/or target proteins. We compared
GUSAR with different 3D and 2D QSAR methods using ten sets of molecules from
different chemical classes having diverse kinds of biological activity. It was shown that the
predictivity of GUSAR was comparable or better than that of the other QSAR methods
both on heterogeneous (DHFR inhibitors, ACE inhibitors, Tetrahymena pyriformis) and
on homogeneous (the other) data sets. The method does not use the selection of the model
by the values of Q2. In addition, GUSAR showed high prediction ability and robustness
on the basis of a random multiple splitting procedure. Thus, GUSAR can be easily applied
to different routine QSAR tasks, for building many models, and for prediction by these
models of the different quantitative values simultaneously.
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Appendix 1

Table A1. The electron affinity (EA) and first ionization
potential (IP), in electronvolts, and the atomic radius (AR),
in angstroms, used in this work.

Atom EA IP AR

H 0.75 13.60 0.46
He 0.08 24.59 1.22
Li 0.62 5.39 1.55
Be �0.20 9.32 1.13
B 0.28 8.30 0.91
C 1.26 11.26 0.77
N 0.44 14.53 0.71
O 1.46 13.62 0.73
F 3.45 17.42 0.71
Ne 0.00 21.57 1.60
Na 0.55 5.14 1.87
Mg �0.31 7.64 1.60
Al 0.30 5.99 1.43
Si 1.39 8.15 1.34
P 0.75 10.49 1.30
S 2.00 10.36 1.04
Cl 3.61 12.97 0.99
Ar �0.37 15.76 1.92
K 0.50 4.34 2.36
Ca �0.19 6.11 1.97
Sc 0.19 6.56 1.64
Ti 0.33 6.82 1.46
V 0.53 6.74 1.34
Cr 0.67 6.77 1.27
Mn �0.17 7.43 1.30
Fe 0.50 7.90 1.26
Co 0.66 7.86 1.25
Ni 1.16 7.64 1.24
Cu 1.23 7.72 1.28
Zn �0.44 9.39 1.39
Ga 0.30 6.00 1.39
Ge 1.39 7.90 1.39
As 0.80 9.79 1.48
Se 2.02 9.75 1.17
Br 3.45 11.81 1.14
Kr �0.42 14.00 1.98
Rb 0.49 4.18 2.48
Sr �0.15 5.69 2.15
Y 0.31 6.22 1.81
Zr 0.33 6.84 1.60
Nb 0.51 6.88 1.45
Mo 0.68 7.09 1.39
Tc 0.54 7.23 1.36
Ru 1.10 7.37 1.34
Rh 1.14 7.46 1.34
Pd 1.11 8.34 1.37
Ag 1.22 7.58 1.44

(continued )
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Table A1. Continued.

Atom EA IP AR

Cd �0.43 8.99 1.56
In 0.31 5.79 1.66
Sn 1.39 7.34 1.58
Sb 0.90 8.64 1.61
Te 1.97 9.01 1.70
I 3.23 10.45 1.53
Xe �0.25 12.13 2.18
Cs 0.47 3.89 2.66
Ba �0.15 5.21 2.23
La 0.30 5.59 1.87
Ce 0.25 5.54 1.83
Pr 0.20 5.47 1.83
Nd 0.20 5.53 1.82
Pm 0.20 5.58 1.81
Sm 0.20 5.64 1.80
Eu 0.20 5.67 2.04
Gd 0.20 6.15 1.80
Tb 0.20 5.86 1.78
Dy 0.20 5.94 1.77
Ho 0.20 6.02 1.78
Er 0.20 6.11 1.76
Tm 0.20 6.18 1.75
Yb 0.20 6.25 1.94
Lu 0.20 6.15 1.75
Hf 0.33 7.50 1.59
Ta 0.40 7.89 1.46
W 0.67 7.98 1.40
Re 0.23 7.88 1.37
Os 1.44 8.73 1.35
Ir 1.57 9.10 1.35
Pt 1.10 8.96 1.38
Au 1.25 9.23 1.44
Hg �0.19 10.44 1.57
Tl 0.31 6.11 1.71
Pb 1.39 7.42 1.75
Bi 0.97 7.29 1.82
Po 1.97 8.42 1.56
At 2.90 9.20 1.48
Rn �0.15 10.75 2.27
Fr 0.48 3.98 2.80
Ra �0.15 5.28 2.35
Ac 0.80 5.20 2.03
Th 0.80 6.10 1.80
Pa 0.84 6.00 1.62
U 0.82 6.19 1.53
Np 0.82 6.20 1.50
Pu 0.84 6.06 1.62
Am 0.85 6.00 1.70
Cm 0.85 6.09 1.55
Bk 0.82 6.23 1.49
Cf 0.84 6.27 1.42
Es 0.86 6.47 1.43

(continued )
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Algorithm of the QNA descriptor calculation (in the Delphi 5.0 language):

const
MaxAtom ¼ 1000; // Maximal size of molecule
LastTerm ¼ 31; // Last term of exponent series

type
TAtomRecord ¼ record
Z : Integer; // Atomic number
P, Q: Real; // QNA descriptor values

end;
TBondRecord ¼ record
N1 : Integer; // Number of 1-st binding atom
N2 : Integer; // Number of 2-nd binding atom

end;
var
NA : Integer; // Atoms count
AtomsList : array[1..MaxAtom] of TAtomRecord;
NB : Integer; // Bonds count
BondsList : array[1..MaxAtom] of TBondRecord;

const
CAtomPQ : array[1..105, 1..2] of Real ¼

{H}((0.2790, 2.0024),
{He}(0.2020, 2.4911),
{Li}(0.4578, 1.3751),
{Be}(0.3241, 1.4779),
{B}(0.3531, 1.5149),
{C}(0.3163, 1.9804),
{N}(0.2665, 1.9951),
{O}(0.2868, 2.1625),
{F}(0.2675, 2.7914),

� � �

{Jl}(0.3989, 1.4529));

procedure SetQNA;
var

i, n : Integer;
x : Real;
SP, SQ, T : array[1..MaxAtom] of Real;

begin
for i :¼ 1 to NA do with AtomsList[i] do begin
P :¼ CAtomPQ[Z, 1]; SP[i]:¼ P;
Q :¼ CAtomPQ[Z, 2]; SQ[i]:¼ Q;

end;
for n :¼ MaxStep downto 1 do begin
x :¼ 0.5/n;

Table A1. Continued.

Atom EA IP AR

Fm 0.86 6.60 1.38
Md 0.83 6.68 1.38
No 0.79 6.58 1.47
Lr 0.85 6.69 1.30
Db 0.46 6.43 1.14
Jl 0.50 6.78 1.01
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for i :¼ 1 to NA do T[i]:¼ 0;
for i :¼ 1 to NB do with BondsList[i] do begin
T[N1] :¼ T[N1] þ SP[N2];
T[N2] :¼ T[N2] þ SP[N1];

end;
for i :¼ 1 to NA do SP[i]:¼ AtomsList[i].P-x*T[i];
for i :¼ 1 to NA do T[i]:¼ 0;
for i :¼ 1 to NB do with BondsList[i] do begin

T[N1] :¼ T[N1] þ SQ[N2];
T[N2] :¼ T[N2] þ SQ[N1];

end;
for i :¼ 1 to NA do SQ[i]:¼ AtomsList[i].Q-x*T[i];
end;
for i :¼ 1 to NA do
with AtomsList[i] do begin
P :¼ CAtomPQ[Z, 1]*SP[i];
Q :¼ CAtomPQ[Z, 1]*SQ[i];

end;
end;
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