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A new approach is described that is able to predict the most probable metabolic sites on the basis of a
statistical analysis of various metabolic transformations reported in the literature. The approach is applied
to the prediction of aromatic hydroxylation sites for diverse sets of substrates. Training is performed using
the aromatic hydroxylation reactions from the Metabolism database (Accelrys). Validation is carried out on
heterogeneous sets of aromatic compounds reported in the Metabolite database (MDL). The average accuracy
of prediction of experimentally observed hydroxylation sites estimated for 1552 substrates from Metabolite
is 84.5%. The proposed approach is compared with two electronic models for P450 mediated aromatic
hydroxylation: the oxenoid model using the atomic oxygen and the model using the methoxy radical as a
model for the heme active oxygen species. For benzene derivatives, the proposed method is inferior to the
oxenoid model and as accurate as the methoxy-radical model. For hetero- and polycyclic compounds, the
oxenoid model is not applicable, and the statistical method is the most accurate. Broad applicability and
high speed of calculations provide the basis for using the proposed statistical approach for high-throughput
metabolism prediction in the early stages of drug discovery.

INTRODUCTION

Prediction of site-specific metabolism is a challenging task
for modern computational chemistry. Mammals express a
plethora of metabolic enzymes that can specifically transform
various substrates.1,2 It is currently accepted that the site of
metabolism depends on both electronic substrate-enzyme
interactions and orientation of a substrate within the enzyme
active center.3 Therefore, the majority of methods developed
for prediction of site-specific metabolism try to model a
mechanism of catalysis4-9 or an enzyme structure.10-15

Usually these methods are time-consuming and strongly
depend on the quality and restrictions of a particular model.

At the same time, the increasing amount of information
on metabolic transformations available in the literature and
commercial databases16,17 creates the prerequisite for devel-
opment of predictive tools based on a statistical approach.
Anticipated advantages of such an approach are fast data
processing, the possibility to use heterogeneous and noisy
data for training, and no dependence on the initial hypothesis
concerning a mechanism of catalysis or an enzyme model.

In a previous work, we described a statistical approach
capable of predicting many classes of biotransformation for
chemical compounds.18 A particular class of biotransforma-
tion is defined by the chemical transformation type and may
additionally include the name of the enzyme involved in a

transformation. Examples of predicted classes are “Aromatic
Hydroxylation”, “Aromatic Hydroxylation (Cytochrome
P450)”, “Aromatic Hydroxylation (Cytochrome P450,
CYP2D6)”, “Aliphatic Hydroxylation (Cytochrome P450,
CYP3A4)”, “N-Dealkylation (Cytochrome P450)”, “Hydrol-
ysis (Aminopeptidase)”, “Oxidative Deamination (Mono-
amine Oxidase)”, etc. The structural formula of a chemical
compound is used as input information. The result of the
prediction is a list of more-probable classes of biotransfor-
mation arranged in descending order of their probability.

Herein we present a further development of this approach
for predicting regioselectivity for individual classes of
biotransformation. The method is based on the assumption
that different potentially possible metabolic sites have
different probability within the set of all possible substrate
molecules. Using statistical analysis of known transforma-
tions, it is possible to estimate the probability of a given
transformation occurring at each of the potential metabolic
sites for a new molecule. The approach is designed to be
universally applicable for any class of biotransformation. In
this study, we analyzed the applicability of the approach to
the prediction of aromatic hydroxylation sites. We compare
our method with two model-based approaches that simulate
the mechanism of aromatic hydroxylation by cytochromes
P450. The point for comparison was the ability of each
method to predict experimentally observed transformations.

THEORETICAL BASIS

General Approach. We assume that some positions of
the aromatic system are preferable for hydroxylation in many
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different substrates, whereas other potential positions are
hydroxylated very rarely or not hydroxylated at all in
naturally occurring biotransformations. Therefore, structural
schemes of “real” (experimentally observed) transformations
must have some similarity with each other and differ from
“unreal” (not experimentally observed) transformations.
Then, the goal is to construct a decision rule for distinguish-
ing real transformations from potentially possible but not
really existing ones. For this, we created a training set
consisting of both experimentally observed transformations
and transformations generated artificially for the same set
of substrates, taking into consideration all potential sites of
aromatic hydroxylation. For the computer representation of
a transformation, 2D topological descriptors were introduced
that code a transformation as a single entity including both
the substrate and the product. Any particular descriptor can
be found with a certain frequency among “real” and “unreal”
transformations in the training set. For any new compound,
its potential transformations are generated and coded by the
applicable descriptors. The contribution of all descriptors is
estimated, and every transformation is classified as “real”
or “unreal” with a certain probability.

Coding a Transformation by Descriptors.The structural
formula of a particular transformation includes a substrate
formula on the left of the arrow and a product formula on
the right. The transformation is coded by 2D topological
descriptors that we refer to as RMNA descriptors (Reacting
Multilevel Neighborhood of Atom). In the development of
the RMNA descriptors, we started from MNA descriptors19

developed earlier for biological activity prediction. In addi-
tion to standard MNAs that describe atoms and bonds in
one molecule, RMNAs take into account atoms and bonds
involved in a transformation. Descriptors are generated
according to the following algorithm.

The first-level RMNA descriptor for an atomA has the
form

whereA is the atom type; [-] is the label added to nonring
atoms; [T] is a label for transformed atoms, which can take
the values “<” for attached atom and “>” for removed atom,
respectively;D1, .., Di... are the immediate neighbors of the
atom in a lexicographical order; [B] is a label for bonds
changed during the transformation, which can take the values
“/” if a bond betweenA and one of the neighboring atoms is
broken, “[\]” if a new bond is formed, “]” if a bond changes
bond type (indicated in a substrate), and “[“ if a bond changes
bond type (indicated in a product).

Thenth-level RMNA descriptor for an atomA is created
by an iterative procedure and has the following substructure
notation

where RNMAn-1(A) is the (n-1)-level RMNA descriptor for
the atom A and RNMAn-1(Di) is the n-1-level RMNA
descriptor for itsith immediate neighbor.

This iterative process can be continued including second,
third, etc. neighborhoods of each atom. Currently we use
the 4th level descriptors. Descriptors generated for a substrate

and for a product are combined in the same set, and every
unique descriptor is saved. Therefore, an entire transforma-
tion is represented by the set of descriptors derived from a
substrate and a product. An example of descriptors of the
4th level is given in Figure 1.

Generation of Potential Transformations.For any given
substrate, all potential transformations of aromatic hydrox-
ylation are generated using all potential sites within the
molecule. The generation is based on the vocabulary of
transformation patterns and a graph-searching algorithm. A
transformation pattern is a transformation formula that
describes the structural changes from a substrate to a product.
When the substrate part of a pattern is found in a new
molecule, it is replaced by the product part of the pattern.
The vocabulary of patterns was prepared by automatic
processing of transformations included in the Metabolism
database (Accelrys)16 followed by refinement by a human
expert. Therefore, only patterns found in the database at least

RNMA1(A) ) ([-]A[T]D1[B]D2[B]..Di[B]...)

RNMAn(A) ) (RNMAn-1(A) RNMAn-1(D1)

RNMAn-1(D2)... RNMAn-1(Di)...)

Figure 1. Two 4th level descriptors for a selected carbon atom
(C4) in the substrate (a) and in the product (b). The iterative
formation of descriptors from descriptors of previous levels is shown
in bold type.
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once are included in the vocabulary. Examples of transfor-
mation patterns and generated transformations are given in
Figure 2.

Prediction Algorithm. The method of prediction is the
same as the one used in the program PASS.20-25 In the
training set, containingn transformations,nr transformations
are real (experimentally reported), while others are not. Any
descriptori is found in ni transformations,nir of those are
real. For any given transformation of the training set its
descriptors{d1,...,di,...,dm} are generated, and the following
value is calculated

where

The empirical distributions oft-values for real transforma-
tions as well as for unreal transformations are estimated and
saved in a file of a special format.

For a new transformation, RMNA descriptors are gener-
ated, and thet-statistics is calculated. Comparison of the
t-value for a new transformation with the distributions of
t-values for real and unreal, i.e., experimentally unobserved
(see Materials and Methods section), transformations in the
training set yields the probabilitiesPr andPu of assigning a
transformation to the classes “real” and “unreal”. The
difference∆P ) Pr - Pu is the result of the prediction for
one transformation. The higher the∆P value, the more
probable a transformation is. Note that if a transformation
is already included in the training set it is automatically

excluded from the training set before the prediction procedure
starts for this transformation.

MATERIALS AND METHODS

Training Set. Real transformations were taken from the
Metabolism v.2002.1 database (Accelrys).16 A total of 789
structurally unique first step mammalian transformations
referred in the database as belonging to the “Aromatic
Hydroxylation” class were used. A substrate’s structure was
extracted from a particular transformation, and its potential
transformations were generated and added to the training set.
The resulting training set included 5747 transformations, 789
of them experimentally observed (reported in the database)
while others were not. Both real and unreal transformations
were coded by RMNA descriptors and saved in a binary file.
Every real transformation has a specific label indicating its
belonging to the “Aromatic Hydroxylation” class. Specific
enzymes participating in each transformation were not taken
into account since the Metabolism database does not contain
such information.

Evaluation Sets. We validated the approach against
transformations reported in the Metabolite v.2001.1 database
(MDL Information Systems Inc.).17 Four evaluation sets were
prepared. To prepare the first set, we retrieved from the
database 1552 compounds undergoing aromatic hydroxyla-
tion. For every molecule, all potential reactions of aromatic
hydroxylation were generated. Experimentally observed
transformations were labeled “Aromatic Hydroxylation”. The
total evaluation set included 2124 observed and 16361
unobserved transformations.

The second, third, and fourth evaluation sets were used
for comparison with model-based quantum chemical calcula-
tions. We selected structurally diverse compounds with
multiple potential sites of aromatic hydroxylation. Only
compounds that had both observed and unobserved sites of
hydroxylation were included in each of the evaluation sets.
The resulting evaluation sets included 15 substituted ben-
zenes, 17 compounds containing poly- and heterocycles, and
15 substrates of cytochrome 2D6. For every molecule, we
generated all possible reactions ofone substitutedaromatic
hydroxylation. Experimentally observed transformations were
labeled “Aromatic Hydroxylation”. In the fourth set only
reactions catalyzed by CYP2D6 were labeled.

Note that all experimental data were taken from the
Metabolite database “as is”. Other information sources were
not used. Expert validation and correction of the data were
not carried out. If the database contained at least one
reference for a transformation, the transformation was
considered to have been experimentally observed. Test
system, route of administration, dose, metabolites’ amount,
and stereochemistry were not taken into account.

Model-Based Approaches Used for Comparison.Most
often aromatic hydroxylation is mediated by the cytochrome
P450 enzymes. Two different models of active heme-iron
oxygen species of cytochrome P450 were used for the
prediction of the aromatic hydroxylation site. Both models
successfully reproduce the aromatic hydroxylation site in the
series of substituted benzenes with simple substituents.5,7 The
first model was the so-called oxenoid model.4-6 According
to this model, P450 breaks a dioxygen molecule and
generates the active atomic oxygen species (oxens), which

Figure 2. Transformation patterns and potential products generated
for aniline. Asterisks indicate a carbon for which different numbers
of neighbor atoms are allowed. The “x” indicates the experimentally
observed product.

t ) (s - s0)/(1 - s/s0) (1)

s ) Sin( ∑i
ArcSin(2/nir/ni - 1)/m) , s0 ) 2/nr/n - 1
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readily react with substrates. The stability of an intermediate
with one tetrahedral carbon atom relative to the substrate
molecule is considered to be a factor that determines the
preferable hydroxylation position. The lower the difference
∆H between the heat of formation of a “tetrahedral”
intermediate and that of the substrate, the more probable a
transformation is. In our calculations of benzene derivatives,
we optimized the geometries of substrates using the MNDO
Hamiltonian method with the MOPAC 6.0 software. The
structure of the benzene ring for any intermediate was that
of the “tetrahedral” intermediate of unsubstituted benzene
and was taken from the publication of K. Korzekwa and co-
workers.4 The substituents’ geometry for intermediates was
assumed to be the same as in the substrate molecule. The
heats of formation of substrate and intermediates were
calculated for all possible positions of aromatic hydroxylation
in a substrate molecule.

The second model was that proposed by J. Jones and co-
workers.7 According to this model, a methoxy radical instead
of oxene serves as a model system for oxygenating species.
The difference∆H between the heat of formation of a
substrate and that of an intermediate describes approximately
the activation energy of oxidation.7 The structures of both
the substrate and the intermediate were minimized using the
default procedure in SYBYL 6.9 and then optimized with
the AM1 semiempirical Hamiltonian using MOPAC 6.0. The
heat of formation of the tetrahedral intermediate resulting
from the addition of a methoxy radical to a carbon atom of
the aromatic ring was calculated for all possible positions
of aromatic hydroxylation. Open-shell systems were treated
with an unrestricted Hartree-Fock method.

Validation Method. The goal was to estimate the ability
of our approach and each of the model-based approaches to
recognize experimentally observed transformations in any
given evaluation set. To do this, we ranked all potential
transformations related to a particular substrate in accordance
to (1) the ∆P value and (2) the∆H value. Ideally, real
(experimentally observed) transformations should have higher
ranks than unreal transformations. The accuracy of prediction,
which we call IAP (Independent Accuracy of Prediction),
was estimated as

whereN(rankr < ranku) is the number of cases when a real
transformation has higher rank then an unreal transformation
(all pairs real-unreal are compared);Nr andNu are the number
of real and unreal transformations of the substrate, respec-
tively.26 The IAP statistics was calculated for every particular
substrate and averaged over all substrates in the evaluation
set.

RESULTS AND DISCUSSION

Table 1 contains IAP values for all evaluation sets
calculated for the results obtained by our method as well as
the quantum chemical approaches. Table 2 compares the
average time required for processing of one transformation
by each one of the methods.

In general, the accuracy of the statistical prediction is
comparable with, or higher than, that of model-based

predictions, while the time required per molecule is much
less.

For the first training set we did not use the model-based
approaches because these would be too time-consuming
taking into account that the total number of potential
transformations exceeds 18000. The accuracy of the statistical
prediction is reasonable despite the evaluation set exceeding
three times the size of the training set in terms of number of
substrates.

For the second evaluation set (benzene derivatives), the
accuracy of prediction was compared with two quantum
chemical approaches. The oxenoid model provides the best
accuracy of prediction. However, the model can be applied
to substituted benzenes only since it uses a fixed benzene
ring geometry taken from a published intermediate of a
benzene molecule oxidation.4 The statistical approach and
the methoxy-radical model are almost equivalent in their
predictive accuracy. In Table 3, ranking of transformations
by ∆P values is compared with ranking by∆H values.
Appropriate IAP values are given in Table 4. As one can
see, the majority of experimentally observed transformations
have highest ranks by both the model-based and statistical
approaches. The statistical predictions fail for substrates 3,
6, and 9. The oxenoid model correctly predicts all substrates
except substrate 14. The methoxy-radical model fails for
substrate 10. For substrates 3, 6, 14, and 15, the lowest
energy also does not correspond with the experimentally
observed site of hydroxylation. However, the difference
between the lowest and the next lowest energy is insig-
nificant. It is interesting that for substrates 3 and 6, the
same hydroxylation sites are predicted with the highest
ranks by both the methoxy-radical model and the statistical
method.

For hetero- and polycyclic compounds, the statistical
approach was compared with the methoxy-radical model
only. As one can see from Tables 5 and 6, the methoxy-
radical model fails for 11 of 17 substrates (2, 5, 6, 7, 10, 11,
12, 13, 14, 16, 17). The average accuracy of 44.9% means
that the result of the prediction does not differ significantly

IAP )
N(rankr < ranku)

Nr‚Nu
‚100%

Table 1. Accuracy of Prediction (IAP) Estimated for the Statistical
Approach (s), Oxenoid Model (o), and Methoxy Radical Model (m)

all
substratesa

benzene
derivativesb

heteropolycyclic
compoundsb

CYP2D6
substratesb

no. of
substrates

1552 15 17 15

IAPs, % 84.5 85.0 83.1 89.6
IAPo, % 95.0 not applicable not applicable
IAPm, % 84.2 44.9 70.1

a All possible reactions of aromatic hydroxylation were used.b Only
reactions of one substituted aromatic hydroxylation were used.

Table 2. Average CPU Time Required for Computation of One
Transformation by the Statistical Approach, Oxenoid Model, and
Methoxy Radical Model

method CPU time, s

statisticala 0.03
oxenoid modelb 2
methoxy-radical modelb 60

a PC Pentium 4, 2.4GHz, 768RAM, OS MS Windows 2000.
b Origin200, 2 × 180 MHz/1 MB cache R10000, OS IRIX 6.5
(minimization time is not included).
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Table 3. Benzene Derivatives (Ranking of Potential Hydroxylation Sites According to∆P and∆H Values)
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from random selection of potential hydroxylation sites. In
contrast to this model, the statistical approach provides a
reasonable accuracy of prediction (83.1%). However, for
substrates 12 and 16, the first rank does not correspond to
an experimentally observed (i.e. reported in the Metabolite
database) hydroxylation site, and for substrate 6, two
experimentally observed sites are predicted with lowest ranks.
The failure of the methoxy-radical model might be related
to not taking into account a possible epoxidation that can
precede the phenol formation stage. If an epoxidation
mechanism is involved, additional calculation of the elec-
tronic effect of epoxide ring opening9 would be necessary
to predict the hydroxylation site. This calculation was not
done in this study. The relative success of the statistical
approach may be explained by its independence of any
hypothesis about the hydroxylation mechanism and its use
of the structures of the final products for training.

Table 4. Accuracy of Prediction (IAP) Estimated for Substrates
Given in Table 3 by the Statistical Approach (s), Oxenoid Model
(o) and Methoxy-Radical Model (m), Respectively

substrate name IAPs, % IAPo, % IAPm, %

1 mephenytoin 100.0 100.0 100.0
2 tolbutamide 100.0 100.0 100.0
3 diazepam 50.0 100.0 50.0
4 acetanilide 100.0 100.0 100.0
5 fentanyl 100.0 100.0 87.5
6 5-(p-hydroxyphenyl)-5-phenyl-

hydantoin
50.0 100.0 75.0

7 aminophenazone 100.0 100.0 100.0
8 salicylic acid 100.0 100.0 100.0
9 paracetamol 0.0 100.0 100.0
10 1-phenyl-2-methylaminopropane 100.0 100.0 50.0
11 phenobarbital 100.0 100.0 100.0
12 fenbendazole 100.0 100.0 100.0
13 irsogladine 100.0 100.0 100.0
14 merbarone 100.0 50.0 50.0
15 diclofenac 75.0 75.0 50.0

Table 3 (Continued)

a + the transformation is reported in the Metabolite database.- the transformation is not reported in the Metabolite database.ï Oxenoid model.
m Methoxy radical model.
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Table 5. Hetero- and Polycyclic Compounds (Ranking of Potential Hydroxylation Sites According to∆P and∆H Values)
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Table 5 (Continued)
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In the above-mentioned evaluation sets, we did not take
into account isoforms of P450 involved in any transforma-
tion. To prepare the fourth evaluation set, we selected only
substrates of CYP2D6. It is known from literature that the
metabolic site of CYP2D6 substrates depends not only on
electronic factors but also on specific orientation of a
substrate within the enzyme molecule.10-12 In light of this
knowledge, we initially assumed that the prediction based
on the training set that does not contain any enzymatic
information should fail in the case of CYP2D6 substrates.
However, our results contradicted this assumption. The
accuracy of 89.6% achieved by the statistical approach is
comparable or even higher than for other evaluation sets. It
shows that the site of aromatic hydroxylation by CYP2D6

can be predicted with the statistical approach without the
enzyme model. The methoxy-radical model yields 70%
accuracy, which is also higher than the result obtained by
the same model for hetero- and polycyclic compounds. As
one can see in Table 7, for substrate 5 (carvedilol) the
methoxy-radical model better predicts hydroxylation sites
reported for different isoforms of P450, while the statistical
prediction places the sites reported for CYP2D6 at the top
of the list. The same holds for substrate 14 (tamoxifen).
However, for the majority of molecules (see Tables 7 and
8) highest ranks obtained by both the quantum chemical and
statistical calculations coincide with the experimentally
observed sites of CYP2D6 hydroxylation rather than with
sites reported for other enzymes. Therefore, it might be
assumed that aromatic hydroxylation by CYP2D6 occurs at
the most energetically favorable position of the aromatic ring
and does not depend on the orientation of the substrate within
the enzyme active site. We emphasize that this assumption
concerns only sites of aromatic hydroxylation. The influence
of orientation on other potential reactions of CYP2D6, e.g.
N-demethylation, was not investigated in this study.

CONCLUSIONS

We have shown that formal statistical analysis of reaction
schemes of known transformations can be used for prediction
of possible aromatic hydroxylation sites for new substrates.
The accuracy of prediction of experimentally observed
hydroxylation sites is not significantly affected by the
presence of hetero- and polycyclic moieties in a substrate’s
structure.

Among the approaches compared in this study, the oxenoid
model is the most accurate in predicting hydroxylation sites
in benzene derivatives. However, it is not applicable to

Table 5 (Continued)

Table 6. Accuracy of Prediction (IAP) Estimated for Substrates
Given in Table 5 by the Statistical Approach (s) and
Methoxy-Radical-Model (m), Respectively

substrate name IAPs, % IAPm, %

1 ethinylestradiol 100.0 100.0
2 warfarin 100.0 35.0
3 N-2-fluorenylacetamide 60.0 60.0
4 ropinirole 100.0 100.0
5 lansoprazole 100.0 25.0
6 pindolol 33.3 16.7
7 BMS 181101 100.0 40.0
8 cinchophen 86.7 86.7
9 imiquimod 100.0 50.0
10 dibenzo(a,l)pyrene 100.0 38.5
11 CP 358774 66.7 0.0
12 DMP 543 66.7 0.0
13 hydrodolasetron 83.3 33.3
14 midazolam 100.0 28.6
15 2-amino-alpha-carboline 100.0 87.5
16 delavirdine 50.0 40.0
17 ramosetron 66.7 22.2
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Table 7. CYP2D6 Substrates (Ranking of Potential Hydroxylation Sites According to∆P and∆H Values)b
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Table 7 (Continued)

a + a transformation is reported in the Metabolite database for CYP2D6.- a transformation is not reported in the Metabolite database.b -x a
transformation is reported for different isoforms of P450. -* a transformation is reported without indication of a P450 isoform.
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hetero- or polycyclic compounds. The methoxy-radical model
and statistical approach provide approximately the same
accuracy for benzene derivatives. For more complex com-
pounds, the methoxy-radical model fails, while the statistical
approach demonstrates relatively good prediction.

The statistical approach can be used for prediction of
aromatic hydroxylation sites for CYP2D6 substrates without
modeling of the enzyme structure. Both quantum chemical
and statistical calculations used in this study show no specific
influence of CYP2D6 on the site of aromatic hydroxylation.

The proposed statistical approach can be used for high-
throughput metabolism prediction due to its broad applicabil-
ity and high speed of calculation. The applicability of the
approach to other biotransformation classes and the influence
of other P450′ isoforms on the prediction accuracy will be
evaluated in the future.
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Table 8. Accuracy of Prediction (IAP) Estimated for Substrates
Given in Table 7 by the Statistical Approach (s) and
Methoxy-Radical-Model (m), Respectively

substrate name IAPs, % IAPm, %

1 propafenone 83.3 100.0
2 methoxyphenamine 100.0 66.7
3 GBR 12909 100.0 50.0
4 mirtazapine 100.0 100.0
5 carvedilol 100.0 11.1
6 bufuralol 33.3 66.7
7 clomipramine 100.0 90.0
8 ondansetron 77.8 44.4
9 tropisetron 50.0 50.0
10 cinnarizine 100.0 75.0
11 desipramine 100.0 100.0
12 fluperlapine 100.0 100.0
13 imipramine 100.0 66.7
14 tamoxifen 100.0 71.4
15 propranolol 100.0 60.0
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