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The program PASS-BioTransfo is presented, which is capable of predicting many classes of biotransformation
for chemical compounds. A particular class of biotransformation is defined by the chemical transformation
type and may additionally include the name of the enzyme involved in a transformation. An evaluation of
the approach is presented, using biotransformations taken from the databases Metabolite (MDL) and
Metabolism (Accelrys), respectively. When trained with biotransformations from Metabolite, PASS-
BioTransfo predicts 1927 classes of biotransformation; the average accuracy estimated in LOO cross-validation
is about 88%. After training with the biotransformations from the Metabolism database, 178 classes of
biotransformation are predicted with an average accuracy of about 85%. The results of cross-prediction
with several training and evaluation sets are presented and discussed.

INTRODUCTION

According to the IUPAC vocabulary of terms used in
medicinal chemistry,biotransformationis the modification
of chemical compounds by living organisms or enzyme
preparations.1 Generally this process is applicable to both
xenobiotics and endogenous compounds, but medicinal
chemistry usually concentrates on metabolic biotransforma-
tion of pharmaceutical agents.

A plethora of enzymes is involved in drug metabolism.
For the cytochromes P450 superfamily alone (major enzymes
of the phase I metabolism), about 60 human isoforms are
known,2 and it is assumed that the total number may yet
increase. The major enzyme systems responsible for drug
biotransformation are the following:3

• cytochromes P450
• esterases
• epoxide hydrolase
• dihydropyrimidine dehydrogenase
• glutathione S-transferases
• N-acetyltransferases
• sulfotransferases
• thiopurine methyltransferase
• glucuronosyltransferases
In most cases more than one enzyme is involved in a

particular drug metabolism. On the other hand, a particular
enzyme is capable of catalyzing many biotransformations
in terms of different individual chemical reactions. The ability
of a particular drug to interact with certain enzymes and to
undergo certain biotransformations constitutes its biotrans-
formation (or metabolic) potential.

Early determination of the metabolic potential is a critical
issue in the drug development cycle. Experimental studies
of the metabolic potential in the human body are labor-
intensive and represent a biomedical as well as an ethics

problem. Existing in vitro systems for high-throughput
metabolism screening do not cover whole enzymatic profiles
and do not enable one to recognize all possible ways of a
drug’s biotransformation. The role of in silico technologies
lies in decreasing the number of in vivo and in vitro
experiments and in enabling the study of the metabolic
potential at the presynthesis stage of drug design.

Most of the modern in silico approaches to metabolism
prediction are concentrated on the analysis of drug biotrans-
formation by various isoforms of cytochrome P450.4-7 These
studies are usually based on modeling of substrate-enzyme
interaction and are not suitable for high-throughput applica-
tion. Existing computer programs for rapid biotransformation
prediction, META,8,9 MetabolExpert,10 and METEOR11 are
knowledge-based expert systems. To predict biotransforma-
tions they use special rules provided by experts in the field
of xenobiotic metabolism. Therefore, the predictions are
based on “human knowledge” rather than on robust and
objective computational estimates.

In this paper we describe a different approach for predict-
ing biotransformation potentials. The existing published (or
“in house” available) experimental data are used for auto-
matic generation of “structure-biotransformation” relation-
ships, which are then applied in the prediction of the
biotransformation potential for a new molecule. The math-
ematical method underlying this approach was adopted from
the program PASS12-19 developed earlier for predicting many
kinds of biological activity for chemical substances. Since
the PASS approach was shown to be successful for biological
activity prediction, it was used “as is” in the current version
of the biotransformation prediction program, which we call
“PASS-BioTransfo”. Here, it is employed for the prediction
of possibleclasses of biotransformation. To evaluate this
approach, PASS-BioTransfo was applied to biotransforma-
tions taken from the MDL Metabolite20 and Accelrys
Metabolism21 databases, generally seen as the two best
commercially available biotransformation databases. These
experiments address the following issues:
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1. Use of a uniform computational approach for predicting
different classes of biotransformation from molecular struc-
ture.

2. Application of data from animal experiments to human
biotransformations prediction.

CLASSES OF BIOTRANSFORMATION

IUPAC defines an organic chemical transformation as a
modification of a substrate into a product: “Atransformation
is distinct from areaction in that it describes only those
changes that are involved in converting the structure of a
substrate into that of a product, regardless of the reagent or
the precise nature of the substrate, or (with some exception)
the mechanism. Therefore all processes in which X-H is
converted in X-NO2 are examples of the single transforma-
tion called ‘nitration’, whatever the nature of X, and
irrespective of whether the reaction entails the replacement
of H+ by NO2, of H• by NO2

•, or of H- by NO2
-.”22

The scheme of a particular transformation includes a
substrate structure on the left of the arrow and a product
structure on the right. The name of the transformation reflects
the main structural modification in thesubstratemolecule.

Since abiotransformationis a transformation of enzymatic
nature, we suggest that inclusion of the specification of the
involved enzymes in the definition of a specific biotrans-
formation is reasonable. We therefore use the following
general form for designatingclasses of biotransformation:

The “chemical transformation” is the basic part of the
notation, while “enzyme system” and “isoenzyme” are
optional parts, which may be missing, especially when
enzyme or isoenzyme are unknown. Figure 1 shows an
example of the above notation for the aromatic hydroxylation
by cytochrome P450 2D6.

The first class of biotransformation indicates only the class
of chemical modification of the substrate, while the second
and third ones specify which enzyme and isoenzyme is
involved.

BIOTRANSFORMATIONS USED IN THE STUDY

We used two well-known commercial databases (DB),
Metabolite (MDL Information Systems Inc.) and Metabolism
(Accelrys), for the evaluation of our approach. These
databases contain biotransformation reactions collected from
different in vitro and in vivo studies and assemble them in
metabolic schemes. Structural information includes the RXN
structure for the entire reaction, which may be augmented
by structures of substrates and products in mol-file format.
In addition to the structural information, the databases include

experimental parameters, biological activity and toxicity data,
pharmacokinetic data, physicochemical properties of com-
pounds, etc. Here we briefly describe those data from the
databases that are of importance for our study. These data
include the following:

• structural information
• description of transformation classes
• enzyme information
• species information
MDL Metabolite Database. The database Metabolite

2001.1 includes 55546 biotransformations of more than 9000
parent compounds. About 98% of the annotated parent
compounds are pharmaceuticals, and about 2% are food
additives, industrial chemicals, and agrochemicals.

Every biotransformation represents one of the reactions
of a metabolic scheme. Within one metabolic scheme, every
biotransformation has a particular substrate and product and
is related to a parent compound. Figure 2 shows how
biotransformations are represented in Metabolite. Every
transformation is attributed to one or several classes indicated
in the text field “reaction class”. The complete vocabulary
of reaction classes present in Metabolite includes 203 records.
Enzyme information is contained in the fields “enzyme
name” and “isoenzyme” and includes the common names
of the enzyme system and isoenzymes that were reported in
the experiment. In Metabolite 2001.1, 11 969 biotransfor-
mations have enzyme information, with 94 enzyme systems
being present. Species information is held in the field
“species”. It is essentially a database of biotransformations
found in mammals, 17 289 of which are human.

Accelrys Metabolism Database.The database Metabo-
lism, version 2002, includes 25 000 biotransformations of
3164 parent compounds. By our estimates, about 52% of
the annotated parent compounds are agrochemicals, 25% are
pharmaceuticals, 10% are industrial and environmental
chemicals, 8% are model compounds, and 5% are natural
products and food additives.

Unlike MDL Metabolite, in Metabolism every biotrans-
formation is a parent compound modification. Thus, a
substrate is always a parent compound. Comparison of a
metabolic sheme representation in Metabolite and Metabo-
lism is shown in Figure 2.

Structural information includes the RXN structure and
parent and product structures. Transformation classes are
indicated in the field “key phrases”. The total list of key
phrases consists of 238 items. Enzyme information is not
given. The field “test system” indicates the experimental

Figure 1. Example of notations of biotransformation classes.

chemical transformation (enzyme system, isoenzyme)

Figure 2. Representation of biotransformations in Metabolite and
Metabolism databases.
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organism in which a biotransformation was found. The
database contains biotransformations in vertebrates, inver-
tebrates, and plants: 11 968 biotransformations are mam-
malian, 2635 are human.

Data Preparation. The biotransformations from the
Metabolism and Metabolite databases were used for both
training and evaluating the method. We prepared six data
sets from the two databases:

1. Substrates of all biotransformations of Metabolite
(15 044 unique substrates).

2. Substrates of the first step mammalian biotransforma-
tions of Metabolism (2598 unique substrates).

3. Substrates of animal biotransformations of Metabolite
(11 599 unique substrates).

4. Substrates of human biotransformations of Metabolite
(6376 unique substrates).

5. Substrates of animal first step biotransformations of
Metabolism (2186 unique substrates).

6. Substrates of human first step biotransformations of
Metabolism (708 unique substrates).

To prepare the set 2 we retrieved all mammalian biotrans-
formations from Metabolism. As was mentioned above, in
Metabolism a substrate is always a parent and intermediate
substrates are not listed. Since we needed the real substrates
for our study, we retrieved from Metabolism only the first
step biotransformations for which parent compounds were
real substrates. For the preparation of data sets 3 and 4, we
divided all biotransformations of Metabolite into two subsets.
The first subset contained biotransformations found in in vivo
or in vitro human experiments or in in vitro experiments
with human enzymes expressed in animal cells. The second
one contained biotransformations found only in animal
experiments. For the preparation of the 5th and 6th data sets,
we repeated the same procedure with the first step biotrans-
formations of the Metabolism DB.

For every biotransformation from Metabolite, the substrate
structure, reaction classes, and names of enzyme and
isoenzyme were used. From Metabolism, we used parent
structure and key phrases. All data were converted to a
unified format in which every structure was saved as a list
of substructural descriptors (see the Methods Section), while
reaction classes and enzyme information (for Metabolite)
were saved in biotransformation classes.

It should be mentioned that Metabolite and Metabolism
often classify biotransformations differently. Although the
lists of terms used in Metabolite and Metabolism overlap
significantly, the descriptions of particular transformations
often differ. Classifications in Metabolism tend to be more,
if not overly, complicated compared with the typically short
descriptions in Metabolite. An example is given in Figure
3.

To allow for the best possible comparison between two
databases, biotransformations of Metabolite and Metabolism
should ideally be standardized on the basis of a uniform
classification. However, we did not do that for the following
reasons. (1) There is currently no such uniform classification
of chemical transformations, and it would be beyond the
scope of the current study to introduce one. (2) Standardiza-
tion would lead to significant modification of the original
information. Since the abovementioned databases are widely
applied as reference sources, we used their information “as
it is” for the eValuation of our approach.

METHODS

PASS-BioTransfo predicts possible classes of biotrans-
formation from molecular structure using a method that has
already been published elsewhere.13 Here we present only a
brief description of the method.

Chemical Structure. Chemical structure is represented
by original descriptors called Multilevel Neighborhoods of
Atoms (MNA). These descriptors are generated from the
compound’s structural formulas. A detailed definition of
these descriptors can be found in a previous publication.23

It has been shown that the MNA descriptors are rather
universal and are capable of representing various structure-
property relationships, including many types of biological
activity,13,14,17-19 mutagenicity and carcinogenicity,19 drug-
likeness,15 etc. MNA descriptors describe surroundings of
each atom in a molecule. Building on these successful
applications of MNAs and assuming that such a description
reflects the influence of neighboring atoms on the biotrans-
formation center, we use them as the basis for predicting
biotransformations for compounds.

Mathematical Approach. PASS-BioTransfo discriminates
between compounds that undergo or do not undergo a
particular biotransformation by analysis of the multivariate
space of MNA descriptors. The contribution of every
descriptordi to a particular biotransformationBj is estimated
as a conditional probability valuep(Bj|di) ) nij/ni, wherenij

is the total number of compounds in the training set that
contain the descriptordi and belong to the class of biotrans-
formationBj andni is the total number of compounds that
contain the descriptordi. The contributions of all the
descriptors of the molecule to the biotransformationBj are
summarized in the specially designed statistic

wheres ) Sin(∑i ArcSin(2*p(Bj|di) - 1)/m), s0 ) 2*p(Bj)
- 1, p(Bj) is thea priory probability of biotransformation
Bj, andm is the number of molecule’s descriptors.

A smooth estimate of empirical distributions oft-values
for compounds from the training set, which undergo a
particular biotransformation (tt) as well as for those that do
not undergo this biotransformation (tf) are estimated and
stored (see Appendix 1 of the Supporting Information). When
PASS-BioTransfo encounters a new compound, MNA de-
scriptors are generated and thet-statistic is calculated.
Comparison of thet-value for the new compound with the
distributions of tt and tf of the training set yields the
probabilitiesPt andPf of assigning a compound to the classes
of “compounds which undergo biotransformationBj” and
“compounds which do not undergo biotransformationBj”.

Figure 3. Example of the classification of the same biotransfor-
mation in Metabolite and Metabolism.

t ) (1+(s - s0)/(1 - s*s0))/2 (1)
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This training procedure and analysis is carried out for several
hundred classes of biotransformation automatically.

Application. A prediction is possible for those classes of
biotransformation that are represented by at least 3 substrates
in the training set. For example, if we use all biotransfor-
mations from the Metabolite database, the training set
includes 15 044 compounds with a unique structure and
represents 7728 classes of biotransformation, but prediction
is possible for only 1927 classes of biotransformation. When
the program finds a new compound in its input, the list of
possible biotransformation classes is predicted. If the struc-
ture of the compound under study coincides with that of one

of the training set compounds, it is left out of the training
set before the program calculates the prediction.

Figure 4 shows as an example of predicted biotransfor-
mation classes, the results for the haloperidol molecule, using
all biotransformations from the Metabolite database as a
training set. Since this structure was found in the training
set, it was left out before the prediction was made. The upper
list represents biotransformations found for the compound
in the training set. The bottom list shows a part of the
predicted biotransformations arranged in descending order
of Pt - Pf values. Only those biotransformaton classes are
included in the list for which thePt - Pf value is positive.

Figure 4. Prediction of biotransformation potential for haloperidol. The Metabolite database was used for training. Biotransformations that
are known for the compound (a) may be compared with predicted biotransformations (b).
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One can see that such transformations asdehydration,
dehydrogenation, aromatization, reduction, oxidation, qua-
ternization, andoxidatiVe N-dealkylationare predicted cor-
rectly. The type of enzyme is predicted correctly, e.g., for
aromatization (cytochrome P450, CYP3A4), reduction (cy-
tochrome P450, CYP3A4),andN-dealkylation (cytochrome
P450). One can see that, for some transformations, additional
enzymes and isoenzymes are predicted by PASS-BioTransfo.

Figure 5 shows another example, the predictions for
acetylcalicylic acid.

Among the transformations included in the list for
acetylsalicylic acidhydrolysis, O-deacylation, O-deacetyla-

tion, glucuronidation, andaromatic hydroxylationare pre-
dicted correctly. For some of them additional suggestions
about involved enzymes have been made. Such reaction as
O-demethylation, dehydrogenation, oxidatiVe N-dealkylation,
aliphatic hydroxylation, andN-acetylationare metabolically
meaningless for this compound. It is interesting that trans-
formations involving a nitrogen atom are present in both the
known (N-acylation) and the predicted (oxidatiVe N-dealky-
lation, N-acetylation) lists although acetylsalicylic acid does
not possess a nitrogen atom. These errors are probably related
to the data presented in the training set. For example, a more
detailed analysis of the Metabolism database revealed

Figure 5. Prediction of biotransformation potential for acetylsalicylic acid. The Metabolite database was used for training. Biotransformations
that are known for the compound (a) may be compared with predicted biotransformations (b).
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presence the reaction of N-acylation of acetylsalicylic acid
(Figure 6).

It is obvious that the more correct name of this reaction
would be glycination. As one can see in Figure 5(b),
glycination is included in the prediction list.

EVALUATION OF THE APPROACH

The purpose of our analysis was to assess the applicability
of the approach to the prediction of different biotransfor-
mation classes. For this, we carried out several experiments
in silico. From the six sets of biotrsansformations described
above we prepared several pairs of training and evaluation
sets. For every such pair, we estimated the accuracy of
prediction of a particular biotransformation class. We used
the following algorithm for the evaluation:

1. Leave-one-out (LOO) cross-validation with a training
set.

2. Validation with an independent evaluation set.
3. Comparison of the results obtained in steps 1 and 2.
The accuracy of predicting a particular biotransformation

class was estimated as

whereN{tt > tf} is the number of cases when thet-value
estimated for a compound that undergoes the biotransfor-
mation of that class exceeds thet-value for a compound that
does not undergo this biotransformation, all pairs of trans-
formed/untransformed compounds of the evaluation set being
compared;Nt and Nf are the number of compounds that
undergo and do not undergo the biotransformation of that
class, respectively.IAP ranges from 0 to 100% and is
interpreted as follows.

• IAP > 50%- Statistically significant prediction. InIAP
the percent of cases the program correctly recognizes if a
compound undergoes or does not undergo a particular class
of biotransformation.

• IAP ) 50%- No prediction. The probability of correct
prediction is equal to random.

• IAP < 50%- False prediction. The prediction is positive
for compounds that do not really undergo a particular class
of biotransformation. This event is possible in very rare cases
when (1) the data describe a particular class of biotransfor-
mation incorrectly or (2) the number of compounds in the
evaluation/training set is not large enough for the evaluation.

The detailed explanation of IAP statistics is given in
Appendix 2 of the Supporting Information.

For the first step of the evaluation, every compound was
sequentially left out of the training set and thet-value
calculated. For the second step, thet-value was calculated
for every compound from the evaluation set.

MDL Metabolite vs Accelrys Metabolism Databases.
To evaluate the accuracy of prediction for different biotrans-
formation classes we used two data sets: (1) substrates from
the Metabolite database and (2) substrates from the Metabo-
lism database.

We used the first set as a training set and the second one
as an evaluation set and vice versa. Therefore, we have two
pairs of the training-evaluation sets. First we trained the
program and estimated the accuracy of predicting a particular
biotransformation by a LOO procedure with the training set
(IAP-LOO). Then, we estimated the accuracy of prediction
for the evaluation set (IAP-ES). For this comparison, we
selected only those classes of biotransformation for which
there were at least 10 substrates in both the training and
evaluation sets.

Human vs Animal Biotransformations. The next task
was to estimate if it is possible to use the data of animal
experiments for predicting biotransformations in human. For
this, we trained the program on animal biotransformations
and evaluated it on human biotransformations.

The first experiment was carried out with the biotrans-
formations from the MDL Metabolite database. We used
substrates of animal transformations as the training set and

Figure 6. N-Acylation of acetylsalicylic acid reported in the Metabolite database.

IAP ) 100*N{tt > tf}/(Nt*Nf), %
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substrates of human transformations as the evaluation set.
IAP-LOO and IAP-ES values were calculated for those
classes of biotransformations for which there were at least
10 substrates in both the training and the evaluation sets.

The equivalent experiment was then carried out with the
Accelrys Metabolism database.

RESULTS AND DISCUSSION

MDL Metabolite vs Accelrys Metabolism Databases.
When we used the substrates of Metabolite for the training
of the program, 1927 classes of biotransformation were
predicted with an average accuracy of prediction of 88.5%.
When training with the substrates from Metabolism database,
178 classes of biotransformation were predicted with an
average accuracy of 85.2%. Examples of biotransformations
predicted for both databases are given in Tables 1 and 2.
The complete list of predicted classes of biotransformation
is available as Supporting Information.

In Table 3, the accuracy of prediction estimated by LOO
cross-validation for the training sets is compared with that
estimated for the evaluation sets. As one can see, the average

accuracy of prediction estimated for both evaluation sets is
about 77%, which is lower than that estimated for each one
of the training sets. Classes of biotransformation such as
O-deacetylation, S-dealkylation, N-demethylation, O-demeth-
ylation, S-oxidation, N-deacetylation, S-methylation, and
N-debenzylationare cross-predicted with very high accuracy
for all sets of data. Several classes are predicted with
significantly lower accuracy in all experiments, for example,
oxidation, hydroxylation,and cleaVage. These are less
specific biotransformations that may involve many different
reaction centers and many different enzymes. Some classes
of biotransformation are predicted with very low accuracy
(or not predicted at all) for the evaluation sets despite the
accuracy estimated for both the Accelrys and MDL training

Table 1. Examples of Biotransformation Classes Predicted after
Training with Metabolite

biotransformation
no. of

compds
IAP-LOO,a

%

aliphatic hydroxylation 1477 79.3
aliphatic hydroxylation (cytochrome P450) 443 81.4
aliphatic hydroxylation (cytochrome P450,

CYP2D6)
52 82.5

aromatic hydroxylation 1575 84.0
aromatic hydroxylation (cytochrome P450) 403 85.5
aromatic hydroxylation (cytochrome P450,

CYP3A4)
78 85.0

reduction 1075 84.9
reduction (aldehyde reductase) 12 87.1
reduction (aldehyde reductase (NADPH),

AR-H)
16 97.9

hydrolysis 3364 87.4
hydrolysis (aminopeptidase) 53 98.9
hydrolysis (carboxylesterase) 148 93.3
hydrolysis (epoxide hydrolase) 105 99.0
conjugation 860 82.1
conjugation (glutathione transferase) 13 86.3
conjugation (UDP-glucuronosyltransferase) 72 83.5
conjugation (sulfotransferase) 35 92.9

a IAP-LOO is the accuracy of prediction estimated in a LOO
procedure.

Table 2. Examples of Biotransformation Classes Predicted after
Training with Metabolism

biotransformation
no. of

compds
IAP-LOO,a

%

aliphatic hydroxylation 260 86.4
allylic hydroxylation 99 95.1
aromatic hydroxylation 567 82.1
reduction 298 84.0
hydrolysis 544 85.0
N-deoxygenation 110 95.8
S-methylation 32 94.3
O-deacylation 123 95.1
epoxide cleavage 30 98.4
conjugate formation 677 73.4

a IAP-LOO is the accuracy of prediction estimated in a LOO
procedure.

Figure 7. Human vs animal biotransformations (Metabolite). IAP-
LOO is the accuracy of prediction estimated in LOO procedure
with the training set based on animal biotransformations. IAP-ES
is the accuracy of prediction estimated for the evaluation set based
on human biotransformations. These values are given for all classes
of biotransformation (a); for classes of biotransformation that
include (b) and do not include (c) enzyme information, respectively.
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sets themselves being rather good. This is the case, for
example, fordealkylation, demethylation, deoxygenation,
deacylation, rearrangement,and elimination. These kinds
of differences may be caused by differences in the clas-

sification of transformations in the Metabolite and Metabo-
lism databases.

In general, reasonable prediction is possible for many
different classes of biotransformation, both for rather un-

Table 3. Cross-Prediction with MDL Metabolite (MT) and Accelrys Metabolism (MM)

biotransformation
no. of compds

(MT)
no. of compds

(MM)
IAP-LOOc

(MT), %
IAP-ESc

(MT),a %
IAP-LOOc

(MM), %
IAP-ESc

(MM),b %

O-deacetylation 111 28 97.7 98.2 98.8 94.9
S-dealkylation 161 43 97.0 96.1 96.7 93.8
N-demethylation 759 205 96.5 95.8 94.8 94.7
O-demethylation 500 149 95.4 95.3 95.4 91.6
dehalogenation 473 42 96.1 95.0 91.3 85.0
S-oxidation 483 138 96.9 95.0 96.0 95.6
N-deacetylation 96 19 96.8 93.8 94.0 94.9
S-methylation 144 32 98.0 93.5 94.3 91.4
dehydration 304 13 88.0 93.1 76.4 71.4
deacetylation 32 21 84.7 92.1 90.5 87.5
N-debenzylation 15 34 97.1 91.7 97.1 96.9
ring contraction 30 17 94.3 90.7 80.4 80.2
N-formylation 27 10 85.3 89.5 82.7 80.6
N-methylation 96 14 87.6 88.8 72.8 71.7
N-dearylation 37 13 88.1 88.2 91.6 86.6
N-acetylation 559 88 91.6 87.7 89.2 87.5
N-hydroxylation 177 65 91.3 87.5 92.5 86.8
O-dealkylation 825 197 92.0 86.6 89.4 80.9
O-dearylation 68 14 95.0 86.6 80.6 76.2
decarboxylation 316 18 84.2 86.5 87.9 69.7
decarboxylation 316 18 84.2 86.5 87.9 69.7
N-dealkylation 1703 387 91.4 86.3 88.1 86.8
N-oxidation 487 210 91.4 84.9 86.9 84.5
O-deacylation 214 123 95.6 84.1 95.1 91.9
S-alkylation 112 25 98.2 84.0 90.3 87.0
inversion 62 14 80.6 83.8 74.6 68.8
N-deacylation 360 132 91.9 83.6 86.9 88.1
N-acylation 314 90 92.6 81.9 86.7 88.4
aromatic hydroxylation 1575 567 84.0 80.8 82.1 78.6
aromatic methoxylation 58 38 88.3 80.3 81.0 79.2
hydrolysis 3364 544 87.4 79.5 85.0 79.4
O-methylation 270 19 89.8 78.8 77.5 78.4
O-alkylation 191 18 89.8 77.6 66.7 79.2
hydrogenation 469 61 85.8 77.2 84.9 76.5
C-demethylation 29 13 84.7 76.8 70.3 66.1
reduction 1075 298 84.9 76.5 84.0 77.3
aliphatic hydroxylation 1477 260 79.3 76.5 86.4 66.1
acetylation 42 31 87.0 74.5 85.4 79.0
deamination 356 39 89.1 74.4 81.3 72.0
dehydrogenation 542 76 82.4 73.3 78.3 66.7
esterification 98 43 86.1 72.5 85.2 63.7
rearrangement 249 40 81.9 71.7 82.0 61.6
N-alkylation 76 20 89.1 70.9 70.2 73.0
C-deacylation 11 13 95.4 70.7 61.9 86.2
C-hydroxylation 2576 930 76.2 70.1 74.6 68.5
methylation 14 38 97.3 67.8 84.3 94.6
C-oxidation 2373 1284 77.9 67.6 72.4 65.1
elimination 274 55 81.7 66.6 81.9 53.9
O-acylation 45 26 90.8 65.5 71.1 78.5
C-dealkylation 75 60 82.4 64.8 70.9 70.2
dearylation 10 31 95.3 63.5 78.5 85.8
amination 38 35 86.2 63.1 79.3 64.3
hydration 172 20 88.2 61.8 81.8 64.3
C-alkylation 18 15 89.1 61.4 77.3 68.5
alkylation 15 53 94.8 60.9 72.2 85.5
deacylation 29 167 84.7 55.9 84.4 68.5
deoxygenation 28 113 87.9 54.0 85.8 68.1
cleavage 66 582 79.0 53.1 79.9 54.4
hydroxylation 430 593 83.9 52.4 74.5 58.5
oxidation 1265 771 76.8 50.7 69.7 54.1
demethylation 36 175 85.6 50.5 86.8 55.7
dealkylation 92 359 85.4 48.2 81.8 64.9
average 88.9 77.2 83.1 77.4

a Accelrys Metabolism is used as the evaluation set.b MDL Metabolite is used as the evaluation set.c IAP-LOO is the accuracy of prediction
estimated in LOO procedure; IAP-ES is the accuracy of prediction estimated for the evaluation set.
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Table 4. Prediction for Human and Animal Sets of Compounds

biotransformation
no. of compds

(human)
no. of compds

(animal)
IAP-LOOd

(animal)a
IAP-LOOd

(human)b
IAP-ESd

(human)c

hydrolysis (aminopeptidase) 21 30 96.1 97.6 99.0
dehalogenation (cytochrome P450, CYP2E1) 15 16 97.0 96.9 98.9
dehalogenation (cytochrome P450) 24 65 96.1 98.0 98.6
nucleophilic addition (cytochrome P450) 11 17 92.3 93.1 98.2
hydrolysis (epoxide hydrolase) 41 72 97.9 96.8 98.1
ring opening (epoxide hydrolase) 36 62 97.6 96.4 97.7
nucleophilic addition (epoxide hydrolase) 10 31 95.6 87.1 97.6
tautomerization (aldehyde oxidase) 10 13 91.1 86.8 96.7
dehalogenation (glutathione transferase) 26 44 95.5 95.6 96.5
tautomerization (xanthine oxidase) 15 13 95.1 97.7 96.3
ring opening (glutathione transferase) 12 25 91.6 91.3 96.2
S-oxidation (flavoprotein-linked monooxygenase) 11 21 91.5 90.0 95.6
C-hydroxylation (aldehyde oxidase) 12 16 87.4 83.9 94.6
O-alkylation (catechol O-methyltransferase) 23 29 92.2 91.7 93.9
O-methylation (catechol O-methyltransferase) 23 36 93.4 91.7 93.4
aromatization (cytochrome P450) 35 63 94.7 92.5 93.0
N-oxidation (flavoprotein-linked monooxygenase) 15 15 89.1 92.1 92.6
oxidative deamination (monoamine oxidase) 15 12 93.0 96.2 92.5
glutathionation (glutathione transferase) 61 175 88.9 90.6 90.4
S-oxidation (cytochrome P450) 44 49 96.6 89.1 89.8
O-demethylation (cytochrome P450) 97 53 93.6 92.6 89.4
N-demethylation (cytochrome P450) 134 86 94.9 93.4 89.2
C-oxidation (aldehyde dehydrogenase) 14 25 93.6 85.7 88.0
epoxidation (cytochrome P450, CYP1A1) 14 11 95.4 88.4 87.6
O-dealkylation (cytochrome P450) 119 85 92.9 90.8 87.0
epoxidation (cytochrome P450) 63 132 90.5 86.8 86.8
hydration (cytochrome P450) 10 17 85.6 77.2 86.8
N-hydroxylation (cytochrome P450) 23 51 95.5 84.2 86.6
ring opening (cytochrome P450) 42 70 90.0 89.8 86.5
O-sulfation (phenol sulfotransferase) 58 19 83.7 93.1 86.3
N-reduction (cytochrome P450) 11 32 93.0 77.5 85.7
N-acylation (n-Acetyltransferase) 30 30 93.8 94.0 85.3
hydrolysis (carboxylesterase) 76 58 89.0 92.1 85.3
dearomatization (cytochrome P450) 51 111 91.5 87.2 83.9
N-demethylation (cytochrome P450, CYP3A) 36 28 90.0 90.3 83.0
N-acetylation (N-acetyltransferase) 36 54 94.7 95.7 83.0
dearomatization (cytochrome P450, CYP1A1) 13 13 91.1 94.7 82.8
C-oxidation (alcohol dehydrogenase) 26 21 90.9 84.5 80.2
O-sulfation (sulfotransferase) 42 56 83.8 87.2 79.9
O-deacylation (carboxylesterase) 11 16 91.6 93.2 78.6
hydrolysis (esterase) 123 90 92.2 91.5 78.2
oxidative N-dealkylation (cytochrome P450) 60 42 92.2 87.9 78.0
epoxidation (cytochrome P450, CYP2E1) 23 10 91.3 88.5 77.9
N-dealkylation (cytochrome P450) 247 119 90.8 90.3 77.0
reduction (carbonyl reductase) 18 32 93.8 86.9 75.9
O-deacylation (esterase) 32 14 87.5 94.5 75.7
O-glucuronidation (UDP-glucuronosyltransferase) 307 167 84.4 88.1 75.3
ring closure (cytochrome P450) 12 16 76.1 81.3 75.3
aromatic hydroxylation (cytochrome P450, CYP1A1) 38 29 91.6 83.5 74.6
N-oxidation (cytochrome P450) 53 80 88.3 84.3 74.2
glucuronidation (UDP-glucuronosyltransferase) 182 98 87.7 85.1 72.8
oxidative deamination (cytochrome P450) 31 27 80.3 81.3 72.4
aromatic hydroxylation (cytochrome P450) 211 202 85.9 83.4 72.3
conjugation (sulfotransferase) 12 23 98.7 77.5 71.1
dehydration (cytochrome P450) 15 26 85.5 78.0 70.3
hydrolysis (cytochrome P450) 91 69 85.0 83.3 68.9
C-hydroxylation (cytochrome P450, CYP3A) 90 19 69.7 77.5 68.8
dehydrogenation (cytochrome P450) 52 56 87.7 80.7 68.5
tautomerization (cytochrome P450) 36 63 91.6 87.4 67.7
oxidative dealkylation (cytochrome P450) 21 21 76.1 74.0 67.5
C-oxidation (aldehyde oxidase) 17 11 82.7 88.0 67.4
isomerization (cytochrome P450) 14 23 87.4 80.8 67.1
deamination (cytochrome P450) 18 27 83.5 77.2 66.7
reduction (cytochrome P450) 34 41 85.7 64.1 66.7
oxidation (cytochrome P450, CYP2E1) 19 10 82.3 73.7 66.6
C-oxidation (cytochrome P450, CYP2E1) 66 40 86.7 79.7 64.9
oxidation (cytochrome P450) 76 70 75.0 74.1 64.5
C-hydroxylation (cytochrome P450) 456 459 81.5 79.1 64.4
aliphatic hydroxylation (cytochrome P450) 255 201 82.0 78.7 63.7
C-oxidation (cytochrome P450) 260 300 83.4 75.6 62.9
elimination (cytochrome P450) 15 24 87.9 80.4 62.7
rearrangement (cytochrome P450) 21 16 78.3 72.8 62.1
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specific ones such asC-oxidationand for highly specific ones
such asC-oxidation (monoamine oxidase, MAO-A). Cross-
prediction is satisfactory although Metabolite contains mostly
biotransformations of pharmaceutical compounds, while
Metabolism database focuses on biotransformations of agro-
chemicals, food additives, environmental, and industrial
chemicals.

Human vs Animal Biotransformations. For the MDL
Metabolite database, the training set comprised 11 599 unique
substrates of animal biotransformations. The evaluation set
included 6376 unique substrates of human biotransforma-
tions. In Figure 7(a), IAP values estimated for different
classes of biotransformation by the LOO procedure using
the animal training set are plotted against IAP values
estimated for the same classes using human data. As in the
previous experiment, we compare those classes of biotrans-
formation that are represented by at least 10 substrates in
both the training and the evaluation set. In total, the graph
includes 207 points, each of which represents one biotrans-
formation class. The average accuracy of prediction is 85.8%
for the LOO procedure and 79.7% for the validation with
human data.

It can be seen from Figure 7(a) that in the majority of
cases, the accuracy of prediction evaluated on human data
exceeds 70%. There is no clear relationship between IAP-
LOO and IAP-ES values. However, IAP-ES tends to be
higher when IAP-LOO is higher. We also separated classes
of biotransformation into those that include and those that
do not include enzyme information. Diagrams 7(b) and (c)
represent the IAP-LOO vs IAP-ES for classes of biotrans-
formation that include and do not include enzyme informa-
tion, respectively. As one can see, classes of biotransforma-
tion that do not include enzyme information are predicted
better from animal data. This probably indicates that a general
type of chemical modification depends basically on the
molecule structure, while an enzyme involved in a particular
modification depends also on peculiarities of the whole
enzymatic spectrum of a particular species. The results of
the prediction for those classes of biotransformation which
include enzyme and isoenzyme information are given in more
detail in Table 4, including the IAP-LOO (animal) and IAP-
ES (human) values shown in Figure 7b. IAP-LOO (human)

is the accuracy estimated in LOO cross-validation for the
human set. The data are arranged by descending IAP-ES
values. As one can see, for some classes of biotransformation,
IAP-ES is equal to or even exceeds IAP-LOO. At the same
time, there are many classes of biotransformation that are
predicted with low accuracy or not predicted at all from
animal data. For example,aromatic hydroxylation (cyto-
chrome P450, CYP1A2)is predicted well for both animal
and human sets separately but is not predicted for human
set when the program is trained with animal data. One might
hypothesize that a compound undergoes the same chemical
modification in the animal and human body, while the
enzymes preferably catalyzing the modification are different.

For the Accelrys Metabolism database, 2186 unique
substrates found in animal biotransformations were used as
a training set, and 708 substrates of human biotransforma-
tions were used as an evaluation set. The average accuracy
of prediction was approximately 85% for the training set and
80% for the evaluation set. The comparative results for 86
biotransformation classes are given in Figure 8.

From Figure 8 one can see that the accuracy of a human
biotransformation prediction is the higher, the higher the
accuracy is that was determined by the LOO procedure with

Table 4 (Continued)

biotransformation
no. of compds

(human)
no. of compds

(animal)
IAP-LOOd

(animal)a
IAP-LOOd

(human)b
IAP-ESd

(human)c

C-hydroxylation (cytochrome P450, CYP1A1) 65 36 84.7 79.0 61.6
sulfation (sulfotransferase) 37 12 78.6 91.8 60.3
aromatic hydroxylation (cytochrome P450, CYP1A2) 60 18 88.2 85.3 58.8
aliphatic hydroxylation (cytochrome P450, CYP2E1) 48 11 91.8 81.8 57.3
hydrogenation (cytochrome P450) 23 19 77.9 69.4 57.0
aromatic hydroxylation (cytochrome P450, CYP2E1) 39 15 86.7 80.9 56.9
hydroxylation (cytochrome P450) 43 26 73.3 75.7 56.7
C-hydroxylation (cytochrome P450, CYP2E1) 87 28 84.3 80.1 53.4
C-hydroxylation (cytochrome P450, CYP1A2) 115 23 77.8 83.3 52.3
O-glucuronidation (UDP-glucuronosyltransferase, UGT2B1) 16 16 86.0 87.9 51.2
C-oxidation (cytochrome P450, CYP3A) 40 16 82.4 67.0 50.4
conjugation (UDP-glucuronosyltransferase) 42 29 92.5 77.1 47.9
hydrolysis (cytochrome P450, CYP2E1) 16 16 86.7 79.6 47.6
C-hydroxylation (cytochrome P450, CYP1A) 11 14 75.9 75.8 46.1
average 88.3 85.5 76.8

a Animal biotransformations are used for training.b Human biotransformations are used for training.c Animal biotransformations are used for
training; human biotransformations are used as the evaluation set.d IAP-LOO is the accuracy of prediction estimated in LOO procedure; IAP-ES
is the accuracy of prediction estimated for the evaluation set.

Figure 8. Human vs animal biotransformations (Metabolism). IAP-
LOO is the accuracy of prediction estimated in LOO procedure
with the training set based on animal biotransformations. IAP-ES
is the accuracy of prediction estimated for the evaluation set based
on human biotransformations.
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the animal training set. For some biotransformations, the
accuracies estimated for human data and for animal data are
practically the same.

CONCLUSIONS

A series of in silico experiments was carried out with two
well-known commercially available metabolic databases:
Metabolite (MDL) and Metabolism (Accelrys). At the present
stage of the work, we have not tried to verify or correct the
classification of transformations as well as enzymatic
information contained in these databases. We also did not
change the algorithm and descriptors developed originally
for biological activity prediction. No expert data were used
to determine a priori impossible transformations. However,
even given all these limitations we come to definite conclu-
sions:

1. The method can be used for the prediction of many
different classes of biotransformation from chemical structure
for drug-like compounds.

2. The data of animal experiments (mammals), being used
for training, provide reasonable accuracy of prediction for
human biotransformation classes that do not include infor-
mation about enzymes.

3. For robust prediction of human biotransformation
classes that include enzyme and isoenzyme information, use
of data of human experiments is necessary.
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