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The functional annotation of amino acid sequences is one of the most important problems
in bioinformatics. Different programs have been successfully applied for recognition of
some functional classes; nevertheless, many functional groups still cannot be predicted
with the required accuracy. We developed a new method for protein function recognition
using the original approach of sequence description. Each sequence of the training set is
compared with the query sequence, and the local similarity scores are calculated for the
query sequence positions and used as input data for the original classifier. The method
was tested using leave-one-out cross-validation for three data sets covering 58 enzyme
classes. Two tested sets including noncrossing functional classes were recognized with
high accuracy at various levels of classification hierarchy. The majority of these classes
were predicted with 100% accuracy, showing a prediction ability comparable with the
HMMer method and an accuracy superior to the SVM-Prot program. When the tested
set was composed of intersected classes of ligand specificity, the prediction accuracy was
less; however, the accuracy increased as the size of the predicted class expanded. The
proposed method can be used for both predicting protein functional class and selecting
the functionally significant sites in a sequence.

Keywords: Functional annotation of proteins; sequence similarity; machine learning;
recognition of functional classes.

1. Introduction

Functional annotation of newly sequenced genes presents one of the most important
challenges in bioinformatics. Since only a small part of encoded proteins is char-
acterized experimentally, the methods of computational functional classification of
new amino acid sequences are being intensively developed. Homology-derived anno-
tation based on pairwise sequence alignment was a general way to predict protein

function for a long time. This approach is shown to have certain limitations.'?
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Phylogenetic methods combined with the established experimental annotations
(so-called “phylogenomics”) reveal significant advantages in the characterization
of large, functionally diverged protein families, but these methods usually require
the intensive interference of the expert in annotation procedures.? In contrast, the
machine learning approach underlies automated functional annotation based on
the training set of experimentally annotated proteins. The following methods have
been used for protein function prediction: naive Bayes classifier, artificial neural
network, k-nearest neighbor, decision tree, and support vector machine.* These
methods enable to avoid the sequence alignment procedure by using different val-
ues representing the protein sequences, such as amino acid composition; dipeptide,
tripeptide, and tetrapeptide compositions; and descriptors showing the distribution
of amino acid residues within the sequence.* ¢

Machine learning methods show high accuracy of the functional class recog-
nition — exceeding 95% for certain functional classes. However, many functional
groups cannot be predicted with reasonable accuracy.” Thus, the problem of protein
function prediction is far from the final solution.

Earlier, to predict the functional classes of proteins based on their amino acid
sequences, we used the original classification algorithm PASS. The sequences were
represented by structural Multilevel Neighborhoods of Atom (MNA) descriptors.®
This approach provides high accuracy of prediction, but the use of MNA descriptors
requires significant computational resources.

In this study, we propose a new method of sequence representation that enables
to represent a query sequence in terms of local similarity with the proteins of the
training set. Similarity scores calculated for all amino acid positions are the input
data for the classifier program. In the new approach, one can adapt the program
to define the protein features associated with single or multiple sequence regions of
different lengths. The simplicity and high computational speed allow an automated
search for optimal parameters. The functional annotation also includes the detection
of functionally significant amino acid residues. This task can be solved using the
sequences, alignments, and phylogenetic trees as input data.®'% As the suggested
procedure directly assigns similarity scores to the amino acid positions in the query
sequence, it is easy to select functionally significant positions and obtain functional
maps of proteins without construction of the alignment. The new method is named
Projections of Amino Acid Sequences (PAAS).

2. Method
2.1. Local sequence similarity

We have suggested the description of the amino acid sequence A by its local sim-
ilarity to a sequence B. At first, raw similarity scores are detected by shifting the
sequences A and B each to the others (Fig. 1). Each region of sequence A is com-
pared with each superposed region of sequence B. The raw score is calculated as
the sum of scores determined for each pair of superposed residues.
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Fig. 1. Calculation of raw similarity scores. The training set sequence (upper strings) is compared
with the query sequence (lower string) at different shifts (from —3 to 3 amino acid residues), and
the maximal scores calculated at the given frame are detected for the query sequence positions.
The black boxes denote the amino acid matches.

Thus, the raw similarity scores are calculated as

k

Ry, = mjaX(IkJrFq,j —Ij), Inj = Zs(ai7bi+j)7 M <j< M, (1)
i—1

where Ry, is the raw similarity score in position k of sequence A; F' is the length
of the comparable sequence fragments or a “frame”; s(a;, b;4;) is the similarity of
amino acids a; and b;4;; j is the current shift; and M; and M, are the maximal
allowable shifts at the left and right sequence edges, respectively. In Fig. 1, F' = 20,
M, = -3, M, = 3, and R, =9 for the left edge position in the frame “FGMGK. ..”
of the query sequence.

To run the local similarity calculation, the following parameters should be
defined: the frame and the maximal band (max B). The second value specifies
M, and M,, depending on the relation between the lengths of query and train-
ing sequences (Lq and L, respectively).

M= max B/2|Lq < Ly
"7 ) —maxB/2 — L+ Li|Ly > Lt )

2
—max B/2|Lq > Ly

M, =
—maXB/Q—f—Lt —Lq|Lq < Lt

In this study, we used the simplest measure of similarity between the amino
acid residues: 1 for identical residues and 0 for different ones. It was shown that
the use of substitution matrices does not increase the accuracy of prediction. The
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local score Sy (A, B) calculated for position k of sequence A is estimated by the
maximum of the values Ry, calculated for all frames in which this position put in:

Sk(A,B) =max Ry, —(F—1)<m< F—1. (3)

The query sequence A is compared to each sequence B of the training set. Thus,
we obtain the local similarity scores of the query sequence with all training set
sequences.

The suggested procedure is similar to the well-known dot-matrix method.'!
Sequence alignment can be considered as the joining of diagonal fragments, which
fit into the narrow band providing the best alignment score.'?

In PAAS, local similarity scores are used as the input data for the classifier pro-
gram. Note that many positions, which could be ignored in alignment, are accounted
for in this procedure. The number of scores representing each training set sequence
equals the length of the query sequence. If the scores calculated for proteins belong-
ing to a certain class are averaged for each query sequence position, one obtains the
class projection on the query sequence (Fig. 2). The averaged local similarity scores
obviously represent the motifs that determine the functional similarity or difference
between the studied proteins.

2.2. Classification algorithm

We adopted an algorithm that was originally proposed for the prediction of biolog-
ical activity spectra for chemical substances (PASS) based on a well-known naive
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Fig. 2. Projecting the training set sequences on the query sequence. The local similarity scores are
averaged over the classes, whose EC numbers are shown in the top right corner. The native class
of the query protein is shown in bold.
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Bayes classifier.!? It is assumed that amino acid sequence is described by a set of
descriptors {Dy, ..., D,}, and the probability of its belonging to a given class A is
estimated by the conditional probability P(A|D;,...,D,). As follows from Bayes
theorem,

P(Dy,...,Dy|A)P(A)

P(A|Dy,...,D,) = POy ... D) (4)

where P(Di,...,D,|A) is the conditional probability of the descriptor set
{Dy,..., Dy} occurrence in a sequence from class A, P(A) is the class A prior
probability, and P(Dq,...,D,) is the descriptor set {Dy,..., Dy} prior probabil-
ity. According to the naive Bayes approach, classification features are independent.
Therefore,

P(Dy,...,Dy]A) = P(Dy|A)P(Da| A)P(D5|A) - P(D,|A) = ILP(Di|A).  (5)

As a result, the log-likelihood ratio of the conditional probability P(A|D;, ..., Dy,)
of class A to P(—A|Dy,...,D,) of its complement —A can be expressed as

[P DO ] [FAT s [T

Taking into account that P(—A|Di,...,D,) = 1 — P(=A|Dy,...,D,) and using
Bayes’ theorem for ratios P(D;|A)/P(D;|—-A), we find

[ LA Del) , [

P(A|D;) P(4)

+ 3 \n [ Totams| o () O
The use of the naive Bayes approach faces several problems. As it is known,
the logarithm of the probability ratio tends to +0o. We substituted the logarithms
of probability ratios In[P(A|D;)/(1 — P(A|D;))] for ArcSin(2P(A|D;) — 1). The
ArcSin(2P(A|D;)—1) shape coincides with the shape of In[P(A|D;)/(1— P(A|D;))]
for almost all values of P(A|D;), but the ArcSin(2P(A|D;) — 1) value is bounded
by +7/2. To take into account the interdependencies of similarity scores, we use

the averaging of arcsine values instead of the sum of the logarithmic values.

In this study, the query protein belonging to class A is estimated by the
B-statistic, calculated as follows:

N

Z[Wk(A) — Wi(=4)]
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N
Z Sik[Wi(A) — Wi (=A)]
=1

ti= =5 (9)
Z Sik[Wi(A) + Wi (=4)]
k=1
t = Sin % z": ArcSin(ti)] (10)
t—to
B=Tw (1D

where N is the number of sequences in the training set, Wi (A) and Wy (—A) are
the weights of sequence k in class A and its complement (0 or 1 in this paper), S;
is a similarity score in a position ¢ of the query sequence with the training sequence
k, and n is the number of amino acid residues in the query sequence.

The classifier program that we developed allows the assignment of multiple
classes to a single sequence. The classes can be intersected simulating, for example,
the situation with overlapped substrate specificity of cytochromes P450.

2.3. Validation of prediction accuracy

To estimate the accuracy of prediction, we used the leave-one-out cross-validation
(LOOCYV) procedure. At each step of the LOOCV procedure, one sequence was
removed from the training set and used as a query sequence. The obtained
B-statistic values were used to calculate the Independent Accuracy of Prediction
(IAP) for each class A'3:

Z 0(Bica — Bje-a)

AP = 7 12
— (12

where B; is the estimation of the sequence i belonging to class A if ¢ actually belongs
to class A; Bj is the estimation of the sequence j belonging to class A if j actually
belongs to its complement —A4; #(z) = 1if x > 0, 0(z) =1/2if 2 =0, f(x) =0 if
x < 0; N4 is the number of sequences in class A; and N_ 4 is the number of sequences
in its complement = A. This criterion is defined as “independent” because it does
not depend on any additional assumptions concerning the parent population and
risk function.

If all B-statistic values calculated for the sequences belonging to class A exceed
the values calculated for the sequences not belonging to class A, than TAP equals
one. We consider the class recognition accuracy as 100% if the IAP value is exactly
equal to one.
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3. Testing the Prediction

The accuracy of the method was evaluated on three protein collections representing
the serine protease set, the “gold standard”, and the cytochrome P450 superfamily.

3.1. Serine proteases

At first, the method was tested on the serine proteases (Enzyme Classification
Number 3.4.21.X). Proteins of this class are known to be successfully recognized
by the phylogenomic approach.!* Due to this reason, 623 amino acid sequences
composing 28 classes were selected to test the efficiency of our method. These
classes were defined by the fourth value of the EC Number and therefore did not
intersect each to the others. As can be seen from Fig. 3, the prediction accuracy
increased with the extension of the frame and a maximal band parameter. The
average accuracy reached the maximum (close to one) at the maximal band of
50 and frame of 50. Twenty-four of 28 classes were recognized at these parameter
values with 100% accuracy.

3.2. Gold standard

At the next stage, we tested the method vs. the so-called “gold standard”. The
gold standard is the training set especially designed for testing of the functional
annotation methods. It represents experimentally characterized proteins as well
as their very close homologs.'® The gold standard sequences belong to five enzyme
superfamilies — amidohydrolases, crotonases, enolases, haloacid dehalogenases, and
proteins forming vicinal oxygen chelates. These superfamilies are divided into 98
families. Forty-two families represented by the single sequences were excluded from
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Fig. 3. Testing of the method vs. the serine proteases. Dependence of the recognition accuracy on
parameter values.
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the original set, so the used evaluation set contained 832 sequences. Thus, the
training set consisted of nonintersecting protein classes. Each protein belongs to
a single family and a single superfamily. LOOCV testing of our program included
two tasks: classification by families and superfamilies.

High accuracy of recognition was obtained at both superfamily and family levels.
The average IAP values calculated for the majority of parameter pairs (maximal
band/frame) exceeded 0.99. Given the most favorable parameter values, 4 super-
families were recognized with 100% accuracy and 1 family was recognized with
IAP = 0.9996, while 45 families were recognized with IAP = 1 and 11 families were
recognized with IAP > 0.96 (Table 1).

Table 1. Accuracy of recognition of gold standard families obtained using the
LOOCYV test (adopted from Brown et al.'®).

Family EC number® IAP
1,2-dihydroxynaphthalene dioxygenase n/a 0.9996
1,4-dihydroxy-2-napthoyl-CoA synthase n/a 1
2,2’ 3-trihydroxybiphenyl dioxygenase n/a 0.9994
2,3-dihydroxybiphenyl dioxygenase 1.13.11.39 0.9929
2,3-dihydroxy-p-cumate-3,4-dioxygenase n/a 1
2,4,5-trihydroxytoluene oxygenase n/a 1
2,6-dichlorohydroquinone dioxygenase n/a 1
2-haloacid dehalogenase 3.8.1.2 1
3,4-dihydroxy-phenylacetate 2,3-dioxygenase 1.13.11.15 1
3-hydroxyisobutyryl-CoA hydrolase 3.1.2.4 1
3-isopropylcatechol-2,3-dioxygenase n/a 0.9988
3-methylcatechol 2,3-dioxygenase n/a 0.9587
4-hydroxyphenylpyruvate dioxygenase 1.13.11.27 1
adenosine deaminase 3.5.4.4 1
allantoinase 3.5.2.5 1
ammelide aminohydrolase n/a 1
AMP deaminase 3.5.4.6 1
aryldialkylphosphatase 3.1.8.1 1
catechol 2,3-dioxygenase 1.13.11.2 0.9979
chloromuconate cycloisomerase 5.5.1.7 0.9969
crotonobetainyl-CoA hydratase n/a 1
cytosine deaminase 3.5.4.1 1
delta(3,5)-delta(2,4)-dienoyl-CoA isomerase n/a 1
deoxy-d-mannose-octulosonate 8-phosphate phosphatase 3.1.3.45 1
d-hydantoinase 3.5.2.2 1
dihydroorotasel 3.5.2.3 1
dihydroorotase2 3.5.2.3 1
dihydroorotase3 3.5.2.3 1
dipeptide epimerase n/a 0.9740
dodecenoyl-CoA delta-isomerase (mit.) 5.3.3.8 1
enolase 4.2.1.11 1
enoyl-CoA hydratase 4.2.1.17 0.9999
epoxide hydrolase n-terminal phosphatase n/a 1
feruloyl-CoA hydratase/lyase n/a 1

fosfomycin resistance protein FosA 2.5.1.18 1
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Table 1. (Continued)

Family EC number?® IAP
galactonate dehydratase 4.2.1.6 1
glucarate dehydratase 4.2.1.40 1
glyoxalase 1 4.4.1.5 1
histone acetyltransferase 2.3.1.48 1
guanine deaminase 3.5.4.3 1
isoaspartyl dipeptidase n/a 1
I-hydantoinase 3.5.2.2 1
mandelate racemase 5.1.2.2 1
methylaspartate ammonia-lyase 4.3.1.2 1
methylglutaconyl-CoA hydratase 4.2.1.18 1
methylmalonyl-CoA epimerase 5.1.99.1 1
muconate cycloisomerase 5.5.1.1 0.9993
n-acetylgalactosamine-6phosphate deacetylase n/a 1
n-acyl-d-amino-acid deacylase 3.5.1.81 1
o-succinylbenzoate synthase n/a 0.9969
phosphonoacetaldehyde hydrolase 3.11.1.1 1
phosphoserine phosphatase 3.1.3.3 1

an/a designates that an EC number is not assigned to this class.

Table 2. Testing the method vs. the gold standard set grouped by families:
averaged TAP values.

Frame

10 20 30 40 50

Maximal band 10  0.54434 0.99395 0.99673  0.99708  0.99774
20 0.99865 0.99868  0.99870 0.99863  0.99860
30 0.99862  0.99864 0.99660 0.99848  0.99848
40 0.99842  0.99849  0.99847  0.99838  0.99833
50 0.99852  0.99854  0.99852  0.99847  0.99847

Table 3. Testing the method vs. the gold standard set grouped by super-
families: averaged TAP values.

Frame

10 20 30 40 50

Maximal band 10 0.97193  0.98471 0.99193  0.99508  0.99652
20 0.99598  0.99849  0.99945  0.99979  0.99987
30 0.99887  0.99959  0.99988  0.99995  0.99997
40 0.99952  0.99985  0.99996  0.99998  0.99999
50 0.99971  0.99987  0.99995  0.99997  0.99997

The accuracy of superfamily prediction reached the highest values at the max-
imal frame, while the accuracy of family prediction reached the maximal values
at the less frames (Tables 2 and 3; Figs. 4 and 5). Superfamilies are better rec-
ognized at the frame of 50, while accuracy of the family recognition reached the
maximum at the frame of 30. The superfamilies seem to be clearly recognized
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Fig. 4. Testing of the method vs. the gold standard set grouped by families. Dependence of
recognition accuracy on parameter values. Curves for some frame values look very similar and are
given as a single curve.
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Fig. 5. Testing of the method vs. the gold standard set grouped by superfamilies. Dependence of
recognition accuracy on parameter values. Curves for some frame values look very similar and are
given as a single curve.

by alignment-based methods; however, families of the same superfamily are worse
recognized by the analysis of aligned sequences with phylogenomics methods.* Our
approach enables to successfully recognize different functional classes belonging to
the same superfamily.

3.3. Cytochrome P450 superfamily

The cytochrome P450 superfamily represents quite a challenging task. Many of the
P450 members are characterized by the wide ligand spectrum, and the subclasses
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of ligand specificity are intersected. As it was shown in our previous study, strong
correspondence between the homology of proteins and the similarity of their lig-
ands was not found for several P450 families.'® In any case, clustering the aligned
sequences is not an absolutely reliable way to annotate P450 sequences. We
tested our program to understand whether the local similarity features, which
allow the recognition of ligand specificity, exist. The data sets of experimentally
annotated P450 proteins were retrieved from the Cytochrome Protein Database
(http://cpd.ibmh.msk.su/).!” We collected two training sets representing speci-
ficity subclasses composed of two or more proteins. The first set represented 211
proteins, metabolizing 578 substrates. The second set represented 139 proteins,
induced by 272 compounds. The proteins specifically interacting with the same
ligand were considered as belonging to the same subclass of substrate or inducer
specificity.

The LOOCYV procedure showed that prediction accuracy is significantly less
than in the case of other studied sets (Fig. 6). However, we can see a clear trend
of increasing accuracy with an increasing size of functional group for both the
substrate and inducer specificities.

Though the ligand specificity of cytochrome P450 does not reveal clear cor-
relation with homology,'® P450 families are perfectly separated by alignment.
Therefore, the different methods predict P450 ligand specificity with relatively
low accuracy. PAAS recognizes the P450 substrate and inducer specificities with
low efficiency too. On the other hand, the larger subclass sets provide a relatively
higher accuracy obtained with our method due to the larger representation of dif-
ferent families in the P450 set. The possible contribution of certain local motifs on
specificity recognition is the subject of further study.

3.4. Comparison with other methods

In order to estimate the comparative power of the suggested method, we performed
functional class prediction with two existing methods: the HMMer program, which
uses hidden Markov models (HMMs) based on the sequence alignments'®; and the
SVM-Prot program, which implements the machine learning algorithm using the
unaligned sequences.!? The comparative results are shown in Table 4.

We extracted the evaluation set from the gold standard. It represented all
superfamilies (designated by “sf” in Table 4) and 10 families (designated as “f”
in Table 4). The families were selected so that they were rather large (from 7
to 215 proteins) and had EC numbers (to evaluate the SVM-Prot prediction).
Eight families predicted with the highest accuracy (IAP = 1), and two fami-
lies predicted with the minimal TAP value. The HMMer program was tested by
building the models for all evaluated families and scanning each model vs. the
evaluation set. The SVM-Prot program was used with its own training set and
tested by three sequences belonging to each evaluated family, which used input
data for the SVM-Prot server (http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi/).
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Fig. 6. Testing the prediction of (a) substrate and (b) inducer specificity of cytochromes P450.
The results are shown for groups including two or more members. The frame and maximal band
values are 20 and 100, respectively.

The superfamilies were predicted by only HMMer and our method because the
EC numbers cannot be assigned to these classes.
The output data were formalized for our method and HMMer as follows:

e “+ + +” designates 100% accuracy of prediction; and

e “+ +7 designates that our method predicts the corresponding class with 0.9 <
IAP < 1, and that HMMer predicts the same class with the number of true-
positive (TP) results higher than the sum of false-positive (FP) and false-negative
(FN) ones.

The threshold for HMMer results was determined from the program output data.
It was equal to the maximal E-value of the correctly predicted proteins belonging to
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Table 4. Accuracy of protein functional class prediction with different methods.

Protein class PAAS HMMer SVM-Prot
Amidohydrolase (sf) ++ + 4+
Crotonase (sf) + 4+ L4+
Enolase (sf) N .
VOC (sf) +++ +++
Haloacid dehalogenase (sf) ++ + 4+
Histone acetiltransferase (f) +++ + 4+ + 4+
Enolase (f) +++ +++ +++
AMP deaminse (f) + 4+ + 4+ + 4+
d-hydantoinase (f) + 4+ + 4+ 4
dihydroorotase2 (f) + 4+ + NI -
Guanine deaminase (f) +++ 4+ 44
p-type atpase (f) +++ +++ —
Urease (f) +++ +++ +++
2,3-dihydroxybiphenyl dioxygenase (f) ++ ++ +
chloromuconate cycloisomerase (f) ++ +++ 4+

a given family. For four superfamilies, the maximal E-value significantly exceeded
the bounds of the threshold proposed by the authors of HMMer.

In the case of SVM-Prot, the number of “+” signs corresponds to the number
of correctly annotated sequences of three evaluated ones with the highest P-values.
It should be noted that SVM-Prot predicts only two first positions of EC number
(the superfamilies are not assigned to any EC numbers).

The sign “—" denotes that the method does not recognize this protein family.

Hidden Markov models (HMM) were built without removal of the query
sequences. SVM-Prot uses its own training set, which may also contain the query

“

sequences. S0, the accuracy of the recognition performed by these two programs
could be somewhat overestimated due to the self-recognition. Keeping in mind this
fact, we estimate the prediction results obtained by HMMer and PAAS as compa-
rable. The results obtained with SVM-Prot are less accurate than the prediction
performed by PAAS and HMMer.

4. Conclusions

The proposed approach revealed high efficiency in protein function prediction. A
high accuracy of prediction was obtained for different levels of protein functional
classifications. We showed that our method enables to predict effectively the func-
tional class of proteins when these classes do not intersect with each other. The
prediction accuracy is high — up to 100% recognition for the majority of these
classes. These results are comparable with data obtained from alignment-based
methods. However, the PAAS method has the following advantages:

(1) The PAAS method provides fine tuning (by changing of the band and
frame values) of the program for searching both the global and local
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sequence similarities. This feature enables to classify and functionally map new
sequences.

(2) The PAAS method takes into account more information about sequence simi-
larity than alignment methods. The local similarity scores ignored by alignment
can make a contribution to protein class recognition.

(3) The PAAS method runs without a preliminary alignment procedure, which
often requires expert interference.

(4) HMM building is a time-consuming procedure, while our relatively sim-
ple algorithm provides the sequence recognition at a very high speed. It
is especially important for detection of the parameter values optimizing a
certain class recognition, as the solution of this task can require multiple
recalculations.

The suggested approach provides a more accurate prediction compared to the
machine learning method (SVM-Prot). Our method provides accurate distinguish-
ing of the large protein superfamilies as well as functional subclasses related to the
same superfamily. So, the method allows perfect recognition at the different levels
of structural and functional specificity.

We suggest that our method can be adapted for different types of sequence simi-
larity. The classes associated with global sequence similarity are perfectly predicted
by our program. We suggest that related features with separate sequential motifs
should also be recognized by this approach. The superfamilies seem to be clearly rec-
ognized by alignment-based methods; however, the families of the same superfamily
are worse recognized by the analysis of aligned sequences. Our approach enables to
recognize different functional classes belonging to the same superfamily. The fami-
lies are predicted with maximal accuracy at shorter frame values compared to the
superfamily level. Thus, the relatively short sequential motifs are more important
for recognition of the classified groups, which are closer to each other.

Testing of the method vs. the P450 superfamily reveals a less accurate recogni-
tion of broadly intersected functional subclasses within the large group of homolog-
ical proteins. Sophisticated sequence—function relationships result in the difficulties
of function recognition. However, the larger groups were predicted with significantly
higher accuracy. It is possible that remote homologs can have three-dimensional
structural features that provide affinity to the same ligands, which are not recog-
nized in a sequence.

Our approach can be applied for both functional specificity prediction and
sequence mapping, i.e. to reveal local determinants of the functional specificity.
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