Supporting Information

Figure 1S. The Q-band first derivative EPR spectrum of Cu(I)¹⁴NONiR is shown as the upper spectrum. It was obtained by taking a numerical first derivative (by the Savitzky-Golay smoothing method) from the Q-band rapid passage signal which is shown as the lower spectrum. The rapid passage spectrum was obtained under the following conditions: T = 1.8 K, microwave power = 7.8 μ W, 100 KHz field modulation = 0.1 mT, $v_{EPR} = 34.10$ GHz. The primary purpose of the Q-band derivative spectrum is to obtain empirical estimates g-values, which are $g_x = 2.044 \pm 0.003$, $g_y = 1.998 \pm 0.002$, $g_z = 1.923 \pm 0.005$. There is a small distortion to the rapid passage signal near 1.18 T.

Spectrum 2SA. This figure compares the X-band EPR spectrum of the model $\{Cu(I)^{14}NO\}^{11}$ Tp^{t-Bu}Cu¹⁴NO complex of Ruggiero et al.¹ with the EPR spectrum of Cu(I)¹⁴NONiR taken at 9.525 GHz. [Tp^{t-Bu} is tris(3-t-Bu, 5-H-pyrazolyl)hydroborate] The X-band EPR spectrum for Tp^{t-Bu}Cu¹⁴NO were taken in 1993¹ with an EPR frequency of 9.234 GHz and a temperature of 30 K. The conditions for Cu(I)¹⁴NONiR are those of Figure 2A except that the sample contains Cu in isotopic natural abundance. The hyperfine coupling A_z for Cu(I)NONiR is 88 Gauss. The hyperfine coupling A_z for the model is reported to be 105 Gauss.

Spectrum 2SB. This figure compares the X-band EPR spectrum of the model $\{Cu(I)^{15}NO\}^{11}$ Tp^{t-Bu}Cu¹⁵NO complex of Ruggiero et al.¹ with the EPR spectrum of Cu(I)¹⁵NONiR. [Tp^{t-Bu} is tris(3-t-Bu, 5-H-pyrazolyl)hydroborate] The X-band EPR spectrum for Tp^{t-Bu}Cu¹⁵NO were taken in 1993¹ with an EPR frequency of 9.234 GHz and a temperature of 30 K. The conditions for Cu(I)¹⁵NONiR are as for Figure 2B except that the sample contains Cu in isotopic natural abundance.

Figure 3S. Comparison of X-band EPR spectra of Cu(I)NONiR prepared from (**A**) I289V (black) and (**B**) I289A (red). Samples were ~0.5 mM in NiR subunits. ~0.05 mL in volume, and prepared using ¹⁴N-nitrite and Cu in natural isotopic abundance. The spectra were recorded at T = 15 K, 0.6 mT field modulation, 100 s signal averaging over 70 mT sweep, 2 mW microwave power, EPR frequency= 9.525 GHz.

Estimating Spin Density on ¹⁴N of NO from the ¹⁴NO Hyperfine Couplings

The values for ¹⁴A_x and ¹⁴A_y and are respectively provided as 46 and 80 MHz in Table 1. The value for ¹⁴A_z has been too small to measure at X-band. However, evidence from preliminary S-band EPR data (kindly provided by W. Antholine) provides a very rough estimate of ¹⁴A_z, as follows: At S-band in the second harmonic presentation a difference in peak-to-peak linewidths of 19.45 and 17.5 Gauss respectively has been observed between the ⁶³Cu(I)¹⁴NONiR and ⁶³Cu(I)¹⁵NONir. The contribution to the square linewidth from unresolved hyperfine structure is $[(4/3)I(I+1)A^2]$,² where I is the nuclear spin and A is the hyperfine coupling for a particular nucleus. The difference in square linewidths, in $[Gauss]^2$, is $(19.45)^2 - (17.5)^2 = 72 = (8/3)(^{14}A_z^2) - (^{15}A_z^2)$. $= (0.696)(^{14}A_z^2)$ where the 1.404 ratio of ¹⁵N to ¹⁴N magnetic moments has been used. The resultant estimate for ¹⁴A_z is 10.2 Gauss or 27 MHz. This is a crude estimate for ¹⁴A_z, but it should be noted that neither ¹⁴A_x nor ¹⁴A_z has previously been resolved for {CuNO}¹¹ complexes.

We write our ¹⁴N hyperfine tensor as :

$$\label{eq:Ax} \begin{split} ^{14}A_x &= A_{iso} - A_{\pi * y'} + 2A_{\pi * x'} &= 46 \mbox{ MHz} \\ ^{14}A_y &= A_{iso} + 2A_{\pi * y'} - A_{\pi * x'} &= 80 \mbox{ MHz} \\ ^{14}A_z &= A_{iso} - A_{\pi * y'} - A_{\pi * x'} &= 27 \mbox{ MHz} \end{split}$$

Neglecting core polarization, A_{iso} (= 51 MHz) can be approximated as being proportional to the fraction of unpaired electron spin density, f_{2s} in the nitrogen 2s orbital. Using the information in Footnote 3 below, we calculate that there is 3 % spin in the nitrogen 2s orbital.

 $A_{\pi*y'}$ and $A_{\pi*x'}$ are dipolar couplings proportional to the respective electron 2p spin density, $f_{\pi*y'}$ and $f_{\pi*x'}$, in the $\pi*y'$ and $\pi*x'$ orbitals. $A_{\pi*y'}$ and $A_{\pi*x'}$ are respectively 17.7 and 6.3 MHz. Using the information in Footnote 4 below, $f_{\pi*y'}$ and $f_{\pi*x'}$ are respectively 37 % and 13 % spin. Thus the total spin on the N is 53 %. This result is a very approximate estimate of total spin on N of NO.

It might be argued that instead of incorporating spin in the $\pi *_{y'}$ and the $\pi *_{x'}$ orbitals, we should have incorporated spin in the $\pi *_{y'}$ and n orbitals where the major axis for the hyperfine coupling of the n orbital would be along the z axis. This approach led to unrealistic negative spin density in the 2p part of the n orbital.

Estimating Spin Density in the d Orbitals from the Anisotropic Character of the Cu Hyperfine Tensor

We apply methods and equations developed by Sojka et al.⁵ (pp. 4836-4837) to estimate the orbital coefficients of the copper $d(z^2)$ and d(yz) orbitals. We first write the copper hyperfine tensor in terms of its isotropic part ^{Cu}A_{iso}, and its anisotropic, traceless part, ^{Cu}T. Couplings are taken from our data in Table 1.

$$^{Cu}A_x = {}^{Cu}A_{iso} + {}^{Cu}T_{xx} = 102 \text{ MHz}$$

 $^{Cu}A_y = {}^{Cu}A_{iso} + {}^{Cu}T_{yy} = 124 \text{ MHz}$
 $^{Cu}A_z = {}^{Cu}A_{iso} + {}^{Cu}T_{zz} = 238 \text{ MHz}$
Thus ${}^{Cu}A_{iso} = 154.7 \text{ MHz}$ and ${}^{Cu}T_{xx} = -52.7 \text{ MHz}$, ${}^{Cu}T_{yy} = -30.6 \text{ MHz}$, and ${}^{Cu}T_{zz} = 83.3 \text{ MHz}$.

According to the methods of Sojka et al.,⁵ expressions for ^{Cu}T_{xx}, ^{Cu}T_{yy}, and ^{Cu}T_{zz} are written in terms of the respective admixture coefficients, c_1 and c_2 , of the $d(z^2)$ and d(yz) orbitals (where $|c_1|^2 + |c_2|^2 = 1$). The net 3d spin population is ρ^{3d} . $P = g_e g_{Cu}\beta_e\beta_n \langle r^{-3}\rangle_{3d}$, and it is used in estimating the dipolar coupling of an electron spin in a copper 3d orbital to the copper nucleus. P is provided from theory and P = 1080 MHz or 360 X 10⁻⁴ cm⁻¹. In the Sojka et al.⁵ approach an estimate of the ratio of $|c_2|^2$ to $|c_1|^2$ is initially made graphically (Figure 8 in Sojka et al.) to fit the ratioed values of ^{Cu}T_{zz}, ^{Cu}T_{xx}, and ^{Cu}T_{yy}.

^{Cu}T_{xx} = (2P/7)
$$\rho^{3d} [-|c_1|^2 - 2|c_2|^2]$$

^{Cu}T_{yy} = (2P/7) $\rho^{3d} [(-|c_1|^2 + |c_2|^2) \cos^2\beta + (2|c_1|^2 + |c_2|^2) \sin^2\beta + (2\sqrt{3})c_1c_2 \sin\beta \cos\beta]$

$${}^{Cu}T_{zz} = (2P/7) \rho^{3d} [(-|c_1|^2 + |c_2|^2) \sin^2\beta + (2|c_1|^2 + |c_2|^2) \cos^2\beta - (2\sqrt{3})c_1c_2 \sin\beta \cos\beta]$$

$$\tan 2\beta = -2c_2/(3c_1)$$

(It should be pointed out that these formulas are those of Eq. 9 on p.4836 of Sojka et al.,⁵ but with the "x" and the "y" labels interchanged to accommodate the fact that our 3*d* electron admixture is of the $d(z^2)$ and d(yz) orbitals rather than $d(z^2)$ and d(xz).).

The hyperfine tensor, ${}^{Cu}T_{xx}$, ${}^{Cu}T_{yy}$, ${}^{Cu}T_{zz}$ was fit with the following parameters: $|c_1|^2 = 0.75$, $|c_2|^2 = 0.25$, $\beta = -10.5^\circ$, and $\rho^{3d} = 0.14$. Thus the copper anisotropic hyperfine coupling is fit by 14 % 3d copper character, where 10.5 % is in the $d(z^2)$ orbital and 3.5 % is in the d(yz) orbital.

References and Footnotes

- Ruggiero, C. E.; Carrier, S. M.; Antholine, W. E.; Whittaker, J. W.; Cramer, C. J.; Tolman, W. B., *J. Am. Chem. Soc.* **1993**, *115*, 11285-11298
- (2) McElroy, J. D.; Feher, G.; Mauzerall, D. C., *Biochim Biophys Acta* 1972, 267, 363-374
- (3) The Fermi coupling in MHz is related to the fraction of unpaired spin in a 2*s* orbital on ¹⁴N as follows: $A_{Fermi} = (16 \times 10^{-6}) f_{2s} g_n \beta_e \beta_n |\psi_{o2s}|^2 \pi / (3h) = (1.59 \times 10^3) f_{2s}$ (MHz), Where f_{2s} is the fraction of unpaired electron spin in the nitrogen 2*s* orbital, g_n is the ¹⁴N nuclear g-value (= 0.40347), β_e and β_n are the electron and nuclear Bohr magnetons, $|\psi_{o2s}|^2 = 33.4 \times 10^{24} \text{ cm}^{-3}$ (Hartree, D. R.; Hartree, W., *Proc. R. Soc. London, Ser. A.* **1949,** 193, 299-304.) is the 2*s* wave function at the nitrogen nucleus, and h is Planck's constant.
- (4) The anisotropic contribution from a 2p electron on ¹⁴N is related to the fraction of unpaired spin in that orbital as follows: $A_p = (4 \times 10^{-6}) f_{2p}g_n\beta_e\beta_n \langle r^{-3}\rangle_{2p}/(5h) = (48.1) f_{2p}$ (MHz), Where f_{2p} is the fraction of unpaired electron spin in a particular nitrogen 2porbital, g_n is the ¹⁴N nuclear g-value (= 0.40347), β_e and β_n are the electron and nuclear Bohr magnetons, $\langle r^{-3} \rangle_{2p} = 21.1 \times 10^{24} \text{ cm}^{-3}$ (Hartree, D. R.; Hartree, W., *Proc. R. Soc. London, Ser. A.* **1949**, 193, 299-304.) is the expectation value of r^{-3} for a nitrogen 2porbital, h is Planck's constant.
- (5) Sojka, Z.; Che, M.; Giamello, E., J. Phys. Chem. B 1997, 101, 4831-4838