
ARTICLE IN PRESS
1386-9477/$ - se

doi:10.1016/j.ph

�Correspond
E-mail addr

1This researc

Foundation for

Moldova, as w

the authors (S

Department of

has been done.
Physica E 39 (2007) 137–149

www.elsevier.com/locate/physe
Influence of Coulomb scattering of electrons and holes between
Landau levels on energy spectrum and collective
properties of two-dimensional magnetoexcitons

S.A. Moskalenkoa,1, M.A. Libermanb, P.I. Khadzhia, E.V. Dumanova,
Ig.V. Podlesnya, V. Boţ anb,�
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Abstract

This study is concerned with a two-dimensional electron–hole system in a strong perpendicular magnetic field with special attention

devoted to the influence of the virtual quantum transitions of interacting particles between the Landau levels. It is shown that virtual

quantum transitions of two Coulomb interacting particles from the lowest Landau levels to excited Landau levels with arbitrary

quantum numbers n and m and their transition back to the lowest Landau levels in the second order of the perturbation theory result in

indirect attraction between the particles supplementary to their Coulomb interaction. The influence of this indirect interaction on the

chemical potential of the Bose–Einstein condensed magnetoexcitons and on the ground state energy of the metallic-type electron–hole

liquid (EHL) is investigated in the Hartree–Fock approximation. The supplementary electron–electron and hole–hole interactions being

averaged with direct pairing of operators increases the binding energy of magnetoexciton and the energy per pair in the EHL phase. The

terms obtained in the exchange pairing of operators give rise to repulsion. Together with the Bogoliubov self-energy terms arising from

the electron–hole supplementary interaction they both influence in the favor of BEC of magnetoexcitons with small momentum. The

influence of the excited exciton bands on the energy spectrum and on the wave function of the lowest magnetoexciton band is studied in

the second order of the perturbation theory. The BEC of magnetoexcitons in the superposition state is considered. The generalized

Bogoliubov transformations, the BCS-type ground state wave function and the phase-space filling factors of the lowest and first excited

Landau levels are determined.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Properties of atoms and excitons are dramatically
changed in strong magnetic fields, such that the distance
e front matter r 2007 Elsevier B.V. All rights reserved.
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between Landau levels _oc, exceeds the corresponding
Rydberg energies Ry and the magnetic length l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_c=eH

p
is small compared to their Bohr radii [1,2]. Even more
interesting phenomena are exhibited in the case of two-
dimensional (2D) electron systems due to the quenching of
the kinetic energy at high magnetic fields, with the
representative example being integer and fractional Quan-
tum Hall effects [3–5]. The discovery of the FQHE [6–8]
changed fundamentally the established concepts about
charged elementary excitations in solids [5]. The notion of
the incompressible quantum liquid (IQL) was introduced in
Ref. [7] as a homogeneous phase with the quantized
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densities n ¼ p=q, where p is an integer and qa1 is odd
having charged elementary excitations with a fractional
charge e� ¼ �e=q. These quasiparticles were named as
anyons. A classification for free anyons and their hierarchy
were studied in [9,10]. An alternative concept to hierarch-
ical scheme was proposed in [11], where the notion of
composite fermions (CF) was introduced. The CF consists
from the electron bound to an even number of flux
quanta.In the frame of this concept the FQHE of electrons
can be physically understood as a manifestation of the
IQHE of CFs [11]. The statistics of anyons was determined
in Refs. [10,12]. It was established that the wave function of
the system changes by a complex phase factor exp½ipa�,
when the quasiparticles are interchanged. For bosons
a ¼ 0, for fermions a ¼ 1 and for anyons with e� ¼ �e=3
their statistical charge is a ¼ �1

3
. As was shown in Ref. [13],

there were no soft branches of neutral excitations in IQL.
The energy gap D for formation of a quasielectron–quasi-
hole pair has the scale of Coulomb energy EQ ¼ e2=el,
where e is the dielectric constant of the background.
However D was found to be small D ’ 0:1EQ.The lowest
branch was called as magnetoroton [13] and can be
modeled as a quasiexciton [5]. As was mentioned in Ref.
[5] the traditional methods and concepts based either on
the neglecting of the electron–electron interaction or on
self-consistent approximation are inapplicable to IQL. In a
strong magnetic field the binding energy of an exciton
increases from Ry to I l . Small parameter of the theory, as
in the present paper, is the ratio I l=_oco1. Because the
filling factor n basically determines the underlying physics,
it cannot be changed arbitrarily, and cannot serve as a
small parameter in the case of FQHE. Exact numerical
diagonalization for a few number of particles Np10
proved to be the most powerful tool in studies of such
systems [5]. The spherical geometry for these calculations
was proposed [10,14], considering a few number of
particles on the surface of a sphere with the radius
R ¼

ffiffiffiffi
S
p

l, so as the density of the particles on thesphere
to be equal with the filling factor of 2DEG. The magnetic
monopole in the center of the sphere creates a magnetic
flux through the sphere 2SF0, which is multiple to the flux
quantum F0 ¼ 2phc=e. The angular momentum L of a
quantum state on the sphere and the quasimomentum k of
the FQHE state on the plane obey the relation L ¼ Rk.
Spherical model is characterized by continuous rotational
group, which is analogous with the continuous transla-
tional symmetry in the plane.

The experimental probe and the revealing of the physical
properties of the 2DEG are based not only on the
magnetoresistence measurements, but also on the photo-
luminescence (PL) methods. As was mentioned in Ref. [15]
the connection of PL anomalies with the microscopic
properties of IQL has been studied theoretically for over a
decade. The role of photoinjected hole is determined by the
influence of its Coulomb potential on the 2DEG. A new
electron state, which can appear in such conditions were
studied theoretically [5,15–21]. Experimentally observed
doublets were attributed to new states mentioned below.
For the values of the ratio h=l, where h is the distance
between the plane occupied by the 2DEG and the plane,
where the solitary hole is injected, which serves as a
parameter of the theory, such that h=l51 the perturbative
field of the hole is strong, the electron density in the vicinity
of the hole strongly deviate from its mean value [5,15]. It
leads to strong renormalization of the exciton properties.
The numerical simulations for few electron system are
accessible. For the opposite limit case of strongly asym-
metric system h=lb1 the approach based on the anyon
concept seems to be more promising [5]. In the former case
the giant suppression of the exciton dispersion law, the
creation of the exciton-polaron state, where the role of
phonons is played by magnetorotons, as well as the
possible creation of the bound state including slow
magnetoexciton and magnetoroton were established
[16,17]. In the later case a concept of a new type of
exciton, namely anyon exciton, was proposed [18,19]. It
consists from a hole and of q quasielectrons, each of them
being charged by a fractional charge �e=q. At h=lb1 the
mean separation between anyons in an exciton is about h

and is larger than the anyon size l. The anyons in this case
are well defined quasiparticles and the anyon exciton is an
atom-like entity having internal degrees of freedom. Its
energy spectrum would comprise a multiplicity of branches
[5,18,19]. At present time different variants of the neutral
and charged anyon excitons have been studied, but the
understanding of all experimentally discovered and re-
ported anomalies is not complete [15]. In the papers
[15,20,21] the ideas about the trions immersed in the IQLs,
which are stable and could explain the discontinuities of
the PL spectra are discussed. As was mentioned in Ref. [15]
the many-body IQL dynamics adds to few-body excitonic
effects the own complexity. It was argued [15] that trions
remain stable in realistic dopped wells. In analogy with the
conventional excitons and trions in the papers [15,20,21]
the different anyon variants were investigated in compar-
ison with the previous papers [16–19]. Some types of anyon
trions such as singlet, triplet dark and triplet bright have
been discussed so far.
Properties of the symmetric 2D electron–hole (e–h)

system (i.e. h ¼ 0), with equal concentrations for both
components, with coincident matrix elements of Coulomb
electron–electron, hole–hole and electron–hole interactions
in a strong perpendicular magnetic field also attracted a
great attention during last two decades [22–29]. A hidden
symmetry and the multiplicative states were discussed in
many papers [16,20,26]. The collective states such as the
Bose–Einstein condensation (BEC) of 2D magnetoexcitons
and the formation of metallic-type electron–hole liquid
(EHL) were investigated in Refs. [22–29]. The search for
Bose–Einstein condensates has become a milestone in the
condensed matter physics [30]. The remarkable properties
of superfluids and superconductors are intimately related
to the existence of a bosonic condensate of composite
particles consisting of an even number of fermions. In
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highly excited semiconductors the role of such composite
bosons is taken on by excitons, which are bound states of
electrons and holes. Furthermore, the excitonic system has
been viewed as a keystone system for exploration of the
BEC phenomena, since it allows to control particle
densities and interactions in situ. Promising candidates
for experimental realization of such system are semicon-
ductor quantum wells (QWs) [31], which have a number of
advantages compared to the bulk systems. The coherent
pairing of electrons and holes occupying only the lowes
Landau levels (LLLs) was studied using the Keldysh–Ko-
zlov–Kopaev method and the generalized random-phase
approximation (RPA) [27]. The BEC of magnetoexcitons
takes place in a single exciton state with wave vector k,
supposing that the high density of electrons in the
conduction band and of holes in the valence band were
created in a single QW structure with size quantization
much greater than the Landau quantization. In the case
ka0 a new metastable dielectric liquid phase formed by
Bose–Einstein condensed magnetoexcitons was revealed
[27,28]. The importance of the excited Landau levels
(ELLs) and their influence on the ground states of the
systems was first noticed by the authors of the papers
[23–26]. The influence of the first excited Landau levels
(FELLs) of electrons and holes was discussed in details in
paper [28]. The indirect attraction between electrons (e–e),
between holes (h–h) and between electrons and holes (e–h)
due to the virtual simultaneous quantum transitions of the
interacting charges from LLLs to the FELLs is a result of
their Coulomb scattering. The first step of the scattering
and the return back to the initial states were described in
the second order of the perturbation theory. The purpose
of the present paper is the detailed study of the influence of
virtual quantum transitions of the Coulomb interacting
particles from the LLLs to the ELLs. As in the case of
FELLs, the influence of the another ELLs gives rise to the
Hartree terms of the overall attractive indirect interaction
between the particles. At the same time the Fock terms and
the Bogoliubov u-v transformation terms of this indirect
interaction are very important in some region of the
condensate wave vectors and cannot be generated by
another sources. Their search justifies the made investiga-
tion. We consider two approaches of the problem. One of
them could be named as e–h approach, and another one as
excitonic description. But this division is only conditional
because the exciton creation and annihilation operators are
constructed in their turn from the electron and hole
operators. Nevertheless two approaches permit to elucidate
different aspects of the problem and we will use both of
them. In the first direction we will consider the electrons
and holes lying on their LLLs and interacting between
them by the forces, which are modified by the ELLS. On
this base we will obtain two main results concerning the
influence of ELLs on two phases formed by e–h system,
namely on the BEC-ed phase and on EHL phase. The main
results in this direction were published in summary form in
our previous paper [29]. In the present paper we add many
supplementary explications, derivations of the more
important results and their illustrations. In the excitonic
approach we will pay attention to the influence of ELLs on
the wave functions and on the energy levels of the lowest
magnetoexciton band, which permits to determine more
exact expressions for the exciton creation and annihilation
operators. They play a key role in the elaboration of the
adequate theory of BEC. These operators and the
corresponding wave functions represent the superpositions
of the states involving different ELLs. The theory of the
BEC of 2D magnetoexcitons on the superposition state is
proposed.
The paper is organized as follows. In Section 2 the

matrix elements of the Coulomb scattering processes were
determined including the simultaneous excitations of two
quasiparticles from the LLLs to ELLs. In Section 3 the
influence of the ELLs on the ground state energies of the
condensed magnetoexcitons and of the EHL were studied
in the Hartree–Fock (HF) approximation. Section 4 is
devoted to excitonic approach. The wave function, energy
spectrum and exciton creation and annihilation operators
were determined. On their base the description of the BEC
of 2D magnetoexcitons in the superposition state is
proposed. The conclusions and summary are given in
Section 5.
2. Matrix elements of the Coulomb interaction:

simultaneous quantum transitions

We consider a 2D electron–hole system in a perpendi-
cular magnetic field, which is assumed to be strong enough
such that LL quantization _oc is larger than exciton
binding energy, while the magnetic length l is smaller than
2D exciton Bohr radius a2D

ex . Taking the magnetic field in
the Landau gauge A ¼ ð�Hy; 0; 0Þ, the electron states can
be obtained straightforwardly by means of a mixed basis
set of Landau functions and plane waves:

ce
n;pðx; yÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lxl

ffiffiffi
p
pp eipx exp �

ðy� pl2Þ2

2l2

� �
Hn

y� pl2

l

� �
,

(1)

where Lx is a lateral size of 2D layer, n is the principal
quantum number—Landau level index, and Hn is Hermite
polynomial. Thus, the wave function is a plane wave in x-
direction and exponentially localized in y-direction with the
center at pl2 and localization length of the order of l. Note,
that one-dimensional (1D) wave vector p is an eigenvalue
of the magnetic momentum operator [22]. For a charge
neutral systems, like exciton, the magnetic momentum is a
conserved quantity playing role of the total center-of-mass
momentum. Therefore the total momentum in x-direction
is a good quantum number and will be used for labeling
eigenstates.
The hole states ch

n;pðx; yÞ can be obtained from the Eq.
(1) by conserving p in the plane wave and changing its sign
to �p in the Landau part of electron wave function, since it
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has an opposite electric charge and is pulled by the Lorentz
force in opposite direction along the y-axis. The energies of
electron and hole accounted from the corresponding LLLs
energies are simply ne_oce and nh_och, respectively. Here-
after we use a subscript notation to distinguish electrons
and holes, unless otherwise stated. Under this conditions
the Hamiltonian of the spin-polarized system can be
written as

Ĥ ¼ Ĥ0 þ ĤCoul, (2)

with Ĥ0 term being the Hamiltonian of non-interacting
electrons and holes

Ĥ0 ¼
X1
n¼0

X
p

ðn_oce � meÞa
y
n;pan;p

þ
X1
n¼0

X
q

ðn_och � mhÞb
y
n;qbn;q. ð3Þ

The operators ayn;p and an;p stand for creation and
annihilation of an electron in the state with a momentum
p and LL index n; byn;q and bn;q hold the same meaning for
hole; me and mh are chemical potentials of electrons and
holes. The number of discrete states is
N ¼ LxDp=2p ¼ S=2pl2, where S is the layer area.

The interaction term is given by ĤCoul:

ĤCoul ¼
1

2

X
p;q;s

X
n;m;n0;m0

½F e2eðp; n; q;m; p� s; n0; qþ s;m0Þ

�ayn;paym;qam0 ;qþsan0 ;p�s

þ Fh2hðp; n; q;m; p� s; n0; qþ s;m0Þ

�byn;pbym;qbm0 ;qþsbn0 ;p�s�

�
X
p;q;s

X
n;m;n0;m0

Fe2h

�ðp; n; q;m; p� s; n0; qþ s;m0Þ

�ayn;pbym;qbm0 ;qþsan0 ;p�s, ð4Þ

with Coulomb matrix elements

Fi2jðp; n; q;m; p� s; n0; qþ s;m0Þ

¼

Z Z
dR1dR2c

i�
n;pðR1Þc

j�
m;qðr2Þ

e2

�0jR1 � R2j

�ci
n0;p�sðR1Þc

j
m0 ;qþsðR2Þ; i; j ¼ e; h. ð5Þ

Here the integration of envelope parts of the wave
functions Eq. (1) was performed. The periodic parts of
the full Bloch functions being integrated on the elementary
lattice cell were excluded from the final expression. The
exchange terms related with the quantum transitions from
the valence band to conduction band and giving rise to
ortho–para exciton splitting and to longitudinal-transverse
splitting of the states of dipole active excitons are not taken
into account. The variables Ri are 2D vectors and �0 is the
background dielectric constant.

The matrix elements of the Coulomb interaction invol-
ving only the LLLs, i.e. n ¼ m ¼ n0 ¼ m0 ¼ 0 contribution
to the interaction Hamiltonian, labeled as HLLL
Coul were

studied in Refs. [25–28]. As an example we will demon-
strate some of 48 matrix elements with quantum numbers
n;m; n0;m0 ¼ 0; 1, which involve the first two LLs, namely
the LLLs and FELLs of electrons and holes:

Fi2iðp; 0; q; 0; p� s; 0; qþ s; 0Þ ¼
X
k

W s;kf ðk; p� q� sÞ,

Fi2iðp; 1; q; 0; p� s; 0; qþ s; 0Þ ¼
X
k

W s;k
ðs� ikÞlffiffiffi

2
p

�f ðk; p� q� sÞ,

Fi2iðp; 1; q; 1; p� s; 0; qþ s; 0Þ ¼ �
X
k

W s;k
ðik� sÞ2l2

2

�f ðk; p� q� sÞ,

Fi2iðp; 1; q; 1; p� s; 1; qþ s; 0Þ ¼
X
k

W s;k
ðs� ikÞlffiffiffi

2
p

� 1�
ðs2 þ k2Þl2

2

� �

�f ðk; p� q� sÞ,

Fi2iðp; 1; q; 1; p� s; 1; qþ s; 1Þ

¼
X
k

W s;k 1�
ðs2 þ k2Þl2

2

� �2
�f ðk; p� q� sÞ. ð6Þ

The similar e–h matrix elements are

Fe2hðp; 0; q; 0; p� s; 0; qþ s; 0Þ

¼
X
k

W s;kf ðk; pþ qÞ,

Fe2hðp; 1; q; 0; p� s; 0; qþ s; 0Þ

¼
X
k

W s;k
ðik� sÞlffiffiffi

2
p f ðk; pþ qÞ,

Fe2hðp; 1; q; 1; p� s; 0; qþ s; 0Þ

¼
X
k

W s;k
ðs2 þ k2Þl2

2
f ðk; pþ qÞ,

Fe2hðp; 1; q; 1; p� s; 1; qþ s; 0Þ

¼
X
k

W s;k
ðikþ sÞlffiffiffi

2
p 1�

ðs2 þ k2Þl2

2

� �

�f ðk; pþ qÞ,

Fe2hðp; 1; q; 1; p� s; 1; qþ s; 1Þ

¼
X
k

W s;k 1�
ðs2 þ k2Þl2

2

� �2
�f ðk; pþ qÞ. ð7Þ

Here we used the notations

W s;k ¼ Vs;k exp �
ðs2 þ k2Þl2

2

� �
; f ðk; pÞ ¼ expðikpl2Þ,

(8)
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where Vs;k is the 2D Fourier transform of the Coulomb
interaction

V s;k ¼
2pe2

�0S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ k2
p . (9)

The application of these matrix elements for derivation of
the lowest exciton bands will be shown in Section 4. The
main subject of the present paper concerns the simulta-
neous quantum transitions of two quasiparticles due to
their Coulomb scattering.

Quantum transitions associated with Coulomb interac-
tions are allowed without changing the spins of interacting
particles. Since we are concerned only in the LLLs, which
can accommodate all particles at zero temperature and
high magnetic field, we consider virtual transitions, where a
particle is first promoted from the LLL to the ELL, and
then reverted to the LLL. We restrict ourselves with the
simultaneous virtual transitions of two particles, but
allowing them to be excited in LLs with arbitrary n and
m. Such virtual transitions correspond to matrix elements
Fi2jðp; 0; q; 0; p� s; n; qþ s;mÞ and F i2jðp; n; q;m; p�
s; 0; qþ s; 0Þ with i; j ¼ e; h. As a result, these transitions
will induce indirect interaction between particles in the
LLLs and influence essentially on the BEC of magnetoex-
citons. Such indirect interaction is attractive and appears in
the second order of the perturbation theory. Following the
statements of the paper [26], the main role is played by the
simultaneous quantum transitions with n0 ¼ m0 ¼ n. How-
ever, the quantum transitions with nam have to be also
taken into account and we will show that the virtual
quantum transitions with participation of the e–h pair give
rise to the contributions of two types, which are both
depended on the magnetoexciton wave vector k, but
exhibitingvanishing or non-vanishing behavior at the point
k ¼ 0. The indirect e–e and h–h interaction lead to
contributions, which do not depend on k. It was shown
[28] that for n ¼ m ¼ 1 this indirect interaction gives rise to
the shift of the magnetoexciton levels and influence on
BEC. The aim of this section is to generalize the results
obtained in Ref. [28] and to determine the influence of all
ELLs with arbitrary n and m.

We start with rewriting the Hamiltonian Eq. (2) by
separating the term HLLL

Coul, which contains only the LLLs
and the term HELL

Coul, which describes the simultaneous
transitions ð0; 0Þ$ðn;mÞ discussed above, while all others
terms entering Eq. (2) will be neglected:

H ¼ H0 þHLLL
Coul þHELL

Coul. (10)

From now on particle operators with n ¼ m ¼ 0 will be
denoted as ayp; ap; b

y
p and bp. The term HELL

Coul can be
excluded from the Hamiltonian Eq. (10) with the aid of
unitary transformation [32,33] Û ¼ exp½iŜ�, where Ŝ ¼ Ŝ

y

is determined from the equation

i½Ĥ0; Ŝ� þHELL
Coul ¼ 0. (11)

Averaging the transformed Hamiltonian on the ground
state of electrons and holes in ELLs j0iELL we obtain an
effective Hamiltonian

Heff ¼ ELLh0je
�iSĤeiSj0iELL

’ � me
X

p

aypap � mh
X

p

bypbp þHLLL
Coul

þ
i

2 ELLh0j½H
ELL
Coul; Ŝ�j0iELL, ð12Þ

which can be written as

Heff ¼ � me
X

p

aypap � mh
X

p

bypbp þHLLL
Coul

�
1

2

X
p;q;z

fe2eðp; q; zÞa
y
payqaqþzap�z

�
1

2

X
p;q;z

fh2hðp; q; zÞb
y
pbyqbqþzbp�z

�
X
p;q;z

fe2hðp; q; zÞa
y
pbyqbqþzap�z. ð13Þ

Here the indirect interaction matrix elements fi�jðp; q; zÞ
are given by the expressions

fi2jðp; q; zÞ ¼
X
n;m

fi2jðp; q; z; n;mÞ

n_oci þm_ocj

,

fi2jðp; q; z; n;mÞ ¼
X

t

F i2jðp; 0; q; 0; p� t; n; qþ t;mÞ

�Fi2jðp� t; n; qþ t;m; p� z; 0;

qþ z; 0Þ. ð14Þ

Making use of the definition Eq. (5) and notations of Eq.
(8) one can write Coulomb matrix elements in the following
form:

Fi2iðp; n; q;m; p� s; 0; qþ s; 0Þ

¼
ð�1Þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþmn!m!
p

X
k

W s;kf ðk; p� q� sÞð�sþ ikÞnþmlnþm,

Fi2iðp; 0; q; 0; p� s; n; qþ s;mÞ

¼
ð�1Þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþmn!m!
p

X
k

W s;kf ðk; p� q� sÞðsþ ikÞnþmlnþm,

Fe2hðp; 0; q; 0; p� t; n; qþ t;mÞ

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþmn!m!
p

X
k

W t;kf ðk; pþ qÞ½tþ ik�n½t� ik�mlnþm,

Fe2hðp� t; n; qþ t;m; p� z; 0; qþ z; 0Þ

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþmn!m!
p

X
s

W t�z;sf ðs; pþ qÞ½ðt� zÞ þ is�n

�½ðt� zÞ � is�mlnþm. ð15Þ

After straightforward calculation the indirect interaction
matrix elements take the following form:

fi2iðp; q; z; n;mÞ ¼
l2ðnþmÞ

2nþmn!m!

X
t;k;s

W t;kW z�t;sf ðk; p� q� tÞ

�f ðk; p� q� t� zÞðtþ ikÞnþm

�ðt� zþ isÞnþm,
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fe2hðp; q; z; n;mÞ ¼
l2ðnþmÞ

2nþmn!m!

X
t;k;s

W t;kW t�z;sf ðkþ s; pþ qÞ

�ðtþ ikÞnðt� ikÞm½ðt� zÞ þ is�n

�½ðt� zÞ � is�m. ð16Þ

A closed form for these expressions cannot be found,
however, in special cases the sums of these matrix ele-
ments can be reduced to much simpler forms. For example,
in the particular case of electrons and holes bound to
excitons with a conserved wave vector kx ¼ pþ q the
influence of indirect interaction between electrons and
holes leads to the exciton level energy shift DðkÞ and is
expressed by the sum

DðkÞ ¼
X

z

fe2hðp; kx � p; zÞ expð�ikyzl2Þ

¼
I2l expð�k2l2Þ

p

X
n;m

ðklÞ2jn�mj

n!m!2jn�mjðn_oce þm_ochÞ

�
Gððmþ nþ jn�mj þ 1Þ=2Þ

Gðjn�mj þ 1Þ 1F 1

�

�
jn�mj þ 1� ðnþmÞ

2
; jn�mj þ 1;

ðklÞ2

2

� ��2
,

ð17Þ

and for virtual transitions of an electron and a hole to LLs
with the same index n ¼ m it reduces to

D0ðkÞ ¼
I2l expð�k2l2Þ

pð_oce þ _ochÞ

X
nX1

½Gðnþ 1=2Þ�2

ðn!Þ2n
1F1

�

� �nþ
1

2
; 1;
ðklÞ2

2

� ��2
, ð18Þ

with GðzÞ being the complete Gamma function and

1F 1ða; b; zÞ is the confluent hypergeometric function [34];
I l ¼

ffiffiffiffiffiffiffiffi
p=2

p
e2=�0l is magnetoexciton binding energy. At the

bottom of the lowest magnetoexciton band the energy shift
equals to

Dð0Þ ¼ D0ð0Þ ¼
I2l

pð_oce þ _ochÞ

X
nX1

½Gðnþ 1=2Þ�2

nðn!Þ2

¼
4I2l

pð_oce þ _ochÞ
ðp ln 2� 2GÞ

¼
4I2l

pð_oce þ _ochÞ
0:344,

ð19Þ

where G is Catalan’s constant ð’ 0:915966Þ. Note that at
k ¼ 0 the contribution of virtual transitions with nam

vanishes and only transitions with the same index n

contribute to the indirect interaction between electron
and hole. But for finite values of k one has to account for
virtual transitions with nam.
In addition, we calculate the sum of the diagonal matrix
elements of indirect e–h interaction

Ae2h ¼
X

q

fe2hðp; q; 0Þ

¼
I2l
p

X
nX1

X
mX1

ðnþm� 1Þ!

2nþmn!m!ðn_oce þm_ochÞ
, ð20Þ

which can be rewritten for the case oce ¼ och ¼ oc

(hereafter we assume equal cyclotron frequencies for
electron and hole) as

Ae2h ¼
I2l

p_oc

X
nX1

X
mX1

ðnþm� 1Þ!

2nþmn!m!ðnþmÞ
¼

I2l
p_oc

S, (21)

where

S ¼
1

2
ln2 2�

p2

12
þ 1:06269 � 0:481. (22)

Besides the indirect coupling of e–h pairs we consider
indirect e–e and h–h interactions expressed by the matrix
elements fe2e and fh2h. It can be seen that the sum of
diagonal matrix elements determines the Hartree contribu-
tion of the indirect interaction and is equal to that one
obtained for e–h indirect interaction:

Ai2i ¼
X

q

fi2iðp; q; 0Þ ¼
I2l

p_oc

X
nX1

X
mX1

ðnþm� 1Þ!

2nþmn!m!ðnþmÞ

¼
I2l

p_oc
S. ð23Þ

The sum of the non-diagonal matrix elements fi2iðp; p�
z; zÞ will determine the exchange contribution of the
indirect supplementary interaction as follows:

Bi2i ¼
2I2l
p_oc

X
n;m

1

2nþmn!m!ðnþmÞ

Z 1
0

dxe�x2=2xnþm

�

Z 1
0

dye�y2=2ynþmJnþmðxyÞ ¼
2I2l
p_oc

T , ð24Þ

where JnðzÞ is Bessel function of the first kind. After a
thorough analysis of the sum in the above expression it can
be shown that T ’ 0:2161.

3. Influence of ELLs on the collective states of 2D

electron–hole system

The supplementary indirect interaction entering the
Hamiltonian Eq. (13) influences on the collective properties
of 2D e–h system. We will consider two alternative states:
namely, the BEC of magnetoexcitons and the metallic-type
EHL. Both of them will be described in HF approximation.
The indirect interactions between particles in the e–h
system differ from their Coulomb interaction. The average
values of the Coulomb interactions in the HF approxima-
tion give rise to direct-pairing or Hartree terms and to
exchange-pairing or Fock terms. The direct-pairing terms
of the e–e, h–h and e–h Coulomb interactions cancel each
other due the condition of electro-neutrality of the e–h
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system, whereas the Coulomb exchange e–e and h–h
interactions are negative. They give rise to the attraction
in the system and facilitate the creation of Coulomb
correlated e–h plasma and e–h liquid. The supplementary
attraction in the system increases the binding energy of
magnetoexcitons and at the same time lowers the energy
per one pair in the composition of EHL. These competing
processes will be compared. On the contrary, the exchange
pairing terms of the supplementary interaction are positive,
giving rise to the repulsion in the e–h system. They act in
the favor of the BEC of magnetoexcitons tending to
stabilize it and partially diminish the binding energy of
EHL. First, we will discuss the BEC of magnetoexcitons in
HFBA.

The ground state energy Eg of the Bose–Einstein
condensed magnetoexcitons in Ref. [27] was calculated
beyond the HFBA on the base of Pauli–Feynman theorem
following the proposal of Comte and Nozieres [35,36].
Being applied to 2D magnetoexcitons the main formula
reads as

Eg ¼ �Nex

X
Q

WQ �
X
Q

Z1

0

_do
2p

Z e2

0

dl
l
Im

1

�ðQ;o; lÞ

� �
.

(25)

Here Nex is the average number of magnetoexcitons and
�ðQ;o; lÞ is their dielectric constant in the case of
hypothetical e–h system with square electric charge equal
to l. Substituting in Eq. (25) the dielectric constant in HFA
called as �HFðQ;o; lÞ or in RPA denoted as �RPAðQ;o; lÞ in
Ref. [27] the results were obtained in HFBA or beyond it
with account for correlation energy.

Two approximations for dielectric constant have differ-
ent dependencies on the polarizability 4paHF

0 ðQ;o; lÞ

�RPAðQ;o; lÞ ¼ 1þ 4paHF
0 ðQ;o; lÞ,

1

eHFðQ;o; lÞ
¼ 1� 4paHF

0 ðQ;o; lÞ. ð26Þ

The polarizability can be calculated in the approxi-
mation of a weak response, if the wave function of the
system in zero order approximation is known. In the case
of BEC of magnetoexcitons as a ground state wave
function was chosen the BCS-type wave function [27]
jcgðkÞi and as the excited wave functions the wave
functions of the coherent excited states introduced in
Ref. [36] for e–h systems in a similar way as it was
done by Anderson [37] in the theory of supercon-
ductors. The ground state wave function was intro-
duced following Keldysh–Kozlov method [38] by the
action of the displacement unitary transformation
D̂ð

ffiffiffiffiffiffiffiffi
Nex

p
Þ on the vacuum state of the initially introduced

electron–hole operators

jcgðkÞi ¼ D̂ð
ffiffiffiffiffiffiffiffi
Nex

p
Þj0i; apj0i ¼ bpj0i ¼ 0. (27)
The coherent excited states were generated as follows [27]:

ce q�
Qx

2

� �����
�
¼ a

y

qþQx=2
aq�Qx=2jcgðkÞi. (28)

The unitary transformation D̂ð
ffiffiffiffiffiffiffiffi
Nex

p
Þ breaks the gauge

symmetry of the initial Hamiltonian Eq. (13) transforming
it to a new Hamiltonian D̂HeffD̂

y
, yielding the ground state

wave function Eq. (27) and macroscopic displacementffiffiffiffiffiffiffiffi
Nex

p
of the exciton creation operator

dyðkÞ ¼
1ffiffiffiffiffi
N
p

X
t

e�iQytl2a
y

kx=2þt
b
y

kx=2�t
. (29)

Note that contrary to the Glauber coherent states [39] the
exciton creation and annihilation operators are not pure
Bose operators but only quasi-boson operators [40].
The unitary transformation D̂ð

ffiffiffiffiffiffiffiffi
Nex

p
Þ ¼

exp½
ffiffiffiffiffiffiffiffi
Nex

p
ðdyðkÞ � dðkÞÞ� of the Hamiltonian implies the

unitary transformations of the operators

D̂apD̂
y
� ap ¼ uap � v p�

kx

2

� �
bþkx�p,

D̂bpD̂
y
� bp ¼ ubp þ v

kx

2
� p

� �
aþkx�p, ð30Þ

yielding inverse transformation

ap ¼ uap þ v p�
kx

2

� �
bykx�p; bp ¼ ubp � v

kx

2
� p

� �
aykx�p,

(31)

with the coefficients

vðtÞ ¼ ve�ikytl2 ; v ¼ sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pl2nex

q
Þ; u ¼ cosð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pl2nex

q
Þ,

nex ¼ Nex=S.

The restriction of the LLL implies the following equa-
lities [27]:

v2 ¼ Nex=N; nex ¼
v2

2pl2
,

where v2 is the filling factor of the LLL. The last line
immediately brings us to the relations u ¼ cos v and
v ¼ sin v, which can be satisfied only in the limit vo1.
The theory developed in Ref. [27] and its application below
has to be treated with the restriction vo1. To avoid this
constraint it is necessary to generalize the structure of the
exciton creation operator Eq. (29) including in its
composition the creation operators of electrons and holes
at least in a few number of ELLs. This improvement will be
discussed in the next section, where the FELL is included.
The Hamiltonian of Eq. (13) after the unitary transfor-

mation (31) will contain operators ayp; ap;b
y
p;bp in arbitrary

ordering. Their normal ordering will generate a constant U

playing the role of the ground state energy of HFBA, a
quadratic term H2 similar with the quadratic expression
Eq. (36) of Ref. [27], and a quartic term H 0. Hence, the
terms entering H 0 contain only normal ordered operators
ayp; ap;b

y
p;bp instead of ayp; ap; b

y
p; bp. The average value of H 0
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on the ground state wave function Eq. (27) equals zero
even for the term proportional to v4. Its contribution is
non-zero only in higher orders of the perturbation theory,
when the coherent excited states were used, as it was
demonstrated in the Ref. [27], where the correlation energy
contain a factor v4u4. The role of smallness parameter is
played by the filling factor v2 ¼ 2pl2nexo1. At a given
magnetic field v2 can be altered arbitrary within interval
ð0; 1Þ by changing the exciton concentration nex, or the total
number of excitons in the system Nex. Contrary to the
small parameter r ¼ I l=_oc discussed above and related
with the intensity of the magnetic field there exists another
independent parameter nex of different origin, which in our
consideration must be small as compared to 1=2pl2.

The quadratic Hamiltonian H2 is given below for the
case of electrons and holes with equal masses me ¼ mh,
cyclotron frequencies oce ¼ och ¼ oc and chemical poten-
tials me ¼ mh ¼ m=2:

H2 ¼
X

p

½Eðk; v2; mÞ þ ðB� 2AÞv2ð1� 2v2Þ

þ 2v2ð1� v2ÞDðkÞ�ðaypap þ bypbpÞ

þ
X

p

uv
kx

2
� p

� �
bkx�pap þ uv p�

kx

2

� �
aypb
y

kx�p

� �

�f�cðk; v2;mÞ þ 2v2ðB� 2Aþ DðkÞÞ � DðkÞg. ð32Þ

Following the notations of Eqs. (40) and (41) of Ref. [27]
we have

Eðk; v2;mÞ ¼ 2v2u2I exðkÞ þ I lðv
4 � v2u2Þ �

m
2
ðu2 � v2Þ,

cðk; v2;mÞ ¼ 2v2I l þ I exðkÞð1� 2v2Þ þ m, ð33Þ

whereas the coefficients DðkÞ, A and B are determined by
Eqs. (17), (21) and (24), respectively. Putting to zero the
last bracket in Eq. (32), i.e. compensating the dangerous
diagrams describing the spontaneous creation and annihi-
lation of e–h pairs in the vacuum state Eq. (27), one can
obtain the chemical potential m of the system in the HFBA:

mHFB ¼ � ~I exðkÞ þ 2v2ðB� 2Aþ ~I exðkÞ � I lÞ

¼ � ~I exðkÞ þ 2v2ðB� 2Aþ DðkÞ � EðkÞÞ. ð34Þ

Here the renormalized ionization potential of magnetoex-
citons ~I exðkÞ containing the correction due to influence of
all ELLs was introduced:

~I exðkÞ ¼ I exðkÞ þ DðkÞ; I exðkÞ ¼ I l � EðkÞ,

EexðkÞ ¼ �I exðkÞ. ð35Þ

Introducing the value mHFB in the remainder part of the
first line of Eq. (32), Hamiltonian H2 will take the form

H2 ¼
X

p

~I exðkÞ

2
ðaþp ap þ bþp bpÞ. (36)

This Hamiltonian describes the single-particle elementary
excitations from a single-exciton state with wave vector k

of the condensed magnetoexcitons. To extract from the
condensate one pair of new quasiparticles the energy cost
~I exðkÞ is equivalent to unbinding energy, i.e. the excitation
energy for one quasiparticle equals to ~I exðkÞ=2. Notice that
the chemical potential mHFB in the point v2 ¼ 0 coincides on
the energy scale with the position of the renormalized
magnetoexciton energy band

~EexðkÞ ¼ � ~I exðkÞ,

while in the point 2v2 ¼ 1 it equals to the value �I l þ B�

2A and does not depend on k. The concentration
corrections to mHFB are determined by the term

2v2ðB� 2Aþ DðkÞ � EðkÞÞ. (37)

The term �EðkÞ appears in the frame of the LLLs and was
obtained in the Refs. [26,27]. It determines the instability of
the ground state within the HFBA, when the corrections
due to ELL are neglected. The term B� 2A appears in
both phases, not only in the case of BEC of magnetoexci-
ton, but also in the case of EHL. The term �2A is related
with the average Hartree terms of the supplementary e–e,
h–h and e–h interactions, whereas the term B with the
average exchange terms of the supplementary e–e and h–h
interactions. The term 2v2DðkÞ is according to e–h
interaction and Bogoliubov u-v transformation and is
named as Bogoliubov self-energy term [41]. As it will be
shown below it does not appear in the case of EHL.
The renormalized ionization potential in a dimensionless

form is represented in Fig. 1, when the parameter r was
taken equal to 1 and 1

2
. Note the value 1 is the maximal

possible value because the theory is valid only for ro1. The
resulting influence of the ELLs on the chemical potential
mðk; v2Þ calculated in the HFBA is determined by the
coefficient ðB� 2Aþ DðkÞÞ as was mentioned above. In the
dimensionless form it is represented in Fig. 2 also for two
different ratios r ¼ 0:5: 1. This influence, as well as the
influence of FELLs discussed in the paper [28], is essential
only in the range of small values of klo0:5, decreasing
rapidly with the increasing of kl. The inset on this figure
represents the coefficient ½B� 2Aþ DðkÞ � EðkÞ�, which
reflects the influence of both the LLLs and of the ELLs.
Thus, the main result obtained so far, namely the
dependence of the chemical potential mHFB in HFBA
versus the filling factor v2 of the LLL at different values of
the dimensionless wave vector kl ¼ 0; 0:5; 1:0; 3:6 and for
two different values of ratio r ¼ 0:5: 1 is presented in Fig. 3.
One can see that the BEC of 2D magnetoexcitons with
wave vector klo0:5 is stable in HFBA. As was realized in
Ref. [27,28] at greater values kl40:5 the influence of
coherent excited states [37] is important and leads to the
appearance of the metastable dielectric liquid phase.
Now we consider the EHL formation in HFA. We start

with an effective Hamiltonian (13), but without chemical
potentials me and mh, and calculate the ground state energy
EEHL of EHL at T ¼ 0 when the average values of
electrons and holes numbers on the LLLs are equal to

haypapi ¼ hb
y
pbpi ¼ v2. (38)
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Here v2 is the filling factor of LLLs. Applying the Wick
theorem, we obtained the ground state energy

EEHL ¼ �Ne2h½v
2I l þ v2ð2A� BÞ�; Ne2h ¼ Nv2, (39)

and the energy per one e–h pair eEHL of EHL in units of I l

eEHL

I l

¼ �v2 1þ
2I l

p_oc
ðS � TÞ

� �
. (40)

Taking into account the estimated values S ¼ 0:481 and
T ¼ 0:216 we have

eEHL

I l

¼ �ð1þ 0:168rÞv2; r ¼ I l=_oc. (41)

The minimal value is achieved at filling factor v2 ¼ 1, and it
determines the energy per pair inside EHD equal to

eEHD ¼ �I lð1þ 0:168rÞ. (42)
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Fig. 2. Coefficient B� 2Aþ DðkÞ versus wavevector k for different values

of the parameter r ¼ I l=_oc. Solid line: r ¼ 1; dashed line: r ¼ 0:5. Inset:
coefficient B� 2Aþ DðkÞ � EðkÞ versus wavevector k. Solid line: r ¼ 1;

dashed line: r ¼ 0:5.

(r = 0.5)

(r = 0.5)

(r = 1)

(r = 1)

Fig. 1. Renormalized exciton ionization potential versus dimensionless

wavevector kl for different values of the parameter r ¼ I l=_oc. Solid line:

r ¼ 1; dashed line: r ¼ 0:5. Dash-dotted line: ionization potential with the

inclusion of only FELL for r ¼ 1; dotted line: the same, but for r ¼ 0:5
(see Section 4).
eEHL and eEHD depend on the ratio ro1. In spite of the
restriction ro1 equivalent to a strong magnetic field
condition, we will make also calculations in the case of
maximal possible value r ¼ 1. One can see that the
corrections due to ELLs lower the energy per pair inside
EHD by the value 0:168I l for r ¼ 1 and by the value
0:084I l for r ¼ 0:5. The energy per e–h pair of EHD is
presented in Fig. 3 for different values of the ratio r. The
energy eEHD is of the same order of magnitude as the
chemical potential of condensed excitons with small wave
vectors k and the coexistence of these two states is possible.
4. Excitonic approach: BEC in the superposition exciton

state

The aim of this section is to generalize the results
expressed by formulas (27)–(31), as well as to compare the
kl=0
kl=0.5
kl=1.0
kl=3.6

kl=0
kl=0.5
kl=1.0
kl=3.6

Fig. 3. Chemical potential versus filling factor v2 for different values of the

parameter r ¼ I l=_oc. Solid line: energy per e–h pair in EHD phase;

dashed line: chemical potential of condensed excitons with k ¼ 0; dotted

line: the same, but for kl ¼ 0:5; dash-dotted line: the same, but for kl ¼ 1;

dash-dot–dot line: the same, but for kl ¼ 3:6.
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results illustrated in Fig. 1 with the ones obtained in this
section. Putting the aim into practice we need to calculate
the wave functions and the energy spectrum of the lowest
exciton band. We will confine ourselves into the frame of
four exciton levels model. By this restriction we will
determine the influence of nearly situated exciton levels
with the same wave vector on the lowest exciton level in
which the BEC of magnetoexcitons takes place. These
calculations are needed to obtain more exact expressions
for the exciton wave function as well as of the exciton
creation and annihilation operators. They will be repre-
sented as coherent superpositions of their zero order
expressions and will lead us to the necessity to investigate
the BEC in the exciton superposition state.

For the beginning we will define the magnetoexciton
creation operator [25–27] characterized by the number n of
the electron LL and by the number m of the hole LL, as
well as by the 2D wave vector k with two components kx

and ky

X
y

n;m;k ¼
1ffiffiffiffiffi
N
p

X
t

exp½�ikytl2�a
y

n;kx=2þt
b
y

m;kx=2�t
. (43)

The state with the pair of numbers ðn;mÞ equals to (0,0) will
for simplicity be denoted as the state 1, the pair of numbers
(1,1) gives rise to the magnetoexciton state 2, the pairs (1,0)
and (0,1) will be mentioned as the states 3 and 4,
correspondingly. The exciton wave function ciðkÞ is
obtained as action of this operator on the vacuum state
j0i determined as an;pj0i ¼ 0; bm;pj0i ¼ 0

ci;k ¼ X
y

n;m;kj0i, (44)

where i labels the quantum numbers i! ðn;mÞ. Thus, one
can straightforwardly prove the orthogonality and normal-
ization properties of eigenstates:

hci;kjcj;k0 i ¼ di;jdk;k0 . (45)

The matrix elements of the Hamiltonian Eq. (2), where the
chemical potentials me and mh are omitted as we are
concerned in single exciton properties, on the wave
functions Eq. (44) are denoted as

HijðkÞ ¼ hci;kjĤjcj;ki ¼ di;jhci;kjĤ0jci;ki þ V i;jðkÞ, (46)

where V i;jðkÞ ¼ hci;kjĤCouljcj;ki. Analytical expression for
Vi;jðkÞ one can derive from Eqs. (6) to (7) (for details see
e.g. in Ref. [43]). The magnetoexciton energy bands will be
determined at first in the zeroth order of the perturbation
theory, when only the diagonal matrix elements Hii and
two off-diagonal matrix elements V12ðkÞ and V 21ðkÞ are
taken into account. The reason for the choice of the zero
order approximation will be given below. All other off-
diagonal matrix elements, which are smaller than the
values V12 and V 21 will be introduced in higher orders of
the perturbation theory. We consider first the non-
degenerate case when oceaoch,so that the four zero order
magnetoexciton bands accounted from the LLLs are
E1
exðkÞ ¼ Eð0;0Þex ðkÞ ¼ H1;1ðkÞ ¼ V 1;1ðkÞ ¼ �I ð0;0Þex ðkÞ, ð47aÞ

E2
exðkÞ ¼ Eð1;1Þex ðkÞ ¼ H2;2ðkÞ ¼ _oce þ _och � I ð1;1Þex ðkÞ, ð47bÞ

E3
exðkÞ ¼ Eð1;0Þex ðkÞ ¼ H3;3ðkÞ ¼ _oce � I ð1;0Þex ðkÞ, ð47cÞ

E4
exðkÞ ¼ Eð0;1Þex ðkÞ ¼ H4;4ðkÞ ¼ _och � I ð0;1Þex ðkÞ. ð47dÞ

The ionization potentials of four bands were determined as

I ðn;mÞex ðkÞ ¼
X

s

Fe2hðp; n; kx � p;m; p� s; n; kx � pþ s;mÞ

� exp½ikysl2� ¼
e2

e0l

Z 1
0

dx

� exp �
x2

2

� �
1�

x2

2

� �nþm

�J0ðklxÞ; n;m ¼ 0; 1. ð48Þ

An explicit expression for I ðn;mÞex ðkÞ can be found e.g. in Ref.
[44].
A more exact expression of the magnetoexciton wave

function is the linear combination

cn;k ¼
X4
i¼1

ainci;k. (49)

The new functions cn;k are denoted by Greek symbols
n ¼ a;b; g; d, whereas the initial zero order functions cik by
Latin letter i ¼ 1; 2; 3; 4. They obey to the Schrödinger
equation

Ĥcn;k ¼ EnðkÞcn;k (50)

what leads to four linear equations which determine the
energy spectrum EnðkÞ and the coefficients ain. The
equations contain the matrix elements Eq. (46) and have
the form

X4
i¼1

ainHijðkÞ ¼ EnðkÞajn; j ¼ 1; 2; 3; 4. (51)

The energy spectrum EnðkÞ can be found solving secular
equation

H11ðkÞ � EnðkÞ V 12ðkÞ V 13ðkÞ V 14ðkÞ

V21ðkÞ H22ðkÞ � EnðkÞ V 23ðkÞ V 24ðkÞ

V31ðkÞ V 32ðkÞ H33ðkÞ � EnðkÞ V 34ðkÞ

V41ðkÞ V 42ðkÞ V 43ðkÞ H44ðkÞ � EnðkÞ

���������

���������
¼ 0.

(52)

Neglecting 10 off-diagonal matrix elements denoted as a
first order infinitesimals e

jV 13j	jV 14j	jV23j	jV24j	jV34j	e (53)

we will obtain the zero order solutions of Eqs. (51) and (52)

E0
a;bðkÞ ¼

H11ðkÞ þH22ðkÞ

2



1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH11ðkÞ �H22ðkÞÞ

2
þ 4V 2

12ðkÞ

q
,

E0
gðkÞ ¼ H33ðkÞ; E0

dðkÞ ¼ H44ðkÞ. ð54Þ
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In the limit V12ðkÞo_oce þ _och two magnetoexciton
bands look as follows:

E0
aðkÞ ¼ E1

exðkÞ �
V 2

12ðkÞ

_oce þ _och
,

E0
bðkÞ ¼ E2

exðkÞ þ
V2

12ðkÞ

_oce þ _och
. ð55Þ

The coefficients a0
in can be also determined in the zeroth

order

ja0
1aj

2 ¼ ja0
2bj

2 ¼
ðH22ðkÞ �H11ðkÞÞ

2

ðH22ðkÞ �H11ðkÞÞ
2
þ V2

12ðkÞ

� 1�
V 2

12ðkÞ

ð_oce þ _ochÞ
2
,

ja0
2aj

2 ¼ ja0
1bj

2 ¼
V 2

12ðkÞ

ðH22ðkÞ �H11ðkÞÞ
2
þ V2

12ðkÞ

�
V2

12ðkÞ

ð_oce þ _ochÞ
2
,

a0
2a � �

V 12ðkÞ

_oce þ _och
; a0

1b �
V 12ðkÞ

_oce þ _och
,

a0
3n ¼ a0

4n ¼ 0 for n ¼ a; b. ð56Þ

The different signs of the coefficients a0
1b and a0

2a are taken
to obey Eqs. (51) and will be important in the discussions
below. We are interested in a more exact expressions for
only the lowest exciton band taking into account the
influence of three exciton bands situated upper on the
energy scale. For these three bands involved in this scheme
the starting wave function (49) is not sufficient because
there are another exciton bands which do not affect too
much the lowest exciton bands, but can stronger influence
on the upper exciton bands. It can be easily shown that first
order corrections give zero contribution to the energy and
the following contribution to the coefficients ain:

a01n ¼ a02n ¼ 0,

a03n ¼ �
ðV 31a0

1n þ V32a0
2nÞ

ðH33 � E0
nÞ

; n ¼ a;b,

a04n ¼ �
ðV 41a0

1n þ V42a0
2nÞ

ðH44 � E0
nÞ

. ð57Þ

The perturbation theory used here gives rise to the second
order correction to the lowest exciton band E 00a

E00aðkÞ ¼
jV13ðkÞj

2

E0
aðkÞ �H33ðkÞ

þ
jV14ðkÞj

2

E0
aðkÞ �H44ðkÞ

� �
ja0

1aj
2

þ
jV 23ðkÞj

2

E0
aðkÞ �H33ðkÞ

þ
jV 24ðkÞj

2

E0
aðkÞ �H44ðkÞ

� �
ja0

2aj
2

þ a0�
1aa0

2a
V13ðkÞV32ðkÞ

E0
aðkÞ �H33ðkÞ

þ
V14ðkÞV42ðkÞ

E0
aðkÞ �H44ðkÞ

� �

þ a0�
2aa0

1a
V23ðkÞV31ðkÞ

E0
aðkÞ �H33ðkÞ

þ
V24ðkÞV41ðkÞ

E0
aðkÞ �H44ðkÞ

� �
. ð58Þ

Substituting the coefficients a0
1a and a0

2a, given by (56) and
the matrix elements VijðkÞ from (46) into (58) we obtain the
dependence of E00aðkÞ on the dimensionless wave vector kl.
The dependence of the ionization potential of the lowest
exciton band on the wave vector k with the account of the
second order corrections is represented in Fig. 1 by the
dotted and dash-dotted lines. This corrections are 40%
smaller as compared with the influence of all ELL.
In the frame of four level models the magnetoexciton

creation operator has the form

X
y

ak ¼ a0
1aX

y

0;0;k þ a0
2aX

y

1;1;k þ a03aX
y

1;0;k þ a04aX
y

0;1;k. (59)

On its base it is possible to construct a new displacement
operator D̂ðNexÞ and to discuss the phenomenon of BEC
taking into account explicitly the LLLs and FELLs.
Consider the BEC in the lowest exciton superposition

state in a simplified variant, when only two main terms in
expression (59) are taken into account and the coefficients
of superposition are a0

1a � a1 and a0
2a � a2, with the

condition a2
1 þ a2

2 ¼ 1. The expression Eq. (31) now can
be rewritten as:

X
y

k ¼ a1X
y

0;0;k þ a2X
y

1;1;k. (60)

The unitary transformation D̂ð
ffiffiffiffiffiffiffiffi
Nex

p
Þ ¼ exp½

ffiffiffiffiffiffiffiffi
Nex

p
ðX yðkÞ �

X ðkÞÞ� leads do generalized Bogoliubov’s u-v transforma-
tion

ap ¼ D̂apD̂
y

¼ cosðga1Þap � sinðga1Þ exp½�ikyðp� kx=2Þ�b
y

kx�p,

bp ¼ D̂apD̂
y

¼ cosðga1Þbp þ sinðga1Þ exp½�ikyðkx=2� pÞ�a
y

kx�p,

gp ¼ D̂cpD̂
y

¼ cosðga2Þap � sinðga2Þ exp½�ikyðp� kx=2Þ�d
y

kx�p,

dp ¼ D̂dpD̂
y

¼ cosðga2Þdp þ sinðga2Þ exp½�ikyðkx=2� pÞ�c
y

kx�p.

ð61Þ

Here g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pl2nex

p
; nex ¼ Nex=S; Fermi operators cp; dp

and cyp; dyp describe the annihilation and creation of an
electron and a hole in the FELL, respectively. Then the
new ground state wave function acquires the following
form:

jCgðkÞi ¼ D̂ð
ffiffiffiffiffiffiffiffi
Nex

p
Þj0i

¼
Y

t

ðcosðgÞ þ sinðgÞ expð�ikytl2Þ½a1a
y

kx=2þt
b
y

kx=2�t

þ a2c
y

kx=2þt
d
y

kx=2�t
�Þ, ð62Þ

which plays the role of vacuum state for the operators
ap;bp; gp; dp, i.e.

apjCgðkÞi ¼ bpjCgðkÞi ¼ gpjCgðkÞi ¼ dpjCgðkÞi ¼ 0.

With the above definitions one can calculate the average
number of excitons (which is equal to the average number
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of electrons or holes) as follows:

hCgðkÞj
X

t

ða
y
t at þ c

y
t ctÞjCgðkÞi ¼ N½sin2ðga1Þ þ sin2ðga2Þ�.

(63)

Owing to the definition of g one arrives at the concentra-
tion relation

g2 ¼ sin2ðga1Þ þ sin2ðga2Þ, (64)

which in case of a2 ¼ 0 leads to the previous expression Eq.
(36) of Ref. [27]. Another special case is the following:

a1 ¼ a2 ¼ 1=
ffiffiffi
2
p

; g2=2 ¼ sin2ðg=
ffiffiffi
2
p
Þ, (65)

what implies g2o2. This relation generalize the description
of the BEC of magnetoexciton gas on its superposition
state, with electrons and holes residing both in the LLLs
and the FELLs.

5. Conclusions

The virtual excitations due to Coulomb scattering of two
charged particles from their LLLs to ELLs with arbitrary
indices n and m and their return back to LLLs lead in the
second order of the perturbation theory to supplementary
indirect interaction between the particles side by side with
their Coulomb interaction. General expressions for the
corresponding matrix elements were obtained. On these
base the influence of indirect interaction on the chemical
potential of the condensed magnetoexcitons and on the
energy per pair in the components of EHL and EHD were
revealed in HFA. The indirect supplementary e–e and h–h
interaction being averaged in HFA gives rise to direct
pairing terms and exchanges pairing terms. The first terms
being negative increase the binding energy of magnetoex-
citons and energy per pair in the EHL phase, whereas the
second terms are repulsive. They diminish the influence of
the direct pairing terms, but do not surpass them, so that
the resulting influence of both terms remains attractive.
The supplementary e–h attraction after the u-v transforma-
tion in the case of BEC of magnetoexcitons in the state
with wave vector k gives rise to repulsive-type Bogoliubov
self-energy terms [41]. They stabilized the BEC in the small
region of wave vectors klo0:5. Such terms do not appear
in the case of EHL.

The energy per one e–h pair inside the EHD found to be
situated on the energy scale very close to the value of the
chemical potential of the Bose–Einstein condensed magne-
toexcitons with wave vector k ¼ 0 calculated in the HFBA.
These two phases can coexist. Coexistence of the degen-
erate Bose gas with k ¼ 0 and of the droplets of dielectric
liquid phase formed by magnetoexcitons with non-zero
wave vector k was revealed in Ref. [42], so that one can
expect the coexistence of three phases simultaneously.

The wave functions of the lowest exciton levels in the
second order of the perturbation theory represent the
superpositions of the zero order exciton wave functions
related with definite Landau levels. The BEC of magne-
toexcitons in such superposition state involving different
Landau levels was considered. The generalization of the
Bogoliubov u-v transformations and of the BCS-type
ground state wave function introduced by Keldysh and
Kozlov in their electron–hole description of Bose–Einstein
condensed excitons is proposed. On this base the phase-
space filling factors of involved Landau levels were
determined.
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V. Boţ an, M.A. Liberman, S.A. Moskalenko, D.W. Snoke,

B. Johansson, Physica B 346–347 C (2004) 460.

[29] S.A. Moskalenko, M.A. Liberman, P.I. Khadzhi, E.V. Dumanov,
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