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Influence of excited Landau levels on a two-dimensional electron–hole
system in a strong perpendicular magnetic field
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Abstract

The study of the quantum states of a two-dimensional electron–hole system in a strong perpendicular magnetic field is carried out with special
attention to the influence of virtual quantum transitions of interacting particles between the Landau levels. These virtual quantum transitions
from the lowest Landau levels to excited Landau levels with arbitrary quantum numbers n and m and their reversion to the lowest Landau
levels in second order perturbation theory result in an indirect attraction between the particles. The influence of the indirect interaction on the
magnetoexciton ground state, on the chemical potential of the Bose–Einstein condensed magnetoexcitons, and on the ground state energy of the
metallic-type electron–hole liquid is investigated in the Hartree–Fock approximation. The coexistence of different phases is suggested.
c© 2006 Elsevier Ltd. All rights reserved.
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Properties of atoms and excitons are dramatically changed in
strong magnetic fields, such that the distance between Landau
levels h̄ωc exceeds the corresponding Rydberg energies and the
magnetic length l =

√
h̄c/eH is small compared to their Bohr

radii [1,2]. Even more interesting phenomena are exhibited
in the case of two-dimensional (2D) electron systems due
to the quenching of kinetic energy in a high magnetic field,
with the representative example being integer and fractional
Quantum Hall effects [3,4]. Properties of the 2D electron–hole
(e–h) system in a strong magnetic field attracted great attention
during the past two decades [5–12]. Collective states such as the
Bose–Einstein condensation (BEC) of magnetoexcitons and the
formation of a metallic-type electron–hole liquid (EHL) were
investigated in Refs. [5–11].

The purpose of the present paper is the detailed study of the
influence of virtual quantum transitions of Coulomb interacting
particles from the LLLs to all excited Landau levels (ELLs).
We consider three aspects of the problem: the influence on
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the chemical potential of the BEC-ed magnetoexcitons, on the
energy per pair in the composition of EHL and electron–hole
droplets (EHD), as well as the influence on the wave function
and on the energy level of a single magnetoexciton. The first
steps in this direction were made in Ref. [11].

The full Hamiltonian consists of a zero order Hamiltonian
H0 describing the Landau quantization of free quasiparticles
and the Hamiltonian HCoul of Coulomb interaction:

H = H0 + HCoul, (1)

where

ĤCoul =
1
2

∑
p,q,s

∑
n,m,n′,m′

[Fe−e(p, n; q,m; p− s, n′
; q +s,m′)

× aĎ
n,paĎ

m,qam′,q+san′,p−s

+ Fh−h(p, n; q,m; p − s, n′
; q + s,m′)

× bĎn,pbĎm,qbm′,q+sbn′,p−s]

−

∑
p,q,s

∑
n,m,n′,m′

Fe−h(p, n; q,m; p − s, n′
; q + s,m′)

× aĎ
n,pbĎm,qbm′,q+san′,p−s . (2)
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The operators aĎ
n,p and an,p stand for creation and annihilation

of an electron in the state with Landau level (LL) index n and
the momentum p; bĎn,q and bn,q hold the same meaning for
holes. The number of discrete states is N = S/2πl2, where
S is the layer area.

The matrix elements of the two-particle Coulomb interaction
are given by

Fi− j (p, n; q,m; p − s, n′
; q + s,m′)

=

∫∫
d%1d%2ψ

i∗
n,p(%1)ψ

j∗
m,q(%2)

e2

ε0
∣∣%1 − %2

∣∣
×ψ i

n′,p−s(%1)ψ
j

m′,q+s(%2), i, j = e, h. (3)

Here ψe,h
n,p(%) is a mixed basis set of Landau functions and

plane waves [13]. In the following we separate from the total
Coulomb interaction term the interaction within the LLLs
denoted as HLLL

Coul and the terms of the type

Fi− j (0, p; 0, q; n, p − s; m, q + s),

F j−i (n, p; m, q; 0, p − s; 0, q + s)
(4)

which describe the virtual quantum transitions from the initial
states n = m = 0 to ELLs n,m 6= 0 and their reversion
to the LLLs. A recurrence relation for all ELLs was derived
calculating matrix elements with quantum numbers n =

0, 1, 2, 3, 4. The part of the Coulomb interaction containing the
matrix elements of Eq. (4) is denoted HELL

Coul . All other terms
entering Eq. (2) were neglected.

On the next step the terms of the type Eq. (4) were excluded
from the Hamiltonian equation (2) by means of the unitary
transformation Û = ei Ŝ [14], where Ŝ = ŜĎ and is determined
from the equation

i[Ĥ0, Ŝ] + HELL
Coul = 0. (5)

The new transformed Hamiltonian Heff is determined as

Heff = ELL〈0| e−i S Ĥei S
|0〉ELL

' HLLL
Coul +

i

2 ELL〈0|[HELL
Coul, Ŝ]|0〉ELL. (6)

Here the average is made using the vacuum state for ELLs
|0〉ELL.

Introducing the chemical potential of electrons µe and of
holes µh , the effective Hamiltonian Heff takes the final form:

Heff = −µe

∑
p

aĎ
pap − µh

∑
p

bĎpbp + HLLL
Coul

−
1
2

∑
p,q,z

φe−e(p, q, z)aĎ
paĎ

qaq+zap−z

−
1
2

∑
p,q,z

φh−h(p, q, z)bĎpbĎqbq+zbp−z

−

∑
p,q,z

φe−h(p, q, z)aĎ
pbĎqbq+zap−z . (7)
Here the matrix elements φi− j (p, q, z) of indirect interaction
are defined as follows

φi− j (p, q, z) =

∑
n,m

φi− j (p, q, z; n,m)

nh̄ωci + mh̄ωcj
,

φi− j (p, q, z; n,m) =

∑
t

Fi− j (p, 0; q, 0; p − t, n; q + t,m)

×Fi− j (p − t, n; q + t,m; p − z, 0; q + z, 0). (8)

Now we will discuss the influence of the supplementary
indirect interaction on the ground state energies of two
collective phases formed by a 2D e–h system in a strong
perpendicular magnetic field. One of them is a metallic type
EHL and another is the BEC of magnetoexcitons on the single-
particle state with wave vector k. Both of them will be discussed
below in the Hartree–Fock approximation (HFA). Considering
the EHL we start with the effective Hamiltonian equation (7)
but without chemical potential µe and µh . We calculate the
ground state energy at T = 0, when the average values of the
electron and hole numbers on the LLLs are equal to their filling
factor v2〈

aĎ
pap

〉
=

〈
bĎpbp

〉
= v2. (9)

Applying Wick’s theorem we obtained the ground state energy
in HFA

EEHL = −Ne−h[v2 Il + v2(2A − B)], (10)

with Ne−h = Nv2. The coefficients A and B are determined in
the case of electrons and holes with equal masses me = mh and
cyclotron frequencies ωce = ωch = ωc. In this case one can
write the sum of the diagonal matrix elements of the indirect
interaction as

Ai− j =
I 2
l

π h̄ωc

∑
n>1

∑
m>1

(n + m − 1)!
2n+mn!m!(n + m)

=
I 2
l

π h̄ωc
S, (11)

where S ≈ 0.481. Here Il =
√
π/2 e2/ε0l is the

magnetoexciton binding energy, where ε0 is the background
dielectric constant. In a similar way we have found the
sum of the nondiagonal matrix elements, which determines
the exchange contribution of the indirect supplementary
interaction:

Bi−i =
2I 2

l

π h̄ωc

∑
n,m

1
2n+mn!m!(n + m)

∫
∞

0
dxe−

x2
2 xn+m

×

∫
∞

0
dye−

y2

2 yn+m Jn+m(xy) =
2I 2

l

π h̄ωc
T, (12)

where Jn(z) is Bessel function of the first kind. After a thorough
analysis of the sum in the above expression it can be shown that
T ≈ 0.2161. The energy per one e–h pair EEHL of EHL in units
of Il is then given by

EEHL

Il
= −v2

[
1 +

2Il

π h̄ωc
(S − T )

]
= −v2

(
1 + 0.168

Il

h̄ωc

)
(13)
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The lowest energy is achieved at a filling factor v2
= 1 and it

determines the energy per pair inside the EHD to be equal to

EEHD

Il
= −(1 + 0.168r); r =

Il

h̄ωc
. (14)

The ratio r must be less than 1 to satisfy the condition of a
strong magnetic field.

Consider the BEC of magnetoexcitons in a single particle
state with wave vector k 6= 0 in the Hartree–Fock–Bogoliubov
approximation (HFBA). As was demonstrated in the papers [9,
10] the BEC can be introduced into the starting Hamiltonian
equation (7) by means of the canonical transformation

ap = uαp + v

(
p −

kx

2

)
β
Ď
kx −p;

bp = uβp − v

(
kx

2
− p

)
α
Ď
kx −p,

(15)

with the coefficients

v(t) = v exp[−iky tl2
]; v2

+ u2
= 1.

The normal ordering in the operators αĎp, αp, β
Ď
p, βp of the

transformed Hamiltonian will generate in the HFBA the
quadratic term H2, similar to the quadratic Hamiltonian
Equation (39) of Ref. [10], which contains the coefficients
E(k, v2, µ) and ψ(k, v2, µ) defined by the formulas Eqs. (40)
and (41) of Ref. [10]. The quadratic Hamiltonian H2 is given
below for the case of electrons and holes with equal masses
me = mh , cyclotron frequencies ωce = ωch = ωc and chemical
potentials µe = µh = µ/2:

H2 =

∑
p

[E(k, v2, µ)+ (B − 2A)v2(1 − 2v2)

+ 2v2(1 − v2)∆(k)] × (α
Ď
pαp + β

Ď
pβp)

+

∑
p

[
uv

(
kx

2
− p

)
βkx −pαp + uv

(
p −

kx

2

)
α
Ď
pβ

Ď
kx −p

]
×{−ψ(k, v2, µ)+ 2v2(B − 2A + ∆(k))− ∆(k)}. (16)

Here ∆(k) is determined by the sum

∆(k) =
I 2
l exp(−k2l2)

π

∑
n,m

(kl)2|n−m|

n!m!2|n−m|(nh̄ωce + mh̄ωch)

×

Γ
(

m+n+|n−m|+1
2

)
Γ (|n − m| + 1) 1

F1

(
|n − m| + 1 − (n + m)

2
;

|n − m| + 1;
(kl)2

2

) 2

. (17)

At the point k = 0 and ωce = ωch = ωc we have

∆(0) =
2I 2

l

π h̄ωc
(π ln 2 − 2G) =

2I 2
l

π h̄ωc
0.344, (18)

where G is Catalan’s constant ('0.915966).
Fig. 1. Chemical potential in units of exciton binding energy Il versus filling
factor v2 of the LLL for r = 1/2. Solid line: energy per e–h pair in EHD phase;
dashed line: chemical potential of condensed excitons with k = 0; dotted line:
the same, but for kl = 0.5; dash-dotted line: the same, but for kl = 1; dash-dot-
dot line: the same, but for kl = 3.6.

Following the notations of Eqs. (40) and (41) of Ref. [10] we
have

E(k, v2, µ) = 2v2u2 Iex (k)+ Il(v
4
− v2u2)−

µ

2
(u2

− v2),

ψ(k, v2, µ) = 2v2 Il + Iex (k)(1 − 2v2)+ µ. (19)

Requiring the last bracket in Eq. (16) to be equal to zero,
i.e. compensating the dangerous diagrams describing the
spontaneous creation and annihilation of e–h pairs in the
vacuum state, one can obtain the chemical potential µ of the
system in the HFBA:

µHFB
= − Ĩex (k)+ 2v2(B − 2A + Ĩex (k)− Il)

= − Ĩex (k)+ 2v2(B − 2A + ∆(k)− E(k)). (20)

Here the renormalized ionization potential of magnetoexcitons
Ĩex (k) containing the correction due to influence of all ELLs
was introduced:

Ĩex (k) = Iex (k)+ ∆(k);

Iex (k) = Il exp[−k2l2/4]I0(k
2l2/4); E(k) = Il − Iex (k),

(21)

where I0(z) is the modified Bessel function of the first kind. The
dependence of the chemical potential µHFB in HFBA and the
energy per e–h pair in the composition of EHD versus the filling
factor v2 of the LLL for different values of the dimensionless
wave vector kl = 0, 0.5, 1.0, 3.6 and for r = 0.5 is presented
in Fig. 1. At small values of kl < 0.5 the plotted curve µ(k, v2)

has a positive slope, corresponding to the stability of the ground
state in the HFBA. The supplementary indirect e–e and h–h
interactions being averaged in the HFA gives rise to direct
and exchange pairing terms. The former terms, being negative,
increase the binding energy of magnetoexcitons and energy per
pair in the EHL phase, whereas the later ones are repulsive.
They diminish the influence of the direct pairing terms, but do
not surpass them, so that the resulting influence of both terms
remains attractive. In the BEC phase the supplementary e–h
attraction after the Bogoliubov’s u-v transformation equation
(15) yields a repulsive-type Bogoliubov self-energy term and



S.A. Moskalenko et al. / Solid State Communications 140 (2006) 236–239 239
results in the stability of the BEC phase of magnetoexcitons
with small momenta. Note, however, the energy per e–h pair
in EHD is close on the energy scale to the values of chemical
potential µHFB. This means that these states can coexist being
realized in different areas of the sample. From other arguments
the coexistence of a degenerate Bose–gas with small momenta
and of drops of metastable dielectric liquid phase formed by
Bose–Einstein condensed magnetoexcitons with considerable
values of wave vectors kl > 3 was suggested in Ref. [15].
Taking into account the results of the present paper we arrived
at the conclusion that the metallic-type electron–hole droplet
can coexist with both dielectric gaseous and liquid phases of
condensed magnetoexcitons.
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