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The collective elementary excitations of a system of two-dimensional magnetoexcitons in a state
of Bose-Einstein condensation (BEC) with arbitrary wave vector was investigated in Hartree-Fock-
Bogoliubov approximation. The breaking of the gauge symmetry of the Hamiltonian was introduced
following the idea proposed by Bogoliubov in his theory of quasi-averages. The equations of motion
were written in the frame of the starting electron and hole creation and annihilation operators. The
chains of equations of motion for a set of Green’s functions describing the exciton-type excitations as
well as the plasmon-type excitations were deduced. Their disconnections were introduced using the
perturbation theory with a small parameter of the theory proportional to the filling factor multiplied
by the phase space filling factor. The energy spectrum of the collective elementary excitations is
characterized by the interconnection of the exciton and plasmon branches, because the plasmon-
type elementary excitations are gapless and are lying in the same spectral interval as the exciton-
type elementary excitations.
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1. INTRODUCTION

Properties of atoms and excitons are dramatically changed
in strong magnetic fields, such that the distance between
Landau levels ��c, exceeds the corresponding Rydberg
energies Ry and the magnetic length l=√

�c/eH is small
compared to their Bohr radii.1	2 Even more interesting phe-
nomena are exhibited in the case of two-dimensional (2D)
electron systems due to the quenching of the kinetic energy

∗Author to whom correspondence should be addressed.

at high magnetic fields, with the representative exam-
ple being integer and fractional Quantum Hall effects.3–5

The discovery of the FQHE 6–8 changed fundamentally the
established concepts about charged elementary excitations
in solids.5 The notion of the incompressible quantum liq-
uid (IQL) was introduced in Ref. [7] as a homogeneous
phase with the quantized densities v= p/q, where p is an
integer and q �= 1 is odd having charged elementary exci-
tations with a fractional charge e∗ = ±e/q. These quasi-
particles were named as anyons. A classification for free
anyons and their hierarchy were studied in Refs. [9, 10]. An
alternative concept to hierarchical scheme was proposed in
Ref. [11], where the notion of composite fermions (CF)
was introduced. The CF consists from the electron bound
to an even number of flux quanta. In the frame of this con-
cept the FQHE of electrons can be physically understood
as a manifestation of the IQHE of CFs.11 The statistics
of anyons was determined in Refs. [10, 12]. It was estab-
lished that the wave function of the system changes by a
complex phase factor expi���, when the quasiparticles
are interchanged. For bosons � = 0, for fermions �= 1
and for anyons with e∗ = −e/3 their statistical charge is
� = −1/3. As was shown in Ref. [13], there were no soft
branches of neutral excitations in IQL. The energy gap
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� for formation of a quasielectron–quasihole pair has the
scale of Coulomb energy EQ = e2/�l, where � is the dielec-
tric constant of the background. However delta was found
to be small � � 0�1EQ. The lowest branch was called as
magnetoroton13 and can be modelled as a quasiexciton.5

As was mentioned in Ref. [5] the traditional methods and
concepts based either on the neglecting of the electron–
electron interaction or on self-consistent approximation are
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inapplicable to IQL. In a strong magnetic field the binding
energy of an exciton increases from Ry to Il.

There are two another small parameters of the theory.
One of them determines how strong the magnetic field
strength H is, and it verifies whether the starting suppo-
sition of a strong magnetic field is fulfilled. This parame-
ter is expressed by the ratio Il/���c� < 1. Here Il is the
magnetoexciton ionization potential, �c is the cyclotron
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frequency eH/�c calculated with the reduced mass � and
the magnetic length l equals to

√
�c/eH . Another small

parameter has a completely different origin and is related
with the concentration of the electron–holes (e–h) pairs. In
our case it can be expressed as a product of the filling fac-
tor v= v2 and of another factor �1−v2� which reflects the
Pauli exclusion principle and the phase-space filing (PSF)
effect. This compound parameter v2�1−v2� in the case of
Bose-Einstein condensed excitons can take the form u2v2,
where u, v are Bogoliubov transformation coefficients and
u2 = �1 − v2�. The both small parameters will be used
below. But in the case of FQHE the filling factor v = v2

basically determines the underlying physics and it can not
be changed arbitrarily. Instead of the perturbation theory
on the filling factor v the exact numerical diagonalization
for a few number of particles N ≤ 10 proved to be the most
powerful tool in studies of such systems.5 The spherical
geometry for these calculations was proposed,10	14 consid-
ering a few number of particles on the surface of a sphere
with the radius R = √

Sl, whereas S is the dimensional
Haldane parameter, so as the density of the particles on
the sphere to be equal with the filling factor of 2DEG.
The magnetic monopole in the center of the sphere cre-
ates a magnetic flux through the sphere 2S�0, which is
multiple to the flux quantum �0 = 2��c/e. The angular
momentum L of a quantum state on the sphere and the
quasimomentum k of the FQHE state on the plane obey
the relation L = Rk. Spherical model is characterized by
continuous rotational group, which is analogous with the
continuous translational symmetry in the plane.

Properties of the symmetric 2D electron–hole (e–h) sys-
tem, with equal concentrations for both components, with
coincident matrix elements of Coulomb electron–electron,
hole–hole and electron–hole interactions in a strong per-
pendicular magnetic field also attracted a great attention
during last two decades.15–22 A hidden symmetry and the
multiplicative states were discussed in many papers.19	23	24

The collective states such as the Bose-Einstein conden-
sation (BEC) of two-dimensional magnetoexcitons and
the formation of metallic-type electron–hole liquid (EHL)
were investigated in Refs. [15–22]. The search for Bose-
Einstein condensates has became a milestone in the con-
densed matter physics.25 The remarkable properties of
super fluids and superconductors are intimately related
to the existence of a bosonic condensate of composite
particles consisting of an even number of fermions. In
highly excited semiconductors the role of such composite
bosons is taken on by excitons, which are bound states
of electrons and holes. Furthermore, the excitonic sys-
tem has been viewed as a keystone system for exploration
of the BEC phenomena, since it allows to control parti-
cle densities and interactions in situ. Promising candidates
for experimental realization of such system are semicon-
ductor quantum wells (QWs),26 which have a number of
advantages compared to the bulk systems. The coherent

pairing of electrons and holes occupying only the low-
est Landau levels (LLLs) was studied using the Keldysh-
Kozlov-Kopaev method and the generalized random-phase
approximation.20	27 The BEC of magnetoexcitons takes
place in a single exciton state with wave vector k, sup-
posing that the high density of electrons in the conduction
band and of holes in the valence band were created in a
single QW structure with size quantization much greater
than the Landau quantization. In the case k �= 0 a new
metastable dielectric liquid phase formed by Bose-Einstein
condensed magnetoexcitons was revealed.20	21 The impor-
tance of the excited Landau levels (ELLs) and their influ-
ence on the ground states of the systems was first noticed
by the authors of the papers.16–19 The influence of the
excited Landau levels (ELLs) of electrons and holes was
discussed in details in paper.21	22 The indirect attraction
between electrons (e–e), between holes (h–h) and between
electrons and holes (e–h) due to the virtual simultaneous
quantum transitions of the interacting charges from LLLs
to the ELLs is a result of their Coulomb scattering. The
first step of the scattering and the return back to the initial
states were described in the second order of the perturba-
tion theory.

Now the short review of the intra-LLLs excitations in
the 2D two-component electron–electron and electron–
hole (e–h) gases will be presented.

Das Sarma and Madhukar28 have investigated theoret-
ically the longitudinal collective modes of spatially sep-
arated two-component two-dimensional plasma in solids
using the generalized random phase approximation. It
can be realized in semiconductors heterojunctions and
superlattices. The two-layer structure with two-component
plasma is discussed below. It has long been known that
a two-component plasma has two branches to it longitu-
dinal oscillations. The higher frequency branch is named
as optical plasmon (OP). Here the two carries densities of
the same signs oscillate in-phase and their density fluc-
tuation operators "̂e	1� 
Q� and "̂e	2� 
Q� form an in-phase
superposition

"̂OP� 
Q�= "̂e	1� 
Q�+ "̂e	2� 
Q�

In the case of opposite signs electron and hole charges
they oscillate out-of-phase and their charge density fluctu-
ation operators "̂e� 
Q� and "̂h� 
Q� combine in out-of-phase
manner

"̂OP� 
Q�= "̂e� 
Q�− "̂h�− 
Q�
The lower frequency branch is named as acoustical

plasmon (AP). Now the carriers of different signs oscillate
in-phase, whereas the carriers of the same signs oscillate
out-of-phase. Their charge density fluctuation operators
combine in the form

"̂AP� 
Q�= "̂e	1� 
Q�−"̂e	2� 
Q�$ "̂AP � 
Q�= "̂e� 
Q�+"̂h�− 
Q�
54 J. Nanoelectron. Optoelectron. 4, 52–75, 2009
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The optical and acoustical branches of two-component
electron plasma have the dispersion relations in the long
wavelength region as follows

�OP�q�∼√
q$ �AP�q�∼ q$ q→ 0

By virtue of spatial separation z between the two com-
ponents of the 2D plasma the AP branch becomes with
a greater slope of the linear q dependence, because this
slope is proportional to z, when z is of the order of Bohr
radius aB. At small z→ 0 the AP branch lies inside the
single-particle excitation spectrum of the faster moving
charged carriers. They leave the corresponding Fermi seas
crossing the Fermi energies of the degenerate Fermi gases.
This single-particle spectrum is severely Landau damped.
At larges values z > aB the Coulomb interaction between
charges in different layers can be neglected and each layer
supports an ordinary 2D plasma oscillations with a disper-
sion �P�q�∼ q1/2.28

The plasmon oscillations in one-component system on
the monolayer in a strong perpendicular magnetic field
were studied by Girvin, MacDonald and Platzman,13 who
proposed the magnetoroton theory of collective excitations
in the conditions of the fractional quantum Hall effect
(FQHE). The FQHE occurs in low-disorder, high-mobility
samples with partially filled Landau levels with filling fac-
tor of the form + = 1/m, where m is an integer, for which
there is no single-particle gap. Considerable progress has
recently been achieved toward understanding the nature of
the many-body ground state well described by Laughlin
variational wave function.7 The theory of the collective
excitation spectrum proposed by Ref. [13] is closely anal-
ogous to Feynman’s theory of superfluid helium.29 The
main Feynman’s arguments lead to the conclusions that on
general grounds the low lying excitations of any system
will include density waves. As regards the 2D system the
perpendicular magnetic field quenches the single particle
continuum of kinetic energy leaving a series of discrete
highly degenerate Landau levels spaced in energy at inter-
vals ��c. In the case of filled Landau level + = 1 because
of Pauli exclusion principle the lowest excitation is nec-
essarily the cyclotron mode in which particles are excited
into the next Landau level. In the case of FQHE the lowest
Landau level (LLL) is fractionally filled. The Pauli princi-
ple no longer excludes low-energy intra-Landau-level exci-
tations. For the FQHE case the primary importance have
the low-lying excitations, rather than the high-energy inter-
Landau-level cyclotron modes.13 The spectrum has a rel-
atively large excitation gap at zero wave vector kl = 0
and in addition it exhibits a deep magneto-roton mini-
mum at kl ∼ 1 quite analogous to the roton minimum
in helium. The magneto-roton minimum becomes more
deeper and deeper at the decreasing of the filling factor +
in the row 1/3	1/5	1/7 and is the precursor to the gap
collapse associated with the Wigner crystallization which
occurs at + = 1/7. For largest wave vectors the low lying

mode crosses over from being a density wave to becoming
a quasiparticle excitation.13 The Wigner crystal transition
occurs slightly before the roton mode goes completely soft.
The magnitude of the primitive reciprocal lattice vector for
the crystal lies close to the position of the magneto-roton
minimum. The autors of Ref. [13] suggested also the possi-
bility of pairing of two rotons of opposite momenta leading
to the bound two-roton state with small total momentum,
as it is known to occur in helium. In difference from the
case of fractional filling factor, the excitations from a filled
Landau level in the 2DEG were studied by Kallin and
Halperin.30

Fertig31 investigated the excitation spectrum of two-
layer and three-layer electron systems. In particular case
the two-layer system in a strong perpendicular magnetic
field with filling factor + = 1/2 of the lowest Landau level
(LLL) in the conduction band of each layer was consid-
ered. Inter-layer separation z was introduced. The sponta-
neous coherence of two-component two-dimensional (2D)
electron gas was introduced.

Both half filled layers a and b are accompanied by a
substrate with positive charge guaranteeing the electrical
neutrality of the system. The half filled layer a can be
considered as a full filled with electrons in the LLL of the
conduction band and a half filled by holes in the LLL of
the same conduction band.

The electrons of the full filled conduction band are com-
pensated by the charge of the substrate and we can only
consider the electrons on the layer b and the holes on the
layer a.

Then the wave function31 of the coherent two-layer elec-
tron system can be rewritten in the form which coincides
with the BCS-type wave function of the superconductor.
It represents the coherent pairing of the conduction elec-
trons on the LLL of the layer b with the holes in the LLL
of the conduction band of the layer a and describes the
BEC of such unusual excitons named as FQHE excitons,
because they appear in the conditions proper to the obser-
vation of the fractional quantum Hall effect. Here only the
BEC on the single exciton state with wave vector 
k= 0 is
considered.

Fertig has determined the energy spectrum of the ele-
mentary excitations in the frame of this ground state. In
the case of z= 0 the lowest-lying excitations of the system
are the higher energy excitons.

Because of the neutral nature of the 
k = 0 excitons the
dispersion relation of these excitations is given in a good
approximation by ���k�= Eex�k�−Eex�0�, where Eex�k�

is the energy of exciton with wave vector 
k. This result
was first obtained by Paquet, Rice and Ueda19 using a
random phase approximation (RPA). In the case z= 0 the
dispersion relation ��k� vanishes as k2 for k→ 0, as one
expect for Goldstone modes.

For z > 0 ��k� behaves as an acoustical mode ��k�∼ k
in the range of small k, whereas in the limit k→� ��k�
tends to the ionization potential ��z�.

J. Nanoelectron. Optoelectron. 4, 52–75, 2009 55
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In the region of intermediate values of k, when kl ∼ 1,
the dispersion relation develops the dips as z is increased.
At certain critical value of z= zcr the modes in the vicinity
of the minima become equal to zero and are named as soft
modes. Their appearance testify that the two-layer system
undergo a phase transition to the Wigner crystal state.

The similar results concerning the linear and quadratic
dependences of the dispersion relations in the range of
small wave vectors q were obtained by Kuramoto and
Horie,32 who studied the coherent pairing of electrons
and holes spatially separated by the insulator barrier in
the structure of the type coupled double quantum wells
(CDQW).

The magnetic field is sufficiently strong, so that the car-
riers populate only their lowest Landau levels (LLL) in the
conduction and valence bands. Apparently the electron–
hole interaction becomes less important than the repulsive
electron–electron and hole–hole interactions as the sepa-
ration z increases. However at low densities the ground
state of the system will be the excitonic phase, instead
of the Wigner lattice, for which the repulsive interaction
is responsible. The reason is that the energy per electron–
hole pair in the excitonic phase is lower than in Wigner
crystal. The BEC of magnetoexcitons in the state with zero
total momentum was considered and the dispersion relation
of the collective excitation modes was derived. In the case
z �= 0 the lowest excitation branch has a linear dispersion
relation in the region of small wave vectors q ��q�∼ ql;
whereas at z= 0 it transforms in the quadratic dependence
��q�∼ �ql�2; Kuramoto and Horie mentioned that the lin-
ear dispersion relation originates in the fact that at z �= 0
the repulsive Coulomb interaction prevails and the car-
riers feel this resulting repulsive long-range force.32 As
in the Bogoliubov theory of weakly interacting Bose gas
the repulsive interaction leads to the transformation of the
quadratic dispersion relation into another one with the lin-
ear dependence at small wave vectors.

Spontaneous coherence in a two-component electron gas
created in bilayer quantum well structure in a strong per-
pendicular magnetic field was recently studied experimen-
tally by Eisenstein33 and theoretically by MacDonald.34

The bilayer electron–electron system is much easy to
realize in experiment than e–h bilayer, when the holes are
created in the valence band and are spatially separated
from the electrons in the conduction band. The experi-
mental indications of spontaneous coherence have been
seen first in e–e bilayer, which is analogous to Josephson
junction. When the two 2D electron layers each at half-
filling of the lowest Landau level (LLL) are sufficiently
close together, then the ground state of the system pos-
sesses interlayer phase coherence. The ground state can be
considered as an equilibrium Bose-Einstein condensate of
excitons formed by the electrons on the LLL in the con-
duction band with the residence on one layer and the holes
on the LLL of the conduction band with the residence on

another layer. This collective state exhibits the quantum
Hall effect when electrical currents are driven in parallel
through two layers.33 Counterflow transport experiments
were realized. The oppositely directed currents were driven
through the two layers. The counterflow proceeds via the
collective transport of neutral particles, i.e. interlayer exci-
tons. The Hall resistance of the individual layer vanishes
at T → 0 in the collective phase. A weak dissipation is
present at finite temperatures. The free vortices are present
at all temperatures being induced by the disorders. The
existence of the anticipated Goldstone mode linearly dis-
persing was confirmed experimentally.33 This mode is the
consequence of a spontaneously broken U�1� symmetry
in the bilayer system. Measurements of the tunneling con-
ductance between the layers have shown that the tunnel-
ing conductance at zero bias grows explosively, when the
separation between the layers is brought below a critical
value.33

The counterflow conductivity and inter-layer tunneling
experiments both suggest that the system do not have long
range order because of the presence of the unbound vor-
tices nucleated by disorder. The finite phase coherence
length appears.34

The appearance of the soft modes in the spectrum of the
collective elementary excitations may signalize not only
about the possible phase transition of the two-layer system
to the Wigner crystal state or to the charge-density-wave
(CDW) of a 2D electron system, but also to another vari-
ant of the excitonic charge-density-wave (ECDW) state.
This new state was revealed theoretically by Chen and
Quinn,35	36 who studied the ground state and the collective
elementary excitations of a system consisting of spatially
separated electron and hole layers in strong magnetic field.
When the interlayer Coulomb attraction is strong the elec-
trons and holes pair together to form excitons. Excitoni-
cally condensed state of e–h pairs is the preferable ground
state. If the layer separation is larger than a critical value,
a novel excitonic-density-wave state is found to have a
lower energy than either a homogeneous exciton fluid or a
double charge-density-wave state in 2D electron system.

All these details and information will permit to better
understand the results of our paper which is organized as
follows.

In the section two the breaking of the gauge symmetry
of the initial Hamiltonian is introduced by an alternative
method following the idea proposed by Bogoliubov in his
theory of quasiaverages.37 The equivalence with another
Bogoliubov u–v transformation method is revealed.

In the section three the equations of motion for the oper-
ators were obtained, whereas in section four on their base
the main equations determining the many-particle Green’s
functions were deduced together with their truncation and
the determination of the self-energy parts. The fifth section
is devoted to collinear geometry and to analytical and
numerical calculations of the relevant self energy parts.
The sixth section is devoted to the conclusions.

56 J. Nanoelectron. Optoelectron. 4, 52–75, 2009
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2. THE BREAKING OF THE GAUGE
SYMMETRY OF THE INITIAL
HAMILTONIAN. TWO EQUIVALENT
REPRESENTATIONS

For the very beginning we will introduce the operators
describing the magneto-excitons and plasmons, and their
commutation relations.

The creation and annihilation operators of magnetoexci-
tons are two-particle operators reflecting the electron–hole
(e–h) structure of the excitons. They are denoted below as
d†� 
p� and d� 
p�, where 
p�px	py� is the two-dimensional
wave vector. There are also the density fluctuation oper-
ators for electrons "̂e� 
Q� and for holes "̂h� 
Q� as well as
their linear combinations "̂� 
Q� and �D� 
Q�. They are deter-
mined below

"̂e� 
Q�=
∑
t

eiQytl
2
a†t−�Qx/2�at+�Qx/2�

"̂h� 
Q�=
∑
t

eiQytl
2
b†t+�Qx/2�bt−�Qx/2�

"̂� 
Q�= "̂e� 
Q�− "̂h�− 
Q�
�D� 
Q�= "̂e� 
Q�+ "̂h�− 
Q�

d†� 
P�= 1√
N

∑
t

e−iPy tl
2
a†t+�Px/2�b

†
−t+�Px/2�

d� 
P�= 1√
N

∑
t

eiPytl
2
b−t+�Px/2�at+�Px/2�

�Ne = "̂e�0�

�Nh = "̂h�0�

"̂�0�= �Ne− �Nh
�D�0�= �Ne+ �Nh

(1)

and are expressed through the Fermi creation and annihi-
lation operators a†p, ap for electrons and b†p, bp for holes.
The e–h Fermi operators depend on two quantum numbers.
In Landau gauge one of them is the wave number p and
the second one is the quantum number n of the Landau
level. In the lowest Landau level (LLL) approximation n
has only the value zero and its notation is dropped. The
wave number p enumerates the N -fold degenerate states
of the 2D electrons in a strong magnetic field. N can be
expressed through the layer surface area S and the mag-
netic length l as follows: N = �S/2�l2�; l2 = ��c/eH�,
where H is the magnetic field strength. The operators
(1) obey to the following commutation relations, most of
which were discussed for first time in the papers5	13

"̂� 
Q�	 "̂� 
P��=−2iSin
(
 
P × 
Q�zl2

2

)
"̂� 
P + 
Q�

 �D� 
Q�	 �D� 
P��=−2iSin
(
 
P × 
Q�zl2

2

)
"̂� 
P + 
Q� (2)

"̂� 
Q�	 �D� 
P��=−2iSin
(
 
P × 
Q�zl2

2

)
�D� 
P + 
Q�

d�p�	d+�Q��

= 6kr� 
P	 
Q�−
1
N

[
iSin

(
 
P × 
Q�zl2

2

)
"̂� 
P − 
Q�

+Cos
(
 
P × 
Q�zl2

2

)
�D� 
P − 
Q�

]

"̂� 
P�	d� 
Q��= 2iSin
(
 
P × 
Q�zl2

2

)
d� 
P + 
Q�

"̂� 
P�	d+� 
Q��=−2iSin
(
 
P × 
Q�zl2

2

)
d+�− 
P + 
Q�

 �D� 
P�	d+� 
Q��= 2Cos
(
 
P × 
Q�zl2

2

)
d+� 
Q− 
P�

 �D� 
P�	d� 
Q��=−2Cos
(
 
P × 
Q�zl2

2

)
d� 
P + 
Q�

(3)

One can observe that the density fluctuation operators
(1) with different wave vectors 
P and 
Q do not com-
mute. Their non-commutativity is related with the vorticity
which accompanies the presence of the strong magnetic
field and depends on the vector-product of two wave
vectors 
P and 
Q and its projection on the direction of
the magnetic field  
P × 
Q�z. These properties consider-
ably influence on the structure of the equations of motion
for the operators (1) and determine new aspect of the
magneto-exciton-plasmon physics. Indeed in the case of
3D e–h plasma in the absence of the external magnetic
field the density fluctuation operators do commute.38 The
magneto-exciton creation and annihilation operators d†� 
p�
and d� 
Q� as in general case do not obey exactly to the
Bose commutation rule. Their deviation from it is propor-
tional to the density fluctuation operators "̂� 
P − 
Q� and
�D� 
P − 
Q�. The discussed above operators determine the
structure of the 2D e–h system Hamiltonian in the LLL
approximation. In thes previous papers16	17	19–21 the initial
Hamiltonian was gauge-invariant.

It has the form

�H = 1
2

∑

Q
W 
Q"̂� 
Q�"̂�− 
Q�− �Ne− �Nh�−�e

�Ne−�h
�Nh (4)

where

W 
Q = 2�e2

�0S� 
Q�
Exp

[
−Q

2l2

2

]
$ �= �e+�h (5)

The energy of the two-dimensional magnetoexciton
Eex�P� depends on the two-dimensional wave vector 
P and
forms a band with the dependence

Eex� 
P�=−Iex� 
P�=−Il+E� 
P�
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Iex� 
P�= Ile
−�P 2l2/4�I0

(
P 2l2

4

)

Il =
e2

�0l

√
�

2
$

∑

Q
W 
Q = Il

(6)

The ionization potential Iex�P� is expressed through the
modified Bessel function I0�z�, which has the limiting
expressions.

I0�z�
z→0

= 1+ z2

4
+· · · $ I0�z�

z→�
= ez√

2�z
(7)

It means that the function E�P� can be approximated as
follows

E� 
P�
P→0

= �
2P 2

2M
$ M =M�0�= 2

√
2
�

�
2�0

e2l

E�P�
P→�

= Il

(
1−

√
2/�
Pl

)
$ l2 = �c

eH

(8)

Instead of the chemical potential � (5) we will use the
value �̄ accounted from the bottom of the exciton band

�̄= �−Eex�0�= �+ Il (9)

In the case of BEC of the magnetoexcitons on the state
with k �= 0 the chemical potential accounted from the exci-
ton level Eex�k� will lead to the expression

�−Eex� 
K�= �̄−E� 
K� (10)

To introduce the phenomenon of Bose-Einstein conden-
sation (BEC) of excitons the gauge symmetry of the initial
Hamiltonian was broken by the help of the unitary trans-
formation �D�√Nex� following the Keldysh-Kozlov-Kopaev
method.27 We can shortly remember the main outlines of
the Keldysh-Kozlov-Kopaev method,27	39 as it was realized
in the papers.20	21 The unitary transformation �D�√Nex �
was determined by the formula (8).20 Here Nex is the num-
ber of condensed excitons. It transforms the operators ap,
bp to another ones �p, >p, as is shown in the formulas
(13), (14),20 and gives rise to the BCS-type wave function
�?g�k̄�� of the new coherent macroscopic state represented
by the expression (10).20 These results are summarized
below

�D�√Nex�= exp
[√
Nex�d

†�k̄�−d�k̄��]
�?g�k̄�� = �D�√Nex��0�

�p = �Dap �D† = uap−v
(
p− kx

2

)
b†kx−p

>p = �Dbp �D† = ubp+v
(
kx
2
−p

)
a†kx−p

ap = u�p+v
(
p− kx

2

)
>†kx−p

bp = u>p−v
(
kx
2
−p

)
�†kx−p

(11)

ap�0� = bp�0� = 0$ �p�?g�k̄�� = >p�?g�k̄�� = 0

u= cosg$ v = sin g$ v�t�= ve−iky tl
2

g =√
2�l2nex$ nex =

Nex

S
= v2

2�l2
g = v$ v = Sinv

(12)

The developed theory20	21 is true in the limit v2 ≈ Sin2v,
what means the restriction v2 < 1. In the frame of this
approach the collective elementary excitations can be stud-
ied constructing the Green’s functions on the base of
operators �p, >p and having deal with the transformed

cumbersome Hamiltonian ˆ̃� =D�
√
Nex� �HD†�

√
Nex�.

We propose another way, which is supplementary but
completely equivalent to the previous one and is based
on the idea suggested by Bogoliubov in his theory of
quasiaverages.37 Considering the case of a 3D ideal Bose
gas with the Hamiltonian

H =∑

p

(
�

2p2

2m
−�

)
a†
pa 
p (13)

where a+p , ap are Bose operators and � is the chemical
potential, Bogoliubov added a term

−A√V �a0e
iC+a0e

−iC� (14)

breaking the gauge symmetry and proposed to consider
the BEC on the state with p = 0 in the frame of the
Hamiltonian

�� =∑
p

(
�

2p2

2m
−�

)
a†pap−A

√
V �a†0e

iC+a0e
−iC� (15)

where

A =−�
√
N0

V
=−�√n0$ −A

�
=√

n0 (16)

We will name the Hamiltonian of the type (15) as the
Hamiltonian of the theory of quasiaverages. It is writ-
ten in the frame of the operators a+p , ap of the initial
Hamiltonian (13).

Our intention is to apply this idea to the case of BEC of
interacting 2D magnetoexcitons and to deduce explicitly
the Hamiltonian of the type (15) with the finite parameters
� and A but with the ralation of the type (16). We intend
to formulate the new Hamiltonian with broken symmetry
in the terms of he operators ap, bp avoiding the obligatory
crossing to the operators �p, >p (11) at least at some stages
of the investigation were the representation in the ap, bp
operators remains preferential.

Of course the two representations are completely equiv-
alent and complimentary each other. We will follow the
quasiaverage variant (15) instead of u, v variant (11–12),
because it opens some new possibilities, which were not
studied up till now to the best of our knowledge. For exam-
ple the Hamiltonian of the type (15) is more simple than
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the Hamiltonian ˆ̃� = D�
√
Nex� �HD†�

√
Nex� in the �p, >p

representation and the deduction of the equation of motion
for the operators (18) and for the many-particle Green’s
functions constructed on their base is also much simple.
We will profit by this advantage at some stages of investi-
gation. On the contrary, when we will have deal with the
calculations of the average values of different operators on
the base of the ground coherent macroscopic state (11) or
using the coherent excited states, as we have done in the
papers,20	21 the most convenient way is to use the �p, >p
representation. We will use in the wide manner the both
representations. The new variant in the style of the the-
ory of quasiaverages can be realized rewriting the trans-
formed Hamiltonian D�

√
Nex � �HD†�

√
Nex � in the ap, bp

representation as folllows below. To demonstrate it we will
represent the unitary transformation

�D�√Nex�= e
�X =

�∑
n=0

�Xn

n!
D†�

√
Nex�= e− �X

(17)

where

�X =√
Nex�e

iCd†�K�− e−iCd�K��
�X† =− �X

(18)

The creation and annihilation operators d+�k�, d�k�
(18) are written in the Landau gauge when the electrons
and holes forming the magnetoexcitons are situated on
their lowest Landau levels (LLL). Only this variant is con-
sidered here without taking into account of the excited
Landau levels (ELL), as it was done in.20 The BEC of 2D
magnetoexcitons is considered on the single-exciton state
characterized by two-dimensional wave vector 
k. Expand-
ing in series the unitary operators D�

√
Nex�, D

†�
√
Nex� we

will find the transformed operator ˆ̃� in the form

ˆ̃�=e �X �He− �X = �H+ 1
1!  �X	 �H�+

1
2!  �X	 �X	 �H��

+ 1
3!  �X	 �X	 �X	 �H���+···= ��+ �� ′ (19)

Here the Hamiltonian �� contains the main contributions
of the first two terms in the series expansion (19), whereas
the operator �� ′ gathers the all remaining terms.

As one can see looking at the formulas (18) operator �X
is proportional to the square root of the exciton concentra-
tion

√
Nex, which is proportional to the filling number v.

One can see that the contributions arising from the first
commutator  �X	 �H� are proportional to v, the contribu-
tions arising from the second commutator  �X	  �X	 �H�� are
proportional to v2 and so on. Following the Bogoliubov’s
theory of quasiaverages only the linear terms of the type
�d+�k�eiC+ e−iCd�k��+ arising from the first commutator
 �X	 �H� must be included into �� .

The Hamiltonian �� with the broken gauge symmetry
describing the BEC of 2D magnetoexcitons on the state
with wave vector k �= 0 being written in the style of the
Bogoliubov’s theory of quasiaverages has the form

�� = �H +√
Nex��̄−E� 
K���eiCd†� 
K�+ e−iCd� 
K�� (20)

For the case of an ideal 2D Bose gas we can rewrite
the coefficient −A√V in the Hamiltonian (15), in the
form −A√N and comparing it with the deduced expres-
sion (20), we will find

A = �E�k�− �̄�v (21)

where N and the filling number v are determined by
the expressions (1) and (12). The relation (21) coincides
exactly with the relation (16) of the Bogoliubov’s theory
of quasiaverages. In the case of ideal Bose gas A and
�E�k�− �̄� both tend to zero, whereas the filling number is
real and different from zero. In the interacting exciton gas
the parameter A and �E�k�− �̄� are both different from
zero.

Now the remaining terms gathered in �� ′ will be written.
They contain the contributions proportional to v2	v3 and
so on. There is also one term proportional to v, but it
is nonlinear containing the products of the exciton and
fluctuation density operators. Their influence on the BEC
of magnetoexcitons is less in comparison with the second
term in the expression (20). The first terms included in
�� ′ are

�� ′ = −�2i�√Nex

∑

Q
W 
QSin

(
 
K× 
Q�zl2

2

)

× �eiCd†� 
K− 
Q�"̂�− 
Q�− e−iC"̂� 
Q�d� 
K− 
Q��

+2Nex

∑

Q
W 
QSin

2

(
 
K× 
Q�zl2

2

)

×
(
e2iCd†� 
K− 
Q�d†� 
K+ 
Q�+ e−2iCd� 
K+ 
Q�

×d� 
K− 
Q�+2d†� 
K− 
Q�d� 
K− 
Q�
− 1
N
"̂� 
Q�"̂�− 
Q�

)

+Nex�E�k�− �̄�
(

1− �D�0�
N

)

− iNex

N

∑

Q
W 
QSin

(
 
K× 
Q�zl2

2

)
Cos

(
 
K× 
Q�zl2

2

)

× � �D� 
Q�"̂�− 
Q�− "̂� 
Q� �D�− 
Q��+· · · (22)

Below we will construct the equations of motion for the
operators (1) on the base of the Hamiltonian (20) in the
quasiaverages theory approximation (QATA).
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3. THE EQUATION OF MOTION FOR
OPERATORS. THE QUANTA OF
COULOMB ENERGY RELATED WITH
VORTICITY OF THE MAGNETIC FIELD

The starting Hamiltonian �� in QATA has form

�� = 1
2

∑

Q
W 
Q"� 
Q�"�− 
Q�− �Ne− �Nh�−�e

�Ne−�h
�Nh

−A√N�eiCd†�k�+ e−iCd�k�� (23)

The equations of motion for the operators (1) are
obtained using the commutation relations (3). They are

i�
d

dt
d� 
P�

= d� 
P�	 �� �
= �E� 
P�− �̄�d� 
P�−A√NeiC6kr � 
P	 
K�

−2i
∑

Q
W 
QSin

(
 
P × 
Q�zl2

2

)
"̂� 
Q�d� 
P − 
Q�

+AeiC
[
iSin

(
 
P × 
K�zl2

2

)
"̂� 
P − 
K�√

N

+Cos
(
 
P × 
K�zl2

2

) �D� 
P − 
K�√
N

]

i�
d

dt
d†�2 
K− 
P�

= d†�2 
K− 
P�	 �� �
= ��̄−E�2 
K− 
P��d†�2 
K− 
P�+A√Ne−iC6kr � 
P	 
K�

−2i
∑

Q
W 
QSin

(
�2 
K− 
P�× 
Q�zl2

2

)
d†�2 
K− 
P − 
Q�

× "̂�− 
Q�−Ae−iC
[
iSin

(
 
P × 
K�zl2

2

)
"̂� 
P − 
K�√

N

+Cos
(
 
P × 
K�zl2

2

) �D� 
P − 
K�√
N

]

(24)

i�
d

dt
"̂� 
P − 
K�

= "̂� 
P − 
K�	 �� �

=−i∑

Q
W 
QSin

(
� 
P − 
K�× 
Q�zl2

2

)

× "̂� 
P − 
K− 
Q�"̂� 
Q�+ "̂� 
Q�"̂� 
P − 
K− 
Q��

−2iA
√
NSin

(
 
P× 
K�zl2

2

)
e−iCd� 
P�−eiCd†�2 
K− 
P��

i�
d

dt
�D� 
P − 
K�

=  �D� 
P − 
K�	 �� �

=−i∑

Q
W 
QSin

(
� 
P − 
K�× 
Q�zl2

2

)

× "̂� 
Q� �D� 
P − 
K− 
Q�+ �D� 
P − 
K− 
Q�"̂� 
Q��

+2A
√
NCos

(
 
P× 
K�zl2

2

)
e−iCd� 
P�−eiCd†�2 
K− 
P��

Here

A=�Eex�K�−��v=�E�K�−�̄�v$ v=v2$ Nex =v2N

(25)

Now we must pay attention to one important aspect
of these equations of motion, closely related with the
noncommutativity of the operators (1) expressed by the
formulas (2) and (3). Applying them one can prove
the equivalent expressions for the exciton operator d�P�

�E�P�−�̄�d�P�−2i
∑

Q
W 
QSin

(
 
P× 
Q�zl2

2

)
"� 
Q�d� 
P− 
Q�

=−�̄d�P�−i∑

Q
W 
QSin

(
 
P× 
Q�zl2

2

)

×"� 
Q�d� 
P− 
Q�+d� 
P− 
Q�"� 
Q��
=−��̄+E�P��d�P�

−2i
∑

Q
W 
QSin

(
 
P× 
Q�zl2

2

)
d� 
P− 
Q�"� 
Q�=···

(26)

as well as for the density fluctuation operator "̂�P�

−i∑

Q
W 
QSin

(
 
P × 
Q�zl2

2

)

× "̂� 
Q�"̂� 
P − 
Q�+ "̂� 
P − 
Q�"̂� 
Q��

= E�P�"̂�P�−2i
∑

Q
W 
QSin

(
 
P × 
Q�zl2

2

)
"̂� 
Q�"̂� 
P − 
Q�

=−E�P�"̂�P�

−2i
∑

Q
W 
QSin

(
 
P × 
Q�zl2

2

)
"̂� 
P − 
Q�"̂� 
Q�= · · ·

(27)

They can be verified taking into account the relation

2
∑

Q
W 
QSin

2

(
 
P × 
Q�zl2

2

)
= E�P� (28)

The quantum of the Coulomb energy E�P� is related with
the vorticity existing in the frame of electron–hole (e–h)
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system in the presence of a strong perpendicular magnetic
field. A full spectrum of these quanta with arbitrary wave
vector 
P does exist not only in the case of e–h system, but
also in the case of pure electron or pure hole systems. We
are supposing that their origin is related with the existence
of N magnetic flux quanta �0 = hc/e discussed in Ref. [3]
in the case of FQHE. The flux quanta enforce the creation
of N vortices in the 2DEG, lead to the creation of com-
posite fermions and bosons, accompanying the transport
phenomena.3 The unlimited reservoir of energy created by
the magnetic field is characterized by energy quanta E�P�,
which depend only on the square electric charge e2 and
magnetic length l and does not depend on the e–h den-
sities. They could be named as vortex or spiral Coulomb
energy quanta. In our previous paper 40 they were named
as plasmon quanta, but on our opinion it is better to con-
serve the name of plasmon quanta to the intra-Landau level
excitations whose energy depend on the filling factors.

As follows from the equalities (27), (28) the induced by
vortices the Coulomb energy quanta can be added or sub-
stracted as a free part terms outside the nonlinear terms, if
we will change simultaneously the corresponding nonlinear
terms.

In the case of matter interacting with the resonant laser
radiation with the frequency �L in the rotating reference
frame the energy of quasiparticles is changed by the photon
quantum energy ��L. Such type of energy which appears in
the case of unlimited reservoir of energy is named as quasi-
energy.41 The new supplementary quasi-energy branches
give rise to many effects gathered by the common name
as optical Stark effect.39 On our opinion something similar
takes place in the presence of a strong magnetic field, but
in difference on the laser radiation with a well defined fre-
quency �L= ck0 and wave vector k0, in the case of a strong
magnetic field there are a large spectra of frequencies and
wave vectors. Adding or extracting the quanta E�P� we
can form many virtual complexes of quasiparticles with dif-
ferent free energies. They can be named as quasi-energy
complexes. As we will see below the most of them will
have great damping rates and will be physical meaningless.
The choosing of the concrete forms of equations of motion
depends in great manner on the theoretical methods, which
we intend to apply.

We will apply below the Green’s function method. In
this case the free energy terms in the equation of motion
for operators as usual play the role of the proper energies
in zero order approximation. They can determine the zero-
order Green’s function, whereas the nonlinear terms can
be taken into account in higher order of the perturbation
theory. Of course, when the equations of motion for the
Green’s function are treated exactly in this case it is indif-
ferent which starting variant was selected, because all of
them are completely equivalent. But in reality it is impos-
sible to solve exactly the infinite chains of equations of
motion for Green’s functions and some concrete approxi-
mations are inevitable.

Taking into account these considerations we have chosen
the equations of motion for the exciton creation and anni-
hilation operations d†�P�	 d�P� with a free energy term
accounted from the exciton chemical potential in the form
�Eex�P�− ��. Eex�P� coincides with the energy of the
magnetoexciton without any corrections depending on the
exciton–exciton interaction, what means without concen-
tration corrections. The equations of motion for the den-
sity fluctuation operators "� 
P� and D� 
P� were chosen in
the first variant of the Eq. (27) without free energy terms,
because the proper energies of the intra-lowest Landau
level excitations depend on the filling factors and can
not be represented by quanta E�P� in any forms. The
true expressions for the plasmon eigenenergies will appear
in the second order of the perturbation theory developed
on concentration parameter, and its value will depend on
v2�1−v2�. Another important consideration for the selec-
tion of the starting equations of motion having in view
the Green’s function method, is the damping rates of the
obtained elementary excitations. The imaginary parts of
the eigenenergies of the elementary excitations depend on
the real Coulomb scattering processes with the participa-
tions of the quasiparticles as well as on their free energies
which appear in zero order approximation. In most cases
the damping rates are of the same order of magnitude as the
corresponding real parts due the absence of small param-
eter related with Coulomb energy. It means that such ele-
mentary excitations can not exist and have not any physical
meaning.

Once again we can underline that it happens because
the Coulomb interaction energy can not be considered as a
small perturbation. In fact there is a unique possibility to
chose the equations of motion for the operators "� 
P� and
D� 
P� as it was realized in our equations of motion. One
can represent different variants of equations of motion with
different free energy terms as corresponding to different
quasienergy complexes consisting from quasiparticles and
vortex Coulomb quanta E�P�. This suggestion is supported
and induced by the well known concept of composite parti-
cles created by electrons and magnetic flux quanta �0

3 and
by the supposition that their existence must be evidenced
also in another phenomena not so far from the FQHE. But
trying to do it, and verifying the consequences posteriori
we arrived to the conclusion that most of them have great
damping rates and do not exist. The unique possibility to
obtain in the frame of the Green’s function method the
intra-LLL excitations of the plasmon type without damping
at all in our approximation is the variant chosen by us and
written above in the frame of the equations of motion (24).
But for the magnetoexcitons some different quasienergy
complexes are possible. Here we will discuss only the vari-
ant with an usual dispersion law. On the base of equations
of motion (24) the Green’s functions will be introduced and
the chains of equations of motion for the Green’s functions
will be developed.
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4. MANY-OPERATOR, MANY-PARTICLE
GREEN’S FUNCTIONS

Following the equations of motion (24) we will intro-
duce four interconnected retarded Green’s functions at
T = 0 42	43

G11� 
P	 t�= ��d� 
P	 t�$d†� 
P	0���
G12� 
P	 t�= ��d†�2 
K− 
P	 t�$d†� 
P	0���

G13� 
P	 t�=
〈〈
"̂� 
P − 
K	 t�√

N
$d†� 
P	0�

〉〉

G14� 
P	 t�=
〈〈 �D� 
P − 
K	 t�√

N
$d†� 
P	0�

〉〉
(29)

They are determined by the relations

G�t�= ��Â�t�$ B̂�0��� = −iF�t��A�t�	B�0���
Â�t�= e�iHt/��Âe−�iHt/��

Â	 B̂�= ÂB̂− B̂Â
(30)

where �H is the Hamiltonian (23).
The average � � will be calculated at T = 0 in HFB

approximation using the ground state wave function
�?g�k�� (11). The time derivative of the Green’s function is
calculated as follows

i�
d

dt
G�t� = i�

d

dt
��A�t�$B�0���

= �6�t��Â�0�	 B̂�0���+
〈〈
i�
d

dt
A�t�$B�0�

〉〉

= �6�t�C+��Â�t�	 �H�$ B̂�0��� (31)

By C will be denoted the average values, which do not
depend on t. They are not needed in an explicit form for
the determination of the energy spectrum of the elementary
excitations.

Fourier transforms of the Green’s functions (29) will be
denoted as

G11� 
P	��= ��d� 
P� � d†� 
P����
G12� 
P	��= ��d†�2 
K− 
P� � d†� 
P����

G13� 
P	��=
〈〈
"̂� 
P − 
K�√

N

∣∣∣∣d†� 
P�
〉〉

�

G14� 
P	��=
〈〈 �D� 
P − 
K�√

N

∣∣∣∣d†� 
P�
〉〉

�

(32)

The two representations are related each-other

G� 
P	��=
∫ �

−�
ei�tG� 
P	 t�dt =

∫ �

0
ei�t−6tG� 
P	 t�dt

where the infinitesimal value 6→ +0 guarantees for the
retarded Green’s function G� 
P	 t� the convergence of the
integral in the interval �0	��.

The equation of motion in the frequency representation
can be deduced on the base of Eq. (31)

∫ �

−�
dtei�ti�

dG�t�

dt

= i�
∫ �

0
dtei�t−6t

dG�t�

dt

=−i�
∫ �

0
dtG�t�

dei�t−6t

dt
(33)

= ���+ i6�G���
= C+

∫ �

−�
dt��Â�t�	 �H�$ B̂�0���ei�t

The Green’s functions (32) will be named as one-operator
Green’s functions because they contain in the left hand
side of the vertical line only one summary operator of
the types d�P�, d†�P�, "̂�P� and �D�P�. At the same time
these Green’s functions are two-particle Green’s functions,
because the summary operators (1) are expressed through
the products of two Fermi operators. In this sense the
Green’s functions (32) are equivalent with the two-particle
Green’s functions introduced by Keldysh and Kozlov in
their fundamental paper,27 forming the base of the theory
of high density excitons in the electron–hole description.
But in difference on Ref. [27] we are using the summary
operators (1), which represent integrals on the wave vectors
of relative motions.

The equations of motion for the Green’s function (32)
are the following

��+�̄−E� 
P�+i6�G11� 
P	��

=C−2i
∑

Q
W 
QSin

(
 
P× 
Q�zl2

2

)
��"̂� 
Q�d� 
P− 
Q� �d†� 
P����

+AeiC
[
iSin

(
 
P× 
K�zl2

2

)
G13� 
P	��

+Cos
(
 
P× 
K�zl2

2

)
G14� 
P	��

]

��−�̄+E�2 
K− 
P�+i6�G12� 
P	��

=C−2i
∑

Q
W 
QSin

(
�2 
K− 
P�× 
Q�zl2

2

)

×��d†�2 
K− 
P− 
Q�"̂�− 
Q� �d†� 
P����

−Ae−iC
[
iSin

(
 
P× 
K�zl2

2

)
G13� 
P	��

+Cos
(
 
P× 
K�zl2

2

)
G14� 
P	��

]

(34)
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��+i6�G13� 
P	��

=C−i∑

Q
W 
QSin

(
� 
P− 
K�× 
Q�zl2

2

)

×
〈〈[

"̂� 
P− 
K− 
Q�√
N

"̂� 
Q�+"̂� 
Q�"̂� 
P− 
K− 
Q�√
N

]∣∣∣∣d†� 
P�
〉〉

�

−2iASin
(
 
P× 
K�zl2

2

)
e−iCG11� 
P	��−eiCG12� 
P	���

��+i6�G14� 
P	��

=C−i∑

Q
W 
QSin

(
� 
P− 
K�× 
Q�zl2

2

)

×
〈〈[
"̂� 
Q� �D� 
P− 
K− 
Q�√

N
+ �D� 
P− 
K− 
Q�√

N
"̂� 
Q�

]∣∣∣∣d†� 
P�
〉〉
�

+2ACos
(
 
P× 
K�zl2

2

)
e−iCG11� 
P	��−eiCG12� 
P	���

The equation of motion (34) for one-operator Green’s func-
tions G1j � 
P	��, where j = 1	2	3	4, give rise to new two-
operator (four-particle) Green’s functions of the types

��"̂� 
Q�d� 
P − 
Q� � d†� 
P����
��d†�2 
K− 
P − 
Q�"̂�− 
Q� � d†� 
P����〈〈

"̂� 
P − 
K− 
Q�√
N

"̂� 
Q�
∣∣∣∣d†� 
P�

〉〉
�

and 〈〈 �D� 
P − 
K− 
Q�√
N

"̂� 
Q�
∣∣∣∣d†� 
P�

〉〉
�

generated by the nonlinear terms in the equations of motion
(24) for the operators (1). It is a well known situation
described by Zubarev 42 in his review article. For these two-
operator Green’s functions of the first generation following
the rule (33) the new equations of motion were deduced.
This second step in the frame of the given method will
form the second link of an infinite chain of equations of
motion. Both links constructed in such a way will be exact
in the frame of the Hamiltonian (23). These new equations
of motion will contain in their components new types of
three-operator Green’s functions of the first generation as
well as new types of the two-operator Green’s functions
of the second generation, and so on. It can be demon-
strated, for example, calculating the concrete two-operator
Green’s functions arising in the component of the equation
of motion (34) for the starting Green’s function G13� 
P	��.
The obtained result is:

��+ i6�
〈〈[

"̂� 
P − 
K− 
Q�√
N

"̂� 
Q�

+ "̂� 
Q�"̂� 
P − 
K− 
Q�√
N

] ∣∣∣∣d†� 
P�
〉〉

�

= C+
〈〈[(

"̂� 
P − 
K− 
Q�√
N

"̂� 
Q�

+ "̂� 
Q�"̂� 
P − 
K− 
Q�√
N

)
	 ��

] ∣∣∣∣d†� 
P�
〉〉

�

= C− i∑

R
W 
RSin

(
� 
P − 
K− 
Q�× 
R�zl2

2

)

×
〈〈[

"̂� 
P − 
K− 
Q− 
R�√
N

"̂� 
R�"̂� 
Q�

+ "̂� 
R�"̂� 
P − 
K− 
Q− 
R�√
N

"̂� 
Q�

+ "̂� 
Q�"̂� 
P − 
K− 
Q− 
R�√
N

"̂� 
R�

+ "̂� 
Q�"̂� 
R�"̂� 
P − 
K− 
Q− 
R�√
N

] ∣∣∣∣d†� 
P�
〉〉

�

− i∑

R
W 
RSin

(
 
Q× 
R�zl2

2

)

×
〈〈[

"̂� 
P − 
K− 
Q�√
N

"̂� 
R�"̂� 
Q− 
R�

+ "̂� 
P − 
K− 
Q�√
N

"̂� 
Q− 
R�"̂� 
R�

+ "̂� 
R�"̂� 
Q− 
R�"̂� 
P − 
K− 
Q�√
N

+ "̂� 
Q− 
R�"̂� 
R�"̂� 
P − 
K− 
Q�√
N

] ∣∣∣∣d†� 
P�
〉〉

�

−2iASin
(
� 
P − 
Q�× 
K�zl2

2

)

×��e−iC�d� 
P − 
Q�"̂� 
Q�+ "̂� 
Q�d� 
P − 
Q��
− eiC�d†�2 
K− 
P + 
Q�"̂� 
Q�

+ "̂� 
Q�d†�2 
K− 
P + 
Q��� �d†� 
P����
−2iASin

(
 
Q× 
K�zl2

2

)

×��e−iC�"̂� 
P − 
K− 
Q�d� 
Q+ 
K�
+d� 
Q+ 
K�"̂� 
P − 
K− 
Q��

− eiC�"̂� 
P − 
K− 
Q�d†� 
K− 
Q�
+d†� 
K− 
Q�"̂� 
P − 
K− 
Q��� � d†� 
P���� �35�

As we mentioned above, the three-operator Green’s func-
tions of the first generation have appeared, being accom-
panied by the new two-operator Green’s functions of
the second generation. Exact the same evolution of the
equations of motion takes place for the all four starting
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Green’s functions G1j � 
P	��. The interruption of these infi-
nite chains of equations of motion is needed using reason-
able approximations. Following the Zubarev’s method43 we
will truncate the three-operator Green’s functions express-
ing them through the one-operator Green’s functions (32)
multiplied by the average values of another two remain-
ing operators. This method, if applied to the two-operator
Green’s functions of the second generation means in fact
to linearize them.

The linearization can be achieved conserving only the
macroscopic large values of the operators substituting them
by their average values at some well definite values of the
wave vector and neglecting all their infinitesimal values as
follows

d� 
P�� 6kr� 
P	 
K�eiC
√
Nex

d†� 
P�� 6kr� 
P	 
K�e−iC
√
Nex

�D� 
P�� 6kr� 
P	0�� �D�0�� � 6kr� 
P	0�2Nex

"� 
P�� 6kr� 
P	0��"̂�0�� = 0

(36)

The truncation procedure was successful applied in the case
of electron–phonon interaction not only for the metals in
normal states, but also for the superconductors.

It can be applied also in the case of Bose-Einstein
condensed magnetoexcitons because this phenomenon
was taken into account for the very beginning by the
Bogoliubov method of quasiaverages. The calculations
of the average values of the products of two operators
exctracted from the left-hand side of the three-operator
Green’s functions will be made using the ground state wave
function of the Bose-Einstein condensed magnetoexcitons.
On this base some supplementary simplifications of the
cumbersome expressions will be proposed.

Introducing the Green’s function (35) into the sum
on 
Q entering into the Eq. (34) for G13� 
P	�� we will
obtain

− i∑

Q
W 
QSin

(
� 
P − 
K�× 
Q�zl2

2

)

×
〈〈[

"̂� 
P − 
K− 
Q�√
N

"̂� 
Q�

+ "̂� 
Q�"̂� 
P − 
K− 
Q�√
N

] ∣∣∣∣d†� 
P�
〉〉

�

= C− 1
���+ i6�

∑

Q

∑

R
W 
QW 
RSin

(
� 
P − 
K�× 
Q�zl2

2

)

×Sin
(
� 
P − 
K− 
Q�× 
R�zl2

2

)

×
〈〈[

"̂� 
P − 
K− 
Q− 
R�√
N

"̂� 
R�"̂� 
Q�

+ "̂� 
R�"̂� 
P − 
K− 
Q− 
R�√
N

"̂� 
Q�

+ "̂� 
Q�"̂� 
P − 
K− 
Q− 
R�√
N

"̂� 
R�

+ "̂� 
Q�"̂� 
R�"̂� 
P − 
K− 
Q− 
R�√
N

] ∣∣∣∣d†� 
P�
〉〉

�

− 1
���+ i6�

∑

Q

∑

R
W 
QW 
RSin

(
� 
P − 
K�× 
Q�zl2

2

)

×Sin
(
 
Q× 
R�zl2

2

)

×
〈〈[

"̂� 
P − 
K− 
Q�√
N

"̂� 
R�"̂� 
Q− 
R�

+ "̂� 
P − 
K− 
Q�√
N

"̂� 
Q− 
R�"̂� 
R�

+ "̂� 
R�"̂� 
Q− 
R�"̂� 
P − 
K− 
Q�√
N

+ "̂� 
Q− 
R�"̂� 
R�"̂� 
P − 
K− 
Q�√
N

] ∣∣∣∣d†� 
P�
〉〉

�

− 2A
���+ i6�

∑

Q
W 
QSin

(
� 
P − 
K�× 
Q�zl2

2

)

×Sin
(
� 
P − 
Q�× 
K�zl2

2

)

× e−iC���d� 
P − 
Q�"̂� 
Q�+ "̂� 
Q�d� 
P − 
Q�� � d†� 
P����
− eiC���d†�2 
K− 
P + 
Q�"̂� 
Q�

+ "̂� 
Q�d†�2 
K− 
P + 
Q�� � d†� 
P�����

− 2A
���+ i6�

∑

Q
W 
QSin

(
� 
P − 
K�× 
Q�zl2

2

)

×Sin
(
 
Q× 
K�zl2

2

)

× e−iC���"̂� 
P − 
K− 
Q�d� 
Q+ 
K�
+d� 
Q+ 
K�"̂� 
P − 
K− 
Q�� � d†� 
P����

− eiC���"̂� 
P − 
K− 
Q�d†� 
K− 
Q�
+d†� 
K− 
Q�"̂� 
P − 
K− 
Q�� � d†� 
P�����

(37)

In the frame of the approximation (36) the two last sums
in (37) happen to be equal to zero, due to the vorticity
and symmetry properties of the system. But in the another
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similar cases the different from zero terms will appear.
The truncations and the decouplings of the three-operator
Green’s functions generated by all four equations of motion
(34) will be effectuated using the approximations
〈〈
"̂� 
P − 
K− 
Q− 
R�√

N
"̂� 
R�"̂� 
Q�

∣∣∣∣d†� 
P�
〉〉

�

≈G13� 
P	��6kr � 
Q	 
P − 
K��"̂� 
R�"̂�− 
R��
+ �6kr � 
R	− 
Q�+6kr� 
R	 
P − 
K���"̂� 
Q�"̂�− 
Q���

〈〈
"̂� 
P − 
K− 
Q�√

N
"̂� 
R�"̂� 
Q− 
R�

∣∣∣∣d†� 
P�
〉〉

�

≈G13� 
P	��6kr � 
Q	0��"̂� 
R�"̂�− 
R��
+ �6kr � 
R	 
P − 
K�+6kr� 
R	 
Q+ 
K− 
P��
×�"̂� 
P − 
K− 
Q�"̂� 
Q+ 
K− 
P���

〈〈
"̂� 
R�"̂� 
Q− 
R� �D� 
P − 
K− 
Q�√

N

∣∣∣∣d†� 
P�
〉〉

�

≈ 6kr� 
Q	0�G14� 
P	���"̂� 
R�"̂�− 
R��
+G13� 
P	���6kr � 
R	 
P − 
K�+6kr� 
R	 
Q+ 
K− 
P��
×�"̂� 
Q+ 
K− 
P� �D� 
P − 
K− 
Q��

〈〈
"̂� 
R�"̂� 
Q� �D� 
P − 
K− 
Q− 
R�√

N

∣∣∣∣d†� 
P�
〉〉

�

≈ 6kr� 
R	− 
Q�G14� 
P	���"̂� 
Q�"̂�− 
Q��
+G13� 
P	��6kr � 
R	 
P − 
K��"̂� 
Q� �D�− 
Q��

+6kr� 
Q	 
P − 
K��"̂� 
R� �D�− 
R���

��"̂� 
Q�"̂� 
R�d� 
P − 
Q− 
R� � d†� 
P����
≈ 6kr� 
R	− 
Q�G11� 
P	���"̂� 
Q�"̂�− 
Q��

+G13� 
P	��6kr � 
R	 
P − 
K��"̂� 
Q�d� 
K− 
Q��
+6kr� 
Q	 
P − 
K��"̂� 
R�d� 
K− 
R���√N

��"̂� 
Q− 
R�"̂� 
R�d� 
P − 
Q��d†� 
P����
≈ 6kr� 
Q	0�G11� 
P	���"̂� 
R�"̂�− 
R��

+G13� 
P	��6kr � 
R	 
P − 
K�+6kr� 
R	 
Q+ 
K− 
P��
×�"̂� 
Q+ 
K− 
P�d� 
P − 
Q��√N

��d†�2 
K− 
P − 
Q− 
R�"̂�− 
R�"̂�− 
Q� � d†� 
P����
≈G12� 
P	��6kr � 
R	− 
Q��"̂� 
Q�"̂�− 
Q��

+G13� 
P	��6kr � 
R	 
K− 
P��d†� 
K− 
Q�"̂�− 
Q��
+6kr� 
Q	 
K− 
P��d†� 
K− 
R�"̂�− 
R���√N

��d†�2 
K− 
P − 
Q�"̂�− 
Q− 
R�"̂� 
R� � d†� 
P����
≈ 6kr� 
Q	0�G12� 
P	���"̂� 
R�"̂�− 
R��

+G13� 
P	��6kr � 
R	 
P − 
K�+6kr� 
R	 
K− 
P − 
Q��
×�d†�2 
K− 
P − 
Q�"̂� 
K− 
P − 
Q��√N

(38)

Here the average �"̂� 
Q�"̂�− 
Q��, �"̂� 
Q� �D�− 
Q��, �"� 
Q+

K− 
P�d� 
P− 
Q��√N , �d†�2 
K− 
P− 
Q�"� 
K− 
P− 
Q��√N
will be calculated using the ground state wave function
�?g�k�� of the Bose-Einstein condensed 2D magnetoexci-
tons. It will be shown that these averages depend essen-
tially and in some cases are proportional to the small
parameter of the theory v2�1 − v2� related with the e–h
pairs concentration. After the truncations and lineariza-
tions the multi-operator Green’s functions are expressed
through the one-operator Green’s function G1j � 
P	��, with
j = 1	2	3	4, and their four equations of motion can be
written in a close form introducing the self-energy parts
Hij� 
P	�� as follows

4∑
j=1

G1j � 
P	��Hjk� 
P	��= C1k$ k = 1	2	3	4 (39)

There are 16 different components of the self energy part
of the 4×4 matrix as follows

H11� 
P	��
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KN�Sin

2
(  
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2
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)

× Sin
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+4
∑

Q
W 
Q�W 
Q+ 
K− 
P −W 
P− 
K�Sin

(
 
P × 
Q�zl2

2

)

×Sin
(
� 
P − 
K�× 
Q��zl2

2

)

× �"̂� 
Q+ 
K− 
P�d� 
P − 
Q��√N
��+ �̄−E� 
P − 
Q�+ i6

H41� 
P	��=−AeiCCos
(
 
P × 
K�zl2

2

)
(40)

These matrix elements form the first column of the 4× 4
matrix �Hij�. The second column is formed by the matrix
elements Hj2� 
P	�� with j = 1	2	3	4 as follows

H12� 
P	�� = 4A
e−2iCv�W 
K− 
PN �Sin

2
(  
P× 
K�zl2

2

)
��− �̄+E� 
K�+ i6

H22� 
P	�� = ��− �̄+E�2 
K− 
P�+ i6

−4
∑

Q
W 2


Q
Sin2

( �2 
K− 
P�× 
Q�zl2
2

)�"̂� 
Q�"̂�− 
Q��
��− �̄+E�2 
K− 
P − 
Q�+ i6

−4Av
�W 
P− 
KN�Sin

2
(  
P× 
K�zl2

2

)
��− �̄+E� 
K�+ i6 (41)

H32� 
P	��

= iAe−iCSin
(
 
P × 
K�zl2

2

)[
1+ 2�W 
P− 
KN�

��− �̄+E� 
K�+ i6
]

−4
W 
P− 
KSin

(  
P× 
K�zl2
2

)
��− �̄+E� 
K�+ i6

∑

R
W 
RSin

(
 
R× 
K�zl2

2

)

×�d†� 
K− 
R�"̂�− 
R��√N

+4
∑

Q
W 
QW 
K− 
PSin

(
�2 
K− 
P�× 
Q�zl2

2

)

×Sin
(
�2 
K− 
P − 
Q�× � 
K− 
P��zl2

2

)

× �d†� 
K− 
Q�"̂�− 
Q��√N
��− �̄+E�2 
K− 
P − 
Q�+ i6

+4
∑

Q
W 
Q�W 
P− 
K−W 
P− 
K+ 
Q�Sin

(
�2 
K− 
P�× 
Q�zl2

2

)

×Sin
(
� 
P − 
K�× 
Q�zl2

2

)

× �d†�2 
K− 
P − 
Q�"̂� 
K− 
P − 
Q��√N
��− �̄+E�2 
K− 
P − 
Q�+ i6

H42� 
P	��= Ae−iCCos
(
 
P × 
K�zl2

2

)

The third column of the 4 × 4 matrix �Hij� 
P	��� con-
sists from the self-energy parts Hj3� 
P	�� with j = 1	2	3	4
listed below

H13� 
P	��= 2iAe−iCSin
(
 
P × 
K�zl2

2

)

H23� 
P	��=−2iAeiCSin
(
 
P × 
K�zl2

2

)

H33� 
P	��

= ���+ i6�− 4
��+ i6

∑

Q
W 
QSin

2

(
� 
P − 
K�× 
Q�zl2

2

)

×�W 
Q−W 
P− 
K��"̂� 
Q�"̂�− 
Q��+ �W 
P− 
K−W 
P− 
K− 
Q�

×�"̂� 
P − 
K− 
Q�"̂� 
K+ 
Q− 
P���
H43� 
P	��= 0 (42)

The fourth column is composed by the self-energy parts
Hj4� 
P	�� with j = 1	2	3	4. They are

H14� 
P	��=−2Ae−iCCos
(
 
P × 
K�zl2

2

)

H24� 
P	��= 2AeiCCos
(
 
P × 
K�zl2

2

)

H34� 
P	��

= 4
��+ i6

∑

Q
W 
QW 
K− 
P+ 
QSin

2

(
� 
P − 
K�× 
Q�zl2

2

)

×�"̂� 
Q+ 
K− 
P� �D� 
P − 
K− 
Q�� (43)

+ 4
��+ i6

∑

Q
W 
QW 
P− 
KSin

2

(
� 
P − 
K�× 
Q�zl2

2

)

× �"̂� 
Q� �D�− 
Q��−�"̂� 
Q+ 
K− 
P� �D� 
P − 
K− 
Q���
H44� 
P	��= ���+ i6�− 4

��+ i6
∑

Q
W 2


Q

×Sin2

(
� 
P − 
K�× 
Q�zl2

2

)
�"̂� 
Q�"̂�− 
Q��

The most of the self-energy parts Hij� 
P	�� represented
by the formulas (40)–(43) contain the average values of
the two-operator products. They were calculated using the
ground state wave function �?g�k�� (11) and have the
expressions

�?g�k��"̂� 
Q�"̂�− 
Q��?g�k�� = 4u2v2NSin2

(
 
K× 
Q�zl2

2

)
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�?g�k��"̂� 
Q+ 
P − 
K�"̂� 
K− 
P − 
Q��?g�k��

= 4u2v2NSin2

(
 
K× � 
P + 
Q��zl2

2

)

�?g�k��"̂� 
Q� �D�− 
Q��?g�k�� = 2iu2v2NSin

(
 
K× 
Q�zl2

1

)

�?g�k��"̂� 
Q+ 
P − 
K� �D� 
K− 
P − 
Q��?g�k��

= 2iu2v2NSin

(
 
K× � 
P + 
Q��zl2

1

)

�?g�k��d†� 
K− 
Q�"̂�− 
Q��?g�k��
√
N

= 2iuv3NSin

(
 
K× 
Q�zl2

2

)

�?g�k��d†� 
P − 
Q�"̂� 
P − 
Q− 
K��?g�k��
√
N

=−2iuv3NSin

(
 
K× � 
P − 
Q��zl2

2

)

�?g�k��"̂� 
Q�d� 
K− 
Q��?g�k��
√
N

=−2iuv3NSin

(
 
K× 
Q�zl2

2

)

�?g�k��"̂� 
P + 
Q�d� 
K− 
P − 
Q��?g�k��
√
N

=−2iuv3NSin

(
 
K× � 
P + 
Q��zl2

2

)
(44)

All these averages are extensive values proportional to N ,
they essentially depend on the wave vectors and on the
small parameters of the types u2v2 or uv3.

But only the averages of the type �"̂� 
Q�"̂�− 
Q�� are real,
positive with a constant sign at any values of the wave
vectors.

All another averages are pure imaginary changing their
signs in dependence on their arguments leading to small
absolute values of the corresponding self-energy parts.
All of them will be dropped to simplify the cumbersome
expressions (40)–(43).

In spite of the made approximations concerning the
many operator Green’s functions and the averages of
the two-operator products the obtained self-energy parts
remain cumbersome. But there is one possibility to rad-
ically simplify the further calculations. It is related with
the collinear geometry of the experimental observation of
the elementary excitations, when their propagation direc-
tion coincide or is exactly opposite with the condensate
wave vector 
k. This geometry will be discussed in the next
section.

5. ELEMENTARY EXCITATIONS OF THE
BOSE-EINSTEIN CONDENSED
MAGNETOEXCITONS IN COLLINEAR
GEOMETRY

The cumbersome dispersion equation is expressed in gen-
eral form by the determinant equation

det �Hij� 
P	��� = 0$ 
P = 
K+ 
q$ (45)

It can be essentially simplified in collinear geometry, when
the wave vectors 
P of the elementary excitations are par-
allel or antiparallel to the Bose-Einstein condensate wave
vector 
k. We will represent the wave vectors 
P in the
form 
P = 
k+ 
q, accounting them from the condensate
wave vector 
k. The relative wave vector 
q will be also
collinear to 
k, In this case the projections of the wave vec-
tor products  
P× 
K�z as well as all coefficients proportional
to Sin�� 
P × 
K�zl2�/2� and a half of the matrix elements
Hij� 
P	�� in the Eq. (45) vanish. The determinant Eq. (45)
disintegrates in two independent equations. One of them
concerns only to optical plasmons and has a simple form

H33� 
K+ 
q$��= 0$  
q× 
K�z = 0 (46)

whereas the second equation contains only the diago-
nal self-energy parts H11, H22, H44 and the quasi-average
constant A

H11� 
K+ 
q	��H22� 
K+ 
q	��H44� 
K+ 
q	��
−2A2�H11� 
K+ 
q	��+H22� 
K+ 
q	���= 0 (47)

It determines three interconnected branches. Two of them
describe the proper collective excitations of Bose-Einstein
condensed magnetoexcitons and the third branch concerns
the acoustical plasmons. In spite of the collinear condition
 
q× 
K�z= 0, the Eqs. (46) and (47) and their energy spectra
�� 
q� are not invariant under the inversion operation when

q is substituted by −
q, because in the system does exist
a well defined direction selected by the wave vector 
k. By
this reason the elementary excitations with wave vector 
q
and −
q have different energies.

The solutions of the dispersion Eq. (47) will be discussed
in two limiting cases. One of them is the point k= 0, where
the system behaves as an ideal Bose gas and another case
of considerable values of wave vectors kl∼ 3−4, when the
Bose-Einstein condensed 2d magnetoexcitons can exist in
a form of metastable dielectric liquid phase or of dielectric
droplets. But in all cases the average value �"̂� 
Q�"̂�− 
Q��
and other similar expressions are determined in HFBA by
the formulas (44). They are characterized by a coherence
factor Sin2��
k× 
Q�zl2�/2�, which vanishes in the point
k = 0. All contributions to the self-energy parts propor-
tional to square of Coulomb interaction matrix elements
W 2
Q multiplied by the averages �"̂� 
Q�"̂�− 
Q�� vanish also

making a 2D magnetoexciton system a pure ideal gas, when
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the influence of the excited Landau levels is neglected. This
unusual result was revealed for the first time by Lerner
and Lozovik15–17 and was confirmed by Paquet, Rice and
Ueda.19 In the case k= 0 because the vanishing of the aver-
ages (44) the self-energy parts become

I11� 
P	��= ��+ �̄−E�P�
I22� 
P	��= ��− �̄+E�−P�

I44� 
P	��= ��

(48)

and the excitonic part of the dispersion relation as well the
acoustic plasmon frequency look as

��ex�P�=±√
��̄−E�P��2 +4A2

��A�P�= 0
(49)

The values �̄ = E�k��1 − 2v2� and A = �E�k�− �̄�v =
E�k�v3 in the point k = 0 turn to vanish, i.e. �̄ = A =
E�0� = 0, what leads to the free magnetoexciton dis-
persion law ��ex�P� = ±E�P�, and coincides with the
result obtained earlier in Ref. [19]. The acoustical plasmon
branch as well as the optical branch have frequencies equal
to zero. The case k �= 0, but v= 0, can be obtained from the
previous formula because, as earlier, the averages (44) as
well as the parameter A are vanishing, whereas the chemi-
cal potential is different from zero i.e., �̄= E�k�.

In this case the exciton dispersion law in collinear geom-
etry with P = k+qCos� has the form

��ex�q�=±�E�k+qCos��−E�k��
Cos�=±1	 q > 0 (50)

The both dependences are represented in Figure 1, where
x = ql was introduced.

The case of k �= 0 with filling factor v= v2 < 1 represents
interest because in this region of parameters a metastable
dielectric liquid phase does exist. It is formed by the
Bose-Einstein condensed magnteoexcitons with kl ∼ 3–4
and with different from zero motional dipole moments

"= 
k× 
z�l2. This state was revealed in Ref. [20] consid-
ering the system of electrons and holes on their lowest
Landau levels, without addressing to excited Landau lev-
els (ELLs), but taking into account coherent excited states,
when one e–h pair exits from the condensate leaving all
another pairs in their coherent pairing state.

The correlation energy was calculated beyond the
Hartree-Fock-Bogoliubov approximation (HFBA) in
the frame of Keldysh-Kozlov-Kopaev method using the
Nozieres Comte approach.20	39

The Bose-Einstein condensed magnetoexcitons moving
as a whole with wave vector 
k and with parallel motional
dipole moments 
" have a significant polarizability which
gives rise to attractive interaction between them and lower
on the energy scale the values of the chemical potential and
of the mean energy per one e–h pair. But this lowering is
not monotonous and at some value of the filling factor v2

m

(a)

(b)

Fig. 1. The energy spectrum of elementary excitations of magnetoexci-
tons and acoustical plasmons in the case when concentrations corrections
haven’t been taken into account. (a) The wave vector of BEC magne-
toexcitons equal to 0. (b) The wave vector k is different from zero, but
the filling factor equals to zero.

the relative minim a on the corresponding curves appear
with positive compressibilities in their vicinity. The relative
minimum on the chemical potential curve depends essen-
tially on the damping of magnetoexciton level. It was inves-
tigated in the Ref. [21] and is represented in Figure 2.

Fig. 2. The relative minimum on the chemical potential dependence on
the filling factor.
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If the average filling factor v2 is less than v2
m the dielec-

tric liquid phase will exist in the form of droplets with
optimal concentration inside them nex = v2

m/2�l
2
0 corre-

sponding to filling factor v2
m.

The collective elementary excitations are calculated in
the conditions kl ∼ 3–4 and v2 ≈ v2

m, when the ground
state of the magnetoexcitons is similar with the metastable
dielectric liquid phase.

Even in collinear geometry the diagonal self-energy parts
Hii� 
K+ 
q	�� with i = 1	2	3	4 and kl = 3	6 can not be
calculated analytically at arbitrary values of the relative
wave vector 
q. By this reason we will obtain the analytical
expressions in the case kl ≈ 3	6 and ql ≤ 1 < kl using a
series expansions on the small values ql < 1 as compared
with kl ≈ 3	6.

The self-energy parts H11�
k+ 
q	�� and H22�
k+ 
q	�� in
collinear geometry have the forms

H11�
k+ 
q	��
= ���+ �̄−E�
k+ 
q�+ i6�

−4
∑

Q
W 2


QSin
2

(
�
k+ 
q�× 
Q�zl2

2

)

× �"̂� 
Q�"̂�− 
Q��
��+ �̄−E�
k+ 
q− 
Q�+ i6

= I11�
k+ 
q	��+ iJ11�
k+ 
q	��
H22�
k+ 
q	�� (51)

= ���− �̄+E�
k− 
q�+ i6�

−4
∑

Q
W 2


QSin
2

(
�
k− 
q�× 
Q�zl2

2

)

× �"̂� 
Q�"̂�− 
Q��
��− �̄+E�
k− 
q− 
Q�+ i6

= I22�
k+ 
q	��+ iJ22�
k+ 
q	��
They were devided in real and imaginary parts and obey to
the equalities

H22�
k+ 
q	��=−H∗
11�


k− 
q	−��
I22�
k+ 
q	��=−I11�
k− 
q	−��
J22�
k+ 
q	��= J11�
k− 
q	−��

(52)

The real and imaginary parts I11 and J11 are

I11�
k+ 
q	��

= ��+ �̄−E�
k+ 
q�−4
∑

Q
W 2


QSin
2

(
�
k+ 
q�× 
Q�zl2

2

)

× Pf �"̂� 
Q�"̂�− 
Q��
��+ �̄−E�
k+ 
q− 
Q�

(53)

J11�
k+ 
q	��

= 4�
∑

Q
W 2


QSin
2

(
�
k+ 
q�× 
Q�zl2

2

)

×�"̂� 
Q�"̂�− 
Q��6���+ �̄−E�
k+ 
q− 
Q��

They will be expanded in series expansions on the param-
eter ql < 1, which is small in comparisons with consider-
able value kl ≈ 3	6. At the same time we will expand the
denominator ��+ �̄−E� 
K+ 
q− 
Q� in the formula (53)
taking into account that the most probable value of Ql is
unity �Ql≈ 1� and Ql is less than the elementary excitation
wave vector �
k+ 
q�l.

In this approximation, when we are concerning with the
elementary excitations of the metastable dielectric liquid
phase with kl ≈ 3	6; ql < 1; Ql ≈ 1 we can write

1

��+ �̄−E�
k+ 
q− 
Q�
≈ 1

��+ �̄−E�
k+ 
q�

+ 1

���+ �̄−E�
k+ 
q��2
· 
QLE� 
P�

L 
P

∣∣∣∣ 
P=
k+
q

+ 1
2

1

���+ �̄−E�
k+ 
q��2
· 
Q2L2E� 
P�

LP 2

∣∣∣∣
P=�
k+
q�

(54)

Substituting (54) into the real part (53), the middle term
can be dropped due to the even dependence on 
Q of the
remaining part of the under integral expression (53). The
real part I11� 
K+ 
q	�� can be represented in the form

I11� 
K+ 
q	��
= ��+ �̄−E�
k+ 
q�− 4

��+ �̄−E�
k+ 
q�

×∑

Q
W 2


QSin
2

(
�
k+ 
q�× 
Q�zl2

2

)
�"̂� 
Q�"̂�− 
Q��

−
2
(
L2E�P�

LP 2

)∣∣
P=�
k+
q�

���+ �̄−E�
k+ 
q��2

∑

Q
W 2


QQ
2

×Sin2

(
�
k+ 
q�× 
Q�zl2

2

)
�"̂� 
Q�"̂�− 
Q�� (55)

The imaginary part will become

J11� 
K+ 
q	��

=4�
∑

Q
W 2


QSin
2

(
� 
K+ 
q�× 
Q�zl2

2

)

J. Nanoelectron. Optoelectron. 4, 52–75, 2009 69



Delivered by Ingenta to:
National Taiwan University of Science & Technology

IP : 140.118.123.85
Tue, 05 May 2009 18:24:43R

E
V
IE
W

Collective Elementary Excitations of Two-Dimensional Magnetoexcitons in the BEC State Moskalenko et al.

×�"̂� 
Q�"̂�− 
Q��6
(
��+�̄−E� 
K+ 
q�+ 
QLE� 
P�

L 
P

∣∣∣∣ 
P=
k+
q

− 1
2


Q2L2E� 
P�
L 
P 2

∣∣∣∣
P=�
k+
q�

)
(56)

The average value �"̂� 
Q�"̂�− 
Q�� and the chemical poten-
tial �̄ have the expressions

�̄= E�k��1−2v2�

�"̂� 
Q�"̂�− 
Q�� = 4u2v2NSin2

(
 
K× 
Q�zl2

2

)
(57)

Iex�k�= Il−E�k�$ �̄= �+ Il$ Il =
e2

�0l

√
�

2

u2 = 1−v2$ E�k�= 2
∑

Q
W 
QSin

2

(
 
K× 
Q�zl2

2

)

A = �E�k�− �̄�v$ v = v2

Now the series expansions for the self-energy parts
I11� 
K+ 
q	�� and J11� 
K+ 
q	�� will be represented, intro-
ducing in explicit form the average value �"̂� 
Q�"̂�− 
Q��.
They are

I11� 
K+ 
q	��

≈ ��+ �̄−E�
k+ 
q�− 16u2v2

��+ �̄−E�
k+ 
q�

×
{∑


Q
W 2


QNSin
4

(
 
K× 
Q�zl2

2

)

+∑

Q
W 2


QNSin
2

(
 
K× 
Q�zl2

2

)

×Sin
(
 
K× 
Q�zl2

1

)(
 
q× 
Q�zl2

2

)

+∑

Q
W 2


QNSin
2

(
 
K× 
Q�zl2

2

)

×Cos
(
 
K× 
Q�zl2

1

)(
 
q× 
Q�zl2

2

)2}

−
8u2v2 L2E�P�

LP 2

∣∣
P=�
k+
q�

���+ �̄−E�
k+ 
q��2

×
{∑


Q
W 2


QN

Q2Sin4

(
 
K× 
Q�zl2

2

)

+∑

Q
W 2


QN

Q2Sin2

(
 
K× 
Q�zl2

2

)

×Sin
(
 
K× 
Q�zl2

1

)(
 
q× 
Q�zl2

2

)

+∑

Q
W 2


QN

Q2Sin2

(
 
K× 
Q�zl2

2

)

×Cos
(
 
K× 
Q�zl2

1

)(
 
q× 
Q�zl2

2

)2}
(58)

and

J11� 
K+ 
q	��

= 16�u2v2
∑

Q
W 2


QNSin
2

(
 
K× 
Q�zl2

2

)

×Sin2

(
� 
K+ 
q�× 
Q�zl2

2

)
6���+ �̄−E�
k+ 
q− 
Q��

(59)

where

Sin2

(
� 
K+ 
q�× 
Q�zl2

2

)

� Sin2

(
 
K× 
Q�zl2

2

)
+Sin

(
 
K× 
Q�zl2

1

)(
 
q× 
Q�zl2

2

)

+Cos
(
 
K× 
Q�zl2

1

)(
 
q× 
Q�zl2

2

)2

(60)

The coefficients in expression (58) determining the real
self-energy part I11� 
K+ 
q	�� were calculated analytically
exactly. The dimensionless wave vectors of the elementary
excitations Pl = z, of the condensate kl = y ≈ 3	6 and of
the relative wave vector ql= x < 1, were introduced. In the
collinear geometry and x < y, we can write

z= �y+xCos��	 where �= 0	�	 Cos�=±1 (61)

The first coefficients C�y� is determined as44

C�y�=∑

Q
W 2


QNSin
4

(
 
K× 
Q�zl2

2

)
= I 2

l C1�y�

C1�y�=
1

8�

{
Ei�−y2�−4Ei

(
−y

2

4

)
+3ln�y2�+3C−8ln2

}

= 1
8�

{ �∑
k=1

�−y2�k

k�k!� −4
�∑
k=1

�− y2

4 �
k

k�k!�
}

C=0�577216−Euler constant (62)

Here Ei�y� is the integral exponential function.44 In the
limit y→ 0 the figured bracket is proportional to y4, as one
can expect looking at the starting expression. This integral
in the paper 20 was calculated approximately and its limit-
ing value at y→ 0 differs by

√
� from its exact value.
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The second coefficient L�x	 y� depend on xCos� and
they will be represented in the forms

L�x	 y� = ∑

Q
W 2


QNSin
2

(
 
K× 
Q�zl2

2

)

×Sin
(
 
K× 
Q�zl2

1

)(
 
q× 
Q�zl2

2

)

= I 2
l xCos�L1�y�$

L1�y� =
1

4�
y

[
exp

(
−y

2

4

)
iF1

(
1$2$

y2

4

)

− exp�−y2�iF1�1$2$ y2�

]
(63)

The limiting values of L�x	 y� are proportional to y3 corre-
spondingly at y→ 0. The third P�x	 y� coefficient is pro-
portional to x2:

P�x	 y�=∑

Q
W 2


QNSin
2

(
 
K× 
Q�zl2

2

)

×Cos
(
 
K× 
Q�zl2

1

)(
 
q× 
Q�zl2

2

)2

= I 2
l x

2P1�y�

P1�y�=
1

16�

{
− 1

2
+ exp

(
−y

2

4

)
− 1

2
exp�−y2� (64)

+ y2

4

[
exp�−y2�iF1�2$3$ y2�

− 1
2

exp
(
−y

2

4

)
iF1

(
2$3$

y2

4

)]}

The limiting value of P�x	 y� is proportional to y2 at y→ 0.
The fourth F �y� coefficient is

F �y�=∑

Q
W 2


QNQ
2Sin4

(
 
K× 
Q�zl2

2

)
= I 2

l

l2
F1�y�

F1�y�=
1
�

[
3
8
− 1

2
exp

(
−y

2

4

)
+ 1

8
exp�−y2�

]

(65)

The last coefficient S�x	 y� is proportional to x2, and look
as follows

S�x	 y�=∑

Q
W 2


QNQ
2Sin2

(
 
K× 
Q�zl2

2

)

×Cos
(
 
K× 
Q�zl2

1

)(
 
q× 
Q�zl2

2

)2

= I 2
l

l2
x2S1�y�

S1�y�=
1

16�

{
− 1

2
+ exp

(
−y

2

4

)
iF1

(
−1$1$

y2

4

)

− 1
2

exp�−y2�iF1�−1$1$ y2�

− y2

4
exp

(
−y

2

4

)
+ y2

2
exp�−y2�

}

(66)

Now the coefficients (62)–(66) will be substituted into the
expression I11�
k+ 
q	�� and the dimensionless values will
be introduced

��

Il
= �̃	

�̄

Il
= �̃	

E�p�

Il
= Ẽ�p�

I11

Il
= Ĩ11

J11

Il
= J̃11	

Iex�k�

Il
= Ĩex�k�	 Pl = z (67)

kl = y	 ql = x	 Cos�=±1	 �= 0	�

They transform Ĩ11�x	 y	 �̃� into the form

Ĩ11�xCos�	 y	 �̃�

= u11�xCos�	 y	 �̃�+v11�xCos�	 y	 �̃�xCos�

+x2W11�xCos�	 y	 �̃� (68)

where

u11�xCos�	 y	 �̃�

= �̃+ �̃− Ẽ�y+xCos��− 16u2v2C1�y�

�̃+ �̃− Ẽ�y+xCos��

−
8u2v2F1�y�

L2Ẽ�z�

Lz2

∣∣
z=�y+xCos��

��̃+ �̃− Ẽ�y+xCos���2

v11�xCos�	 y	 �̃� = − 16u2v2L1�y�

�̃+ �̃− Ẽ�y+xCos��

−
8u2v2N1�y�

L2Ẽ�z�

Lz2

∣∣
z=�y+xCos��

��̃+ �̃− Ẽ�y+xCos���2
(69)

W11�x	 y	 �̃� = − 16u2v2P1�y�

�̃+ �̃− Ẽ�y+xCos��

−
8u2v2S1�y�

L2Ẽ�z�

Lz2

∣∣
z=�y+xCos��

��̃+ �̃− Ẽ�y+xCos���2

The dispersion relation Ẽ�y� for the magnetoexciton will
be approximated as

Ẽ�y�= y2

4+y2
$ Ĩex�y�=

4
4+y2

$ y = kl

LẼ�y�

Ly
= 8y
�4+y2�2

$
L2Ẽ�y�

Ly2
= 8�4−3y2�

�4+y2�3

(70)
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It reflects the quadratic dependence of Ẽ�y� in the region of
small y as well as the approaching of Ẽ�y� to unity when y
tends to infinity. The dimensionless chemical potential
obtained in the HFBA

�̃�y�= Ẽ�y��1−2v2�$ A = �E�k�− �̄�v
A/Il = Ã = �Ẽ�k�− �̃�v

(71)

Expanding the real self-energy part I22�
k+ 
q	�� in the
series expansions in a similar way as it was made with the
self-energy part I11�
k+ 
q	�� we will obtain the expression

I22�xCos�	 y	 �̃�

= u22�xCos�	 y	 �̃�+xCos�v22�xCos�	 y	 �̃�

+x2w22�xCos�	 y	 �̃�

=−I11�−xCos�	 y	−�̃� (72)

Here the notations x = ql, y = kl, � = 0	�, Cos�=±1,
�̃= ���/Il� were used. The coefficient u22, v22 and w22 are

u22�xCos�	 y	 �̃�

= �̃− �̃+ Ẽ�y−xCos��− 16u2v2C1�y�

��̃− �̃+ Ẽ�y−xCos���

+
8u2v2F1�y�

L2Ẽ�z�

Lz2

∣∣
z=�y−xCos��

��̃− �̃+ Ẽ�y−xCos���2

=−u11�−xCos�	 y	−�̃�

v22�xCos�	 y	 �̃�

= 16u2v2L1�y�

��̃− �̃+ Ẽ�y−xCos���

−
8u2v2N1�y�

L2Ẽ�z�

Lz2

∣∣
z=�y−xCos��

��̃− �̃+ Ẽ�y−xCos���2

= v11�−xCos�	 y	−�̃�

(73)

w22�xCos�	 y	 �̃� = − 16u2v2P1�y�

��̃− �̃+ Ẽ�y−xCos���

+
8u2v2S1�y�

L2Ẽ�z�

Lz2

∣∣
z=�y−xCos��

��̃− �̃+ Ẽ�y−xCos���2

= −w11�−xCos�	 y	−�̃�
The imaginary part J22�
k+ 
q	�� equals

J22�
k+ 
q	�� = 4�
∑

Q
W 2


QSin
2

(
�
k− 
q�× 
Q�zl2

2

)

×�"̂� 
Q�"̂�− 
Q��6���− �̄+E�
k− 
q− 
Q��
(74)

Now the remaining two diagonal self-energy parts H33 and
H44 will be considered. Their imaginary components equal
to zero.

The starting expression

H44�
k+ 
q	�� = ���+ i6�− 4
��+ i6

×∑

Q
W 2


QSin
2

(
 
q× 
Q�zl2

2

)
�"̂� 
Q�"̂�− 
Q��

(75)

and the formula (56) for the average �"̂� 
Q�"̂�− 
Q�� lead to
real part of H44 and imaginary parts of H22

I44�
k+ 
q	��= ��− 16u2v2

��

∑

Q
W 2


QNSin
2

(
 
q× 
Q�zl2

2

)

×Sin2

(

k× 
Q�zl2

2

)

J22�
k+ 
q	��= 16�u2v2
∑

Q
W 2


QNSin
2

(

k× 
Q�zl2

2

)

×Sin2

(
�
k− 
q�× 
Q�zl2

2

)
(76)

×6���− �̄+E�
k− 
q− 
Q��
= J11�
k− 
q	−��

We are interested in the range of relative wave vectors
ql < 1. Taking into account that the most probable value
of the variable Q lies in the vicinity of Ql � 1 we can
substitute Sin2�� 
q× 
Q�zl2�/2� by �� 
q× 
Q�zl2�/2�2. This
approximation leads to the final expression of I44 depen-
dence on the dimensionless frequency �̃ and wave vectors
x = ql and y = kl

I44�x	 y	 �̃�= �̃− x2

�̃

[
u2v2 2

�
A1�y�

]
(77)

where the coefficient A1�y� is

A1�y�=
1
2
− 1

2
e−y

2/4 + y2

16
e−y

2/4
1F1

(
1$3$

y2

4

)
(78)

The last diagonal self-energy part in our enumeration
H33�
k+ 
q	�� has the starting form

H33�
k+ 
q	��

= ���+ i6�− 4
��+ i6

∑

Q
W 
QSin

2

(
 
q× 
Q�zl2

2

)

×NW 
Q�"̂� 
Q�"̂�− 
Q��−W 
Q−
q�"̂� 
q− 
Q�"̂� 
Q− 
q��
+W 
q�"̂� 
q− 
Q�"̂� 
Q− 
q��−�"̂� 
Q�"̂�− 
Q���O

(79)
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It was selected separately from another self-energy parts
and this separation was possible only in the collinear
geometry. This geometry permits to continue the sim-
plification, because the averages �"̂� 
q− 
Q�"̂� 
Q− 
q�� and
�"̂� 
Q�"̂�− 
Q�� coincide, when  
q × 
k�z = 0 and the last
square bracket term vanishes.

The simplified expression for I33�
k+ 
q	�� looks as

I33�x	 y	�� = ��− 4
��

∑

Q
W 
Q�W 
Q−W 
Q−
q�

×Sin2

(
 
q× 
Q�zl2

2

)
�"̂� 
Q�"̂�− 
Q�� (80)

The self-energy part (79) in the case of Bose-Einstein
condensed magnetoexcitons depends on the average value
�"̂� 
Q�"̂�− 
Q�� (45). In its turn �"̂� 
Q�"̂�− 
Q�� essentially
depends on the condensate wave vector 
k and vanish
in the point k = 0. As was shown in Ref. [46] in the
case of electron–hole liquid (EHL) the self-energy part
I33�q	�� describing the intra- lowest-Landau level exci-
tations has the similar form, but with the average value
�"̂� 
Q�"̂�− 
Q�� = 2v2�1−v2�N .

Below the numerical calculations on the base of the
above derived analytical formulas will be presented.

Up till now we have discussed the energy spectrum of
a Bose-Einstein condensed magnetoexcitons in pure ideal
conditions which take place in the case k = 0, when the
interactions in the electron–hole system are reciprocally
compensated at arbitrary values of the filling factor v2 �= 0,
as well as in the case k �= 0, when the nonlinearity is com-
pletely neglected putting v = 0. In the last case taking into
account the nonlinearity v2 �= 0 we can observe its unusual
influence on the earlier discussed energy spectrum leading
to its qualitative new and principal changes. They are dif-
ferent from the simple additions of the concentration cor-
rections to the exciton branches of spectrum as one could
expect on the base of a simple perturbation theory. Instead
of it the influence of the concentration terms proportional to
u2v2 entering into the compositions of the self-energy parts
I11, I22 and I44 happens to be much more important. The
self-energy parts contain the different linear on �̃ expres-
sions of the type Li��̃� = �̃+ �̃− Ẽ�y+ xCos�� which
appear in the forms Ai/Li��̃� and determine the concentra-
tion corrections. For simplicity we will demonstrate their
influence taking into account only the denominators in the
first power. The self-energy parts I11 and I22 contain also
such denominators in power two of the forms Bi/�Li��̃��

2,
but these terms for simplicity were neglected in the numer-
ical calculations. The presence of the unknown frequency
�̃ in the denominators side by side with another term in
numerators leads to the increasing of the order of the dis-
persion equation and of the number of the energy spec-
trum branches. In our concrete case the order of dispersion
equation is doubled and instead of three branches of the
energy spectrum we are dealing with six branches. Two of

(a)

(b)

Fig. 3. (a) The dispersion law of the magnetoexciton. (b) The group
velocity Vg�k� of the magnetoexciton.

them are acoustical plasmon branches with energies pro-
portional to the perturbation theory parameter v2�1− v2�
and with different ± signs. It was natural to expect the
appearance of these two branches of acoustical plasmon
spectrum and the same takes place with the optical plas-
mon spectrum. Unusual behavior happens with the exciton
energy and quasienergy branches which become doubled
undergoing each of them a bifurcation. The new branches

Fig. 4. The energy spectrum of elementary excitations of magnetoexci-
tons and acoustical plasmons in the case when filling factor of the lowest
Landau levels equals to v2 = 0�028. The dimensionless wave vector of
the Bose-Einstein condensed magnetoexcitons equals to 3	6.
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Fig. 5. The energy spectrum of elementary excitations of magnetoex-
citons and acoustical plasmons in the case when filling factor of the
lowest Landau levels equals to v2 = 0�28. The dimensionless the wave
vector of the Bose-Einstein condensed magnetoexcitons equals to 3	6.

have the form of the previous exciton branch plus or minus
one additional of amount approximately equal to the energy
of the acoustical plasmon with wave vector different from
the wave vector of the exciton elementary excitation by the
condensate wave vector k. The same change takes place
with the quasienergy exciton branch. The neglected denom-
inator in power two could create exciton branch with two
acoustical plasmons. The Bose-Einstein condensation with
k �= 0 means that the e–h system is moving as regards
the laboratory reference frame with a velocity equal to the
group velocity Vg of the magnetoexcitons, reflected in the
Figure 3. It means that the terms � 
Vg 
q will appear in
the dispersion relations for all three branches. To create
the exciton-type collective elementary excitations when the
ground state of the system is a dielectric liquid phase with
negative values of the chemical potential � it is necessary
to eliberate an exciton from the liquid communicating it an
amount of energy at least equal to ���. This values ��� are
equal to 0�31Il and 0�69Il at the filling factors v2 equal to
0�028 and 0�28 correspondingly. Because the concentration
corrections to the energy spectrum in our case appear in
the form of acoustical plasmon energy ��AP two exciton
branches have approximately the energies ���±��AP. The
exciton and plasmon quasienergy branches can be obtained
from the exciton and plasmon energy branches by two suc-
cessive reflections as regards two coordinate axes. These
properties can be observed on the Figures 4 and 5.

6. CONCLUSION

The collective elementary excitations of a system of
Bose-Einstein condensed magnetoexcitons interacting with
electron–hole plasma in a strong perpendicular mag-
netic field were studied. The breaking of the gauge
symmetry was introduced into the Hamiltonian following

the Bogoliubov’s theory of quasiaverages. The equations
of motion for integral two-particle operators describing the
creation and annihilation of magnetoexcitons as well as
the electron–hole plasma density fluctuations were derived.
The two-particle operators were used to construct four
types of Green’s functions. Two of them are normal and
anormal exciton Green’s functions whereas another two
describe the acoustical and optical plasmons. The Green’s
functions obey to four equations of motion, which con-
tain nonlinearity and higher order Green’s functions, for
which another more complicate equations of motion were
obtained. The chains of equations of motion containing the
six-particle Green’s functions were truncated expressing
approximately the six-particle Green’s functions through
the two-particle Green’s functions multiplied by the aver-
age values of the four-particle operators. This deconnec-
tion procedure permits to obtain an enclosed set of four
Dyson equations with self-energy parts Hij with i	 j =
1	2	3	4 forming a 4 × 4 matrix. Its determinant gives
rise to four order dispersion equation, the elements of
which are the self-energy parts. In collinear geometry of
observation when the elementary excitation wave vectors
are collinear with the condensate wave vector the disper-
sion equation desintegrates in two independent equations.
One of them contains only the self-energy part of the
optical plasmons, whereas the second third order disper-
sion equation contains the diagonal self-energy parts of
other three components. In their compositions there are
denominators containing the unknown frequency what dou-
bled the order of the dispersion equation transforming it
from three to six order. Six branches of the energy spec-
trum describe two exciton-plasmon energy branches, two
exciton-plasmon quasienergy branches and two of them
with ± signs belong to acoustical plasmon branches.
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