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This study is concerned with a two-dimensional (2D) electron–

hole (e–h) system in a strong perpendicular magnetic field with

special attention devoted to the Rashba spin–orbit coupling

(RSOC). The influence of this interaction on the chemical

potential of the Bose–Einstein condensed magnetoexcitons and

on the ground-state energy of the metallic-type electron–hole

liquid (EHL) is investigated in the Hartree–Fock approximation

(HFA). The magnetoexciton ground-state energy, and the

energy of the single-particle elementary excitations were
obtained. We demonstrated that chemical potential is a

monotonic function versus the value of the filling factor with

negative compressibility, which leads to instability of the Bose–

Einstein condensate of magnetoexcitons. The energy per one

e–h pair inside the electron–hole droplets (EHD) is found to be

situated on the energy scale lower than the value of the chemical

potential of the Bose–Einstein condensed magnetoexcitons

with wave vector k ¼ 0 calculated in the HFA.
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction Properties of the symmetric 2D e–h
system (i.e., h¼ 0), with equal concentrations for both
components, with coincident matrix elements of Coulomb
electron–electron, hole–hole, and e–h interactions in a strong
perpendicular magnetic field also attracted a great attention
during the last two decades [1–8]. A hidden symmetry
and the multiplicative states were discussed in many papers
[5, 9, 10]. The collective states such as the Bose–Einstein
condensation (BEC) of 2D magnetoexcitons and the
formation of metallic-type electron–hole liquid were
investigated in Refs. [1–8]. The search for Bose–Einstein
condensates has become a milestone in condensed-matter
physics [11]. The remarkable properties of superfluids and
superconductors are intimately related to the existence of a
bosonic condensate of composite particles consisting of an
even number of fermions. In highly excited semiconductors
the role of such composite bosons is taken on by excitons,
which are bound states of electrons and holes. Furthermore,
the excitonic system has been viewed as a keystone system
for exploration of the BEC phenomena, since it allows
control of particle densities and interactions in situ.
Promising candidates for experimental realization of such
a system are semiconductor quantum wells (QWs) [12],
which have a number of advantages compared to the bulk
systems.

In Ref. [13] Fertig investigated the energy spectrum of a
bilayer electron system in a strong perpendicular magnetic
field and introduced the concept of the interlayer phase
coherence of the electron states in two adjacent layers, which
leads to the model of quantum Hall excitons (QHExs) under
the condition of their BEC. Unexpectedly a strong evidence
of exciton BEC was ultimately found in such surprising
system as a double-layer 2D electron system at a high
magnetic field [14]. In the regime of the quantum Hall effect
the excitons consist of electrons in the lowest Landau level
(LLL) of the conduction band of one layer being bound to the
holes that appear in the LLL of the conduction band in
another layer. The formation of such unusual holes is due to
the possibility to consider the half-filled LLL by electrons of
the conduction band, for example, of the first layer as being
completely filled by electrons with filling factor n ¼ 1 and
simultaneously being half-filled by holes in the same
conduction band. The full-filling electrons of the first layer
are considered as being compensated by the impurity-doped
adjacent layer and the theoretical model takes into account
only the holes in the first layer and the electrons in the second
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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layer. Both components belong to the LLLs of the same
conduction band and are characterized by a half-filling factor
for each of them. This new type of excitons named QHExs
and introduced by Fertig [13] exhibits several dramatic
electrical transport properties revealed in Refs. [15–17]. As
was mentioned in Ref. [14] the BEC of the QHExs reflects
the spontaneously broken Uð1Þ symmetry in which the
electrons are no longer confined to one layer or to the
other, but instead they reside in a coherent linear combi-
nation of the two layers. This interlayer phase coherence
develops only when the effective interlayer separation d=l is
less than a critical value ðd=lÞc, where l is the magnetic
length. At large d/l the bilayer system behaves qualitatively
like the independent 2D electron systems. Following [18]
this new state can be distinguished as a Fermi-liquid
state of composite fermions. It is unique because unlike
other QH states it possesses broken symmetry in the
absence of the interlayer tunneling. It can be viewed as a
pseudospin ferromagnet with the pseudospin encoding
the layer degrees of freedom or as an exciton BEC with
QHExs formed from electrons and holes confined to different
layers.

The electric-field strength perpendicular to the layer
surface gives rise to Rashba spin–orbit coupling [19, 20]. The
main results of the influence of SOC on the 2D Wannier–
Mott excitons in double quantum well (DQW) structures are
breaking of the spin degeneracy of the electrons and holes,
changes of the exciton structure, and new properties of the
Bose–Einstein condensed excitons [21, 22]. In Refs. [8, 23]
the energy spectrum and BEC of 2D magnetoexcitons were
studied with the assumptions that the spin polarizations of
electrons and holes take place and the spin–orbit coupling
was neglected. In reality, as was shown in Ref. [24], the
RSOC leads to breaking of the pure spin polarizations and the
new spinor-type states are characterized by different
numbers of Landau levels for different spin projections.
These numbers for electrons differ by 1, whereas for holes
they differ by 3. Spin-polarized states under the influence of
the RSOC are transformed into mixed spinor components.
The two lowest electron states and four lowest hole states
were used to construct eight lowest 2D magnetoexciton
states [24]. The electric field strength Ez depends on the
density of charges in the system [25, 26]. The coupling
constants for different values of the electric field were
calculated in Refs. [21, 22] and it was concluded that at
Ez ¼ 100� 200 kV cm�1 the RSOC is a dominant mechan-
ism for the energy band spin splitting. Below, we will use
these results to determine the properties of the e–h system
beyond the Hartree–Fock–Bogoliubov approximation, tak-
ing into account the RSOC. We consider two aspects of the
problem: the influence RSOC on the chemical potential of
the BEC-ed magnetoexcitons and on the energy per pair in
the composition of EHL and EHD.

2 Hamiltonian of the Coulomb electron–hole
interaction The e–h Coulomb interaction we obtain below
takes into account the influence of the RSOC in the frame of
www.pss-b.com
the conduction and valence bands. The corresponding Bloch
wavefunctions for electrons including their periodic parts
are [24]:
R1; p; x; yÞi ¼ eipxffiffiffiffiffi
Lx
p Uc;s;pðrÞ

a0’0ðhcÞ

b1’1ðhcÞ

������
������;

R1; q; x; yÞi ¼ eiqxffiffiffiffiffi
Lx
p 1ffiffiffi

2
p ðUv;Px;qðrÞ � iUv;Py;qðrÞÞ

c3’3ðhvÞ

d0’0ðhvÞ

������
������;

y

l
� pl; hv ¼

y

l
� ql:

(1)
Here, Uc;s;pðrÞ is the s-type conduction band periodic part
and ðUv;Px;qðrÞ þ iUv;Py;qðrÞÞ=

ffiffiffi
2
p

are the p-type valence-
band periodic parts. a0; b1; d0; c3 are the coefficients of
the spin–orbit interaction [24]. The strong magnetic field
is strong only in comparison with the exciton binding
energy, but is very weak in comparison with the bandgap
in GaAs-type QWs. Therefore the magnetic field in this
case cannot change the periodic Bloch wavefunctions
[27].

The orthogonality between the conduction and
valence electron Bloch wavefunctions is attained due to
their orthogonal periodic parts, whereas the orthogonality
of the wavefunctions belonging to the same bands and
having the same periodic parts was reached due to
different numbers of Landau quantization wavefunctions
’c;nðy; pÞ and ’v;mðy; pÞ. The conduction and valence
electrons have the same electric charge � ej j and their
dimensionless variables have the same structure y

l � pl and
y
l � ql. The last variable is y

l þ ql in the case of the hole
wavefunction ’h;nðy; qÞ due to the positive value of the
hole charge ej j.

The electron and hole states on the given Landau level
are N manifold degenerated, where
N ¼ S

2pl2
; l2 ¼ �hc

eH
: (2)
Here, S is the surface area of the layer and 2pl2 is the area
of the quantum cyclotron orbit with the radius l

ffiffiffi
2
p

. Thus,
N is the total number of the possible center of gyration
positions on the surface of the layer.

The Hamiltonian of the Coulomb e–h interaction
can be calculated in the same way as was demonstrated
in Ref. [8]. By contrast, we had dealt with spinor-type
wavefunctions for electrons and holes with a column
representation (1). The creation and annihilation
operators for conduction and valence electrons are

denoted as ayc;Ri;p
; ac;Ri;p; a

y
v;Rj;q

; av;Rj;q, where p and q are

the momentum. The Hamiltonian of their Coulomb
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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interaction has the form:
Ĥ

p;q;

¼

þ
 

� 20
¼ �me

X
p

a
y
c;Ri;p

ac;Ri;p � mh

X
q

a
y
v;Rj;q

av;Rj;q

þ 1

2

X
p;q;s

Fc�cðc;Ri; p; c;Ri; q; c;Ri; p� s; c;Ri; qþ sÞ

�ayc;Ri;p
ayc;Ri;q

av;Ri;qþsac;Ri;p�s

þ 1

2

X
p;q;s

Fv�vðv;Rj; p; v;Rj; q; v;Rj; p� s; v;Rj; qþ sÞ

�ayv;Rj;p
ayv;Rj;q

av;Rj;qþsav;Rj;p�s

�
X
p;q;s

Fc�vðc;Ri; p; v;Rj; q; c;Ri; p� s; v;Rj; qþ sÞ

�ayc;Ri;p
ayv;Rj;q

av;Rj;qþsac;Ri;p�s:

(3)
p;q;s

¼
X
Here, the first two terms represent noninteracting

electrons and holes, the Coulomb matrix elements defined
as follows:
�
 

þ dj

1

Fc�vðc;Ri; p; v;Rj; q; c;Ri; p� s; v;Rj; qþ sÞ

¼
Z

dr1

Z
dr2 cc�

Ri;p
ðr1Þcv�

Rj;q
ðr2ÞV12

�cc
Ri;p�sðr1Þcv

Rj;qþsðr2Þ;

(4)
þ

where
V12 ¼
e2

e0 r1 � r2j j : (5)
Here, the function cc
Ri;p

are the envelope parts (1) of the
Bloch functions. Their periodic parts being integrated on
the elementary lattice cell, can be excluded from the final
expressions of the desirable matrix elements, because the
dipole moments of the band-to-band transitions are not
needed now. The variables ri are 2D vectors and e0 is the
dielectric constant of the medium. The series expansion of
the Coulomb interaction
V12 ¼
X

k

Vkexp½ikðr1 � r2Þ� (6)
will be used, where k ¼ ðkx; kyÞ is the 2D wave vector and
Vk ¼ Vkx;ky ¼
2pe2

e0S kj j ¼
2pe2

e0S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q : (7)
13 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
The matrix elements (3) have the following form:
X
p;q;s

Fc�cðc;Ri; p; c;Ri; q; c;Ri; p� s; c;Ri; qþ sÞ

¼
X
ky

Vs;ky exp �
ðs2 þ k2

yÞl2

2
� ikyðqþ s� pÞl2

" #

� a0j j2þ 1�
ðs2 þ k2

yÞl2

2

 !
b1j j2

 !2

;

X

s

Fv�vðv;Rj; p; v;Rj; q; v;Rj; p� s; v;Rj; qþ sÞ

X
ky

Vs;ky exp �
ðs2 þ k2

yÞl2

2
� ikyðqþ s� pÞl2

" #
�

0
@ d0j j2

1�
ðs2 þ k2

yÞl2ð�12þ ðs2 þ k2
yÞl2Þð�6þ ðs2 þ k2

yÞl2Þ
48

!
c3j j2
1
A2

;

ð8ÞX

Fc�vðc;Ri; p; v;Rj; q; c;Ri; p� s; v;Rj; qþ sÞ
ky

Vs;ky exp �
ðs2 þ k2

yÞl2

2
þ ikyðqþ pÞl2

" #

jc3j2 a0j j2
 

1�
ðs2 þ k2

yÞl2ð�12þ ðs2 þ k2
yÞl2Þð�6þ ðs2 þ k2

yÞl2Þ
48

!

0j2 b1j j2
ð2� ðs2 þ k2

yÞl2Þ
2

þ a0j j2 d0j j2þ c3j j2 b1j j2
 

1� 2ðs2 þ k2
yÞl2

08ðs2 þ k2
yÞ2l4 � 20ðs2 þ k2

yÞ3l6 þ ðs2 þ k2
yÞ4l8

96

!!
:

Further, for simplicity, we will replace a
y
c;Ri;p

ac;Ri;p to
aypap and ayv;Rj;q

av;Rj;q to bypbp.

3 Bose–Einstein condensation of magnetoex-
citons and metallic-type electron–hole liquid Con-
sider the BEC of magnetoexcitons in a single particle state
with wave vector k in the HFBA and Rashba spin–orbit
interaction. The energy of electrons and holes as well as their
chemical potentials are measured relative to their LLLs. The
exciton formation reaction eþ h$ ex implies the relation
between the chemical potentials
me þ mh ¼ mex ¼ m: (9)
In the case of BEC of magnetoexcitons in Ref. [6] as a
ground-state wave function was chosen the BCS-type wave
function cgðkÞ

�� �
and as the excited-wave functions the wave

functions of the coherent excited states introduced in Ref. [6]
for e–h systems in a similar way as was done by Anderson
[28] in the case of superconductors. The ground-state wave
function was introduced following the Keldysh–Kozlov
method [29] by the action of the displacement unitary
transformation D̂ð

ffiffiffiffiffiffiffi
Nex

p
Þ on the vacuum state of the initially
www.pss-b.com
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www
cgðkÞ
�� �

¼ D̂ð
ffiffiffiffiffiffiffi
Nex

p
Þ 0j i; ap 0j i ¼ bp 0j i ¼ 0: (10)
The coherent excited states were generated in Ref. [6] by
the expression
ce q� Qx

2

� �����
�
¼ aqþQx

2
aq�Qx

2
cgðkÞ
�� �

: (11)
The unitary transformation D̂ð
ffiffiffiffiffiffiffi
Nex

p
Þ breaks the gauge

symmetry of the starting Hamiltonian (3) and transforms it
into a new Hamiltonian D̂HD̂

y
, giving the ground-state wave

function cgðkÞ
�� �

and the macroscopic displacement
ffiffiffiffiffiffiffi
Nex

p
of

the exciton creation operator,
dyðkÞ ¼ 1ffiffiffiffi
N
p

X
t

e�iQytl2 aykx
2þt

bykx
2�t
: (12)
In contrast to the quantum optics and Glauber coherent
states [30] the exciton creation and annihilation operators are
not pure Bose operators but only quasiboson operators [31].

The unitary transformation
D̂
ffiffiffiffiffiffiffi
Nex

p� �
¼ exp

ffiffiffiffiffiffiffi
Nex

p
ðdyðkÞ � dðkÞÞ

	 

(13)
leads to a Bogoliubov u–v transformation
ap ¼ DapDy ¼ uap � v p� kx

2

� �
b
y
kx�p

bp ¼ DbpDy ¼ ubp þ v
kx

2
� p

� �
aykx�p;

(14)
as well as to inverse transform action
ap ¼ uap þ v p� kx

2

� �
b
y
kx�p

bp ¼ ubp � v
kx

2
� p

� �
a
y
kx�p;

(15)
where
u ¼ cosg; v ¼ sing; u2 þ v2 ¼ 1;
vðtÞ ¼ ve�iKytl2 ; g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pl2nex

p
; nex ¼

Nex

S
; (16)
with the confinement of the LLLs. It was shown that [6]
Nex ¼ v2N; nex ¼
v2

2pl2
; g ¼ v; (17)
where v2 is the filling factor of the LLLs.
This leads to the relations u ¼ cosv and v ¼ sinv, which

can be satisfied only in the limit v < 1. The theory developed
in Ref. [6] and its application below can be made in the
restriction v < 1.

The Hamiltonian (3) after the unitary transformation
(15) will contain operators ayp;ap;b

y
p;bp in arbitrary order:
H ¼ Eg þ H2 þ H0: (18)
.pss-b.com
The first term Eg does not contain operators ap and bp and
plays the role of the new ground-state energy. The second term
H2 is quadratic in the operators ap and bp and appears as a
result of transpositions of the new operators and their normal
ordering. In this transposition, the commutation relations of the
Fermi operators ap and bp transform terms with four operators
into quadratic terms. The term H0 contains the remaining
normal-ordered terms with four operators, which is treated as a
perturbation. The term Eg can be represented as
Eg ¼ �mNex � ð1� v2ÞNexIexðkÞ a0j j2 d0j j2

� 1

2
v2NexIl a0j j4�

1

2
v2NexIl d0j j4

� 3

8
v2NexIl b1j j4�

147

512
v2NexIl c3j j4;

(19)
where IexðkÞ is the exciton ionization potential:
IexðkÞ ¼ Ile
�k2l2=4I0

k2l2

4

� �
:

Here, Il is the ionization potential of magnetoexciton
within the LLLs approximation and equals ðe2=elÞ

ffiffiffiffiffiffiffiffi
p=2

p
,

where l is magnetic length and e is the background dielectric
constant. I0ðzÞ is the modified Bessel function.

The term H2 contains diagonal quadratic terms as well as
the terms describing the creation and annihilation of the new
e–h pairs from the new vacuum state cgðkÞ

�� �
. It has the form
H2¼
X
p

Eðk; v2;mÞðaþp ap þ bþp bpÞ

�
X
p

½uv
kx

2
� p

� �
bkx�pap

þ uv p� kx

2

� �
aþp bþkx�p�cðk; v2;mÞ;

(20)
where
Eðk; v2;mÞ ¼ �u2v2Il a0j j4�
3

4
u2v2Il b1j j4

þ v4Il d0j j4þ
147

256
Ilv

4 c3j j4

þ 2u2v2IexðkÞ a0j j2 d0j j2�
m

2
ðu2 � v2Þ

(21)
and
cðk; v2;mÞ ¼ �IexðkÞðv2 � u2Þ a0j j2 d0j j2

þ 3

4
Ilv

2 49

64
c3j j4þ b1j j4

� �
þ Ilv

2 a0j j4þ d0j j4
� �

þ m:

(22)
It is seen from the Hamiltonian H2 that the new
quasiparticles described by the operators ap;bp can appear
spontaneously from the new vacuum state as a pair with total
momentum kx, which coincides with the translational wave
vector of the Bose–Einstein condensate of magnetoexcitons.
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



1436 E. V. Dumanov and L. E. Gherciu: Collective states of 2D electron–hole system
p

h
ys

ic
a ssp st

at
u

s

so
lid

i b
Such terms in the Hamiltonian and the corresponding diagrams
are called dangerous ones and make the new vacuum state
unstable. The method of compensation of dangerous diagrams
proposed by Bogolyubov in 1957 allowed to give a
mathematical justification of the phenomenological premises
of the previous theories of superconductivity and also led to the
important concept of collective electron excitations, described
by the canonical transformation of electron operators. To
obtain specific results of the theory of superconductivity was
sufficient to compensate for the dangerous diagrams corre-
sponding to creation from vacuum of two electron excitations
with opposite momenta and spins, i.e., dangerous electron bi-
vertex [32, 33]. To avoid this instability, the condition of
compensation of the dangerous diagrams is used. In the
HFBA, when only the dangerous diagrams in H2 are taken into
account, the condition of their compensation is
m¼

Eg

Eðk

EE

N

� 20
cðk; v2;mÞ ¼ 0: (23)
This condition determines the unknown parameter of
the theory, namely the chemical potential m of the system.
In the HFBA it is
IexðkÞðv2 � u2Þ a0j j2 d0j j2

� 3

4
Ilv

2 49

64
c3j j4þ b1j j4

� �
� Ilv

2 a0j j4þ d0j j4
� �

:
(24)
With the help of m we can determine self-consistently the
ground-state energy Eg and the energy of the single-particle
elementary excitations, which in the given approximation are:
¼ v2Nex
1

2
Il a0j j4þ d0j j4
� �

� IexðkÞ a0j j2 d0j j2
� �

þ 3

8
v2NexIl

49

64
c3j j4þ b1j j4

� �
;

; v2;mÞ ¼ 1

2
IexðkÞ �

1

2
Ilv

2 a0j j4

þ 1

2
Ilv

2 d0j j4þ
3

8

49

64
c3j j4� b1j j4

� �
Ilv

2:

(25)
Now we consider the EHL formation in Hartree–Fock
approximation (HFA). We start with the Hamiltonian (3), but
without chemical potentials me and mh, and calculate the
ground-state energy EEHL of EHL at T ¼ 0 when the average
values of electrons and holes numbers are equal to
aypap

D E
¼ bypbp

D E
¼ v2: (26)
Here, v2 is the filling factor. Applying the Wick theorem,
we obtained the ground-state energy
Figure 1 Chemical potential in units of exciton binding energy Il

versus filling factor v2. Solid line: energy per e–h pair in EHD phase;
dashed line: chemical potential of condensed excitons with kl ¼ 0;
dotted line: the same, but for kl ¼ 0:5; dash-dotted line: the same,
but for kl ¼ 1.
HL¼ �
Ne-h

2
v2Il

4 a0j j4þ4 a0j j2 b1j j2þ3 b1j j4

4

"

þ 256 d0j j4þ160 d0j j2 c3j j2þ147 c3j j4

256

#
;

e-h ¼ v2N;

(27)
13 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
and the energy per one e–h pair EEHL in units of Il
eEHL

Il
¼ EEHL

Ne-h

¼ � v2

2

4 a0j j4þ4 a0j j2 b1j j2þ3 b1j j4

4

"

þ 256 d0j j4þ160 d0j j2 c3j j2þ147 c3j j4

256

#
:

(28)
The minimal value is achieved at filling factor v2 ¼ 1,
and it determines the energy per pair inside EHD equal to
eEHD¼ �
1

2

4 a0j j4þ4 a0j j2 b1j j2þ3 b1j j4

4

"

þ 256 d0j j4þ160 d0j j2 c3j j2þ147 c3j j4

256

#
:

(29)
This result agrees well with the result of Ref. [6]. Indeed,
if we assume that there is no spin-orbit interaction then from
Ref. [24] a0j j2¼ d0j j2¼ 1 and c3j j2¼ b1j j2¼ 0, and we will
get exactly the same expression for the chemical potential,
the ground-state energy Eg and the energy of the single-
particle elementary excitations as in Ref. [6].

One can remember that in the GaAs-type crystal the
electron cyclotron energy �hvce becomes comparable to and
larger than the 2D Wannier–Mott exciton binding energy and
at the same time the magnetic length l becomes smaller than
the exciton Bohr radius just at the values H � 7 T.

Magnetoexcitons exist only in the range of a highly
perpendicular magnetic field. Therefore, we will demon-
strate our results with high magnetic and electric fields:
Ez ¼ 10 kV cm�1 and H ¼ 10 T.

Figure 1 presents the chemical potential versus filling
factor v2 for different values of the wave vector k and the
energy per e–h pair of EHD. It can be seen that the chemical
potential is a monotonic function with negative compressi-
bility, which leads to instability of the Bose–Einstein
condensate of magnetoexcitons. A similar result was
www.pss-b.com
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Figure 2 The energy of the single-particle elementary excitations
versus filling factor v2 and wave vector k.
obtained in Ref. [6], when the BEC of magnetoexcitons was
considered without taking into account RSOC and excited
Landau levels. The energy of an e–h pair of EHD is situated
on the energy scale lower than the value of the chemical
potential of condensed excitons with small wave vectors k
and EHL state is more preferable than BEC of magnetoexci-
tons.

The energy of the single-particle elementary excitations
and the ground-state energy depends on the two parameters:
one of them is the filling factor v2, and the other is the wave
vector k. Their behavior can be seen in Figs. 2 and 3. On
increasing filling of the wavevector energy of the single-
particle elementary excitations decreases asymptotically.
The ground-state energy has a reverse picture with increas-
ing values of the wavevector ground-state energy increasing
with saturation. Also, it can be noted that if the ground-state
energy increases with the increases filling factor, but
the energy of the single-particle elementary excitations
decreases.

4 Conclusions The e–h system in an ideal symmetric
2D layer in a strong perpendicular magnetic field are studied
taking into account the Rashba spin–orbit interaction. This
influence on the chemical potential of the BEC-ed magne-
toexcitons and on the energy per pair in the components of
Figure 3 The ground-state energy versus filling factor v2 and wave
vector k.
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EHL and EHD were studied in the HFA. We have established
that chemical potential is a monotonic function versus the
value of the filling factor with negative compressibility,
which leads to instability of the Bose–Einstein condensate of
magnetoexcitons.

The energy per e–h pair inside the EHD was found to be
situated on the energy scale lower than the value of the
chemical potential of the Bose–Einstein condensed magne-
toexcitons with wave vector k ¼ 0 calculated in the HFA.
Therefore, the EHL state is more preferable than the BEC
magnetoexcitons. Our results well agree with Ref. [6].
Indeed, if we make the limiting transition and put RSOC
equal to zero, which means that the coefficients of RSOC will
be a0j j2¼ d0j j2¼ 1 and b1j j2¼ c3j j2¼ 0, and consequently
Eqs. (24), (25), (28), (29) exactly coincide with the results of
Ref. [6].
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