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Abstract 

 
The collective elementary excitations of a system of Bose-Einstein condensed two-

dimensional magnetoexcitons interacting with electron-hole(e-h) plasma in a strong 
perpendicular magnetic field are studied. The breaking of the gauge symmetry is introduced 
into the Hamiltonian following the Bogoliubov`s theory of quasiaverages. 

The motion equations for the summary operators describing the creation and 
annihilation of magnetoexcitons as well as the density fluctuations of the electron-hole(e-h) 
plasma were derived. They suggest the existence of magneto-exciton-plasmon complexes, the 
energies of which differ by the energies of one or two plasmon quanta. 

Starting with these motion equations one can study the Bose-Einstein Condensation 
(BEC) of different magneto-exciton-plasmon complexes introducing different constants of the 
broken symmetry correlated with their energies. The Green`s functions constructed from these 
summary operators are two-particle Green`s functions. They obey the chains of equations 
expressing the two-particle Green`s functions through the four-particle and six-particle 
Green`s functions. These chains were truncated in such a way that the six-particle Green`s 
functions, were expressed through the two-particle ones. At the same time the elementary 
excitations with different wave vectors were decoupled. As a result of these simplifications 
the Dyson-type equation in a matrix form for the two-particle Green`s functions was obtained. 

The  determinant constructed from the self-energy part 4 4× ( , )ij P ω∑
G

 gives rise to 
dispersion equation. The dispersion relations were obtained in analytical form, when in the 
self-energy parts ( , )ij P ω∑

G
 only the terms linear in Coulomb interaction were kept. Taking 

into account also the terms quadratic in Coulomb interaction the dispersion equation becomes 
cumbersome and it can be solved only numerically.     

 
1.Introduction. 

 
In previous papers [1-5] the coherent pairing of two-dimensional electrons and holes in 

a strong perpendicular magnetic field was studied. In last papers [4,5] it was shown, that the 
Bose-Einstein Condensation (BEC) of magnetoexcitons with different from zero wave vector 

and motional dipole moments essentially differs from the case k
G

0k = . The supplementary 
attraction between the parallel aligned in-plane motional dipole moments gives rise to the 
metastable dielectric liquid phase. Its chemical potential reaches the minimal value at some 
filling factor of the lowest Landau level (LLL) and lies on the energy scale below or in the 
vicinity of the  chemical potential of the degenerate Bose gas of  magnetoexcitons with 0k = . 
In these conditions the drops of the dielectric liquid phase are surrounded by the degenerate 
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Bose gas and the coexistence of two BEC-tes is possible. The correlation energy due to 
coherent excited states of BEC-ed magnetoexcitons becomes important at significant values 
of wave vectors and vanishes in the point 0k = . On the contrary the influence of the excited 
Landau levels is especially efficient on the BECed magnetoexcitons with the wave vector 

and rapidly decreases with the increasing of k . In difference on the chemical potential 
the collective elementary excitations of the BEC-ed magnetoexcitons practically were not 
studied. Some preliminary remarks were made in [3]. This question happens to be unusual 
and our paper completely is devoted to it. We realized that in two-dimensional electron-hole 
system in a strong perpendicular magnetic field the role of plasmon oscillations is similar with 
the role of magnetic flux quanta in the case of 2D electron gas in the condition of the 
fractional quantum Hall effect (FQHE) [6]. The magnetic flux quanta induce the vortices 
formation in the electron gas. The electron being accompanied by a few vortices forms a 
composite particle of a fermion or boson types. 

0k =

One can also remember the case of electron gas in the field of laser radiation. The 
electron state accompanied by a photon gives rise to quasi – energy states [7]. Returning to 
the case of collective elementary excitations in the system of BEC-ed two-dimensional 
magnetoexcitons we must remark that they are inseparable from the plasma oscillations. They 
are strongly interconnected and must be considered simultaneously. The same happens with 
the exciton gas interacting with phonons in deformable lattices. But there are some more 
unusual properties. The motion equations for the exciton creation and annihilation operators 
as well for the density fluctuation operators, as we will see below contain free terms and 
terms describing the nonlinearity in the system due to the Coulomb interaction in the two-
dimensional e-h system. The dispersion relation for the free excitons looks as 

 where ( ) ( )ex lE P I E P= − +
G G

lI  is the ionization potential of the magnetoexciton with two-

dimensional wave vector  and 0P =
G

( )E P
G

is the proper dispersion relation, which changes 
quadratically in the range of small wave vectors P

G
 and tends to the finite value lI  when  

tends to infinite, so as  tend to zero. 
P

( )exE P

The free energy for the plasmon looks as ( )E P
G

 and coincide exactly with the second 
term in the dispersion relation of magneto-exciton. The magneto-exciton with wave vector P

G
 

can be regarded as magnetoexciton with wave vector 0P =
G

 and a plasmon with wave vector 
. The magnetoexciton can be regarded as a simple quasiparticle and at the same time as a 

complex consisting of an exciton and a plasmon, when the part depending on the wave vector 
 is determined by the plasmon. Such interpretation follows from the properties of the 

motion equations. They will be analyzed in detail below. In contrast to the 2D e-h gas the 3D 
electron plasma has plasmon oscillations with a energy gap [8], whereas the collective 
elementary excitations of a 3D Bose-gas have gapless energy spectrum. By this reason the 
interconnection of the exciton and plasmon elementary excitation in 3D system does not 
appear.  

P
G

P
G

Below we will study this interconnection in 2D-e-h system in a strong magnetic field in 
detail. But for the beginning a short review of the papers dedicated to the study of the 
collective elementary excitations in the system of 2D two-component electron-electron and 
electron-hole gases is presented. 

As one remember [8] the plasma oscillations in three-dimensional (3D) crystals are 
determined by the frequency pω  satisfying the relation  
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Where  is the number of electrons, V  is the volume of the crystal,  is the bulk 
electron density,  is the effective electron mass and 

eN en
m 0ε  is the dielectric constant of the 

crystal. In the two-dimensional ideal monolayer with the surface area S in the similar way one 
can derive the dispersion relation 
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2( ) ;s
p

e n qq
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=                  ( ) ;p q qω ∼                         ;e
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=                            (2) 

Here  is the surface electron density. The differentce between two expressions (1) 
and (2) is due to the change of the role of Coulomb interaction in two different 
dimensionalities. Two Fourier transforms 

Sn

KV  of the Coulomb potential and the kinetic energy 

KT  of the electron have the forms 

                         
2

3
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4 ;D
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=                     
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=              
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=
=                          (3) 

It is recognized in literature that the role of Coulomb interaction is enhanced in 2D 
structure in comparison with the bulk crystals, whereas the kinetic energy remains with the 
same quadratic dependence on wave vector k

G
 in the absence of the strong magnetic field.  

The both expressions (1) and (2) can be join by a formula  
                                                                                                                 (4) 2 2 ( ) 2p ek N T Vω == K K

Q

Das Sarma and Madhukar [9] have investigated theoretically the longitudinal collective 
modes of spatially separated two-component two-dimensional plasma in solids using the 
generalized random phase approximation. It can be realized in semiconductor heterojunctions 
and superlattices. The two-layer structure with two-component plasma is discussed below. It 
has long been known that two-component plasma has two branches to its  longitudinal 
oscillations. The higher frequency branch is named as optical plasmon (OP). Here the two 
carrier densities of the same signs oscillate in-phase and their density fluctuation operators 

 and  form an in-phase superposition  ,1ˆ ( )e Qρ
G

,2ˆ ( )e Qρ
G

                                                    ,1 ,2ˆ ˆ ˆ( ) ( ) ( )OP e eQ Qρ ρ ρ= +
G G G

                                                  (5) 
In the case of opposite signs electron and hole charges they oscillate out-of-phase and 

their charge density fluctuation operators ˆ ( )e Qρ
G

 and ˆ ( )h Qρ
G

 combine in out-of-phase manner 

                                                    ˆ ˆ ˆ( ) ( ) ( )OP e hQ Qρ ρ ρ Q= − −
G G G

                                                   (6) 
The lower frequency branch is named as acoustical plasmon (AP). Now the carriers of 

different signs oscillate in-phase, whereas the carriers of the same signs oscillate out-of-phase. 
Their charge density fluctuation operators combine in the form 
                            ,1 ,2ˆ ˆ ˆ( ) ( ) ( );AP e eQ Qρ ρ ρ= − Q

G G G
         ˆ ˆ ˆ( ) ( ) ( )AP e hQ Qρ ρ ρ Q= + −

G G G
                      (7) 

The optical and acoustical branches have the dispersion relations in the long wavelength 
region as follows  
                           ( ) ;OP qω ∼ q                ( ) ;AP q qω ∼                                                    (8) 0q →

By virtue of spatial separation z between the two components of the 2D plasma the AP 
branch becomes with a greater slope of the linear q dependence, because this slope is 
proportional to z, when z is of the order of Bohr radius . At small  the AP branch Ba 0z →
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lies inside the single-particle excitation spectrum of the faster moving charged carriers. They 
leave the corresponding Fermi seas crossing the Fermi energies of the degenerate Fermi 
gases. This single-particle spectrum is severely Landau damped. At larges values  the 
Coulomb interaction between charges in different layers can be neglected and each layer 
supports an ordinary 2D plasma oscillations with a dispersion  [9].  

Bz a>

1/ 2( )P q qω ∼
They have been thoroughly studied experimentally In the absence of a magnetic field, 

but have not so far been addressed in the presence of an external magnetic field. The 
transformation of the optical and acoustical plasma excitations under the influence of an 
external perpendicular to the layer magnetic field was studied experimentally by the authors 
of paper [10], using the AlGaAs/GaAs double quantum well (DQW) and magnetic fields up 
till 10T.  

As was mentioned in this paper in a perpendicular magnetic field many –body 
interactions become relevant as the electron kinetic energy is completely quenched and the 
strong Coulomb interaction drives the two-dimensional electron system (2DES) into new 
phases of matter such as incompressible fractional quantum Hall liquid or Wigner crystal.  

In paper [10] the acoustical and optical plasmons at zero field were investigated first. 
The dispersion relation of the AP was measured in the whole range of accessible in-plane 
momenta and it was found to be a nearly linear dependence in agreement with the theory. 

The entire H field range covered was cut into two parts. In one range the influence of 
the Bernstein modes (BM) on to the principal plasmons AP and OP can be neglected. The 
Bernstein modes are charge-density magnetoexcitons having energies cn ω= ,  at 

, where 
2n ≥

0ql → cω  is the cyclotron frequency and l  is the magnetic length  

                                     ;c
eH
mc

ω =                                     2 cl
eH

=
=                                           (9) 

In another range of magnetic field the APS and OPS resonate with BMS.  
When the BMS can be neglected the energies of the principal plasmons are 

monotonically increasing functions of H field, slowly covering to the cyclotron energy. In the 
limit  the both plasmon excitations can be approximated 0H →
                                    2 2( | 0) ( | 0) cq H q H 2ω ω≠ = = +ω                                                     (10) 

The complex anticrossing behavior close to the resonances between AP and OP with 
BMS was observed.  

The plasmon oscillations in one-component system on the monolayer in a strong 
perpendicular magnetic field were studied by Girvin, MacDonald and Platzman [11], who 
proposed the magnetoroton theory of collective excitations in the conditions of the fractional 
quantum Hall effect (FQHE). The FQHE occurs in low-disorder, high-mobility samples with 

partially filled Landau levels with filling factor of the form 1
m

ν = , where m is an integer, for 

which there is no single-particle gap. In this case the excitation is a collective effect arising 
from many-body correlations due to the Coulomb interaction. Considerable progress has 
recently been achieved toward understanding the nature of the many-body ground state well 
described by Laughlin variational wave function [12]. The theory of the collective excitation 
spectrum proposed by [11] is closely analogous to Feynman`s theory of superfluid helium 
[13]. The main Feynman`s arguments lead to the conclusions that on general grounds the low 
lying excitations of any system will include density waves. As regards the 2D system the 
perpendicular magnetic field quenches the single particle continuum of kinetic energy leaving 
a series of discrete highly degenerate Landau levels spaced in energy at intervals cω= . In the 
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case of filled Landau level 1ν =  because of Pauli exclusion principle the lowest excitation is 
necessarily the cyclotron mode in which particles are excited into the next Landau level. In 
the case of FQHE the lowest Landau level (LLL) is fractionally filled. The Pauli principle no 
longer excludes low-energy intra-Landau-level excitations. For the FQHE case the low-lying 
excitations have the primary importance rather than the high-energy inter-Landau-level 
cyclotron modes [11]. The spectrum has a relatively large excitation gap at zero wave vector 

 and in addition it exhibits a deep magneto-roton minimum at  quite analogous to 
the roton minimum in helium. The magneto-roton minimum becomes deeper and deeper at 
the decreasing of the filling factor 

0kl = 1kl ∼

ν  in the row 1  and is the precursor to the gap 

collapse associated with the Wigner crystallization which occurs at 

/ 3,1/ 5,1/ 7
1
7

ν = . For larges wave 

vectors the low lying mode crosses over from being a density wave to becoming a 
quasiparticle excitation [11]. The Wigner crystal transition occurs slightly before the roton 
mode goes completely soft. The magnitude of the primitive reciprocal lattice vector for the 
crystal lies close to the position of the magneto-roton minimum. The authors of [11] 
suggested also the possibility of pairing of two rotons of opposite momenta leading to the 
bound two-roton state with small total momentum, as it is known to occur in helium. In 
contrast to the case of fractional filling factor, the excitations from a filled Landau level in the 
2DEG were studied by Kallin and Halperin [14]. They considered an interacting two-
dimensional electron system with a uniform positive background in a strong perpendicular 
magnetic field at zero temperatures. It was supposed that an integral number of Landau levels 

is filled and the Coulomb energy 
2

0

e
lε

 is smaller than the cyclotron energy cω= .   

The elementary neutral excitations may be described alternatively as magnetoplasma 
modes or as magnetoexcitons formed by a hole in a filled Landau level and an electron in an 
empty level. In contrast to the hole in the valence band, which takes part in the formation of 
the usual magnetoexciton, we deal with the hole in the conduction band, namely in its filled 
Landau level. It can be denoted as (c,n,h). Its bound state with the electron in the empty 

Landau level with number  in the same conduction band denoted as ( ) gives rise to 
the magnetoexciton named as integer quantum Hall exciton. It is characterized by a conserved 
wave vector k

G
 in Landau gauge. The dispersion relation may be calculated exactly to first 

order in 

'n ', ,c n e

l

c

I
ω= , where lI  is the ionization potential of magnetoexciton with  and equals 

to 

0k =

2

0 2
e

l
π

ε
. 

The lowest magnetoplasmon band comes in to the cyclotron frequency cm ω=  at 0k = , 

where , if the Coulomb electron-electron interaction is neglected. If the Coulomb 
interaction is included, then the energy of neutral plasmon will come to the value 

'm n n= −
c lm Iω −= . 

Excitation modes with  do not exist if the initial state has an integer occupation 
numbers of the Landau levels of both spins. In the ferromagnetic ground state the 

0m =
0m =  

excitations are spin waves. 
Apal’kov and Rashba[15] considered a case of an electron-hole pair in the presence of 

an incompressible liquid formed by electrons in the condition of the fractional quantum Hall 
effect (FQHE). The magnetoplasmons have a dispersion law similar to the rotons in liquid 
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helium and are named as magnerotons. They play the role of phonons in the incompressible 
liquid and influence on the state of exciton interacting with plasmons. This influence is 
analogous with the influence of the phonons on the states of electrons or excitons interacting 
with crystal lattice oscillations in bulk semiconductors and is named as polaron effect. The 
authors of [15]  arrived to the conclusion that the influence of magnetorotons, leads to a giant 
suppression of the magnetoexciton dispersion in symmetric case. There is a region in the 
momentum space, where the elementary excitations are interpreted as bound states of a 
phonon (magnetoroton) with a slow magnetoexciton. As was mentioned the interaction of the 
exciton with the fluid can be treated as a polaron effect resulting from a dressing by 
magnetorotons. The polaron shift is zero at 0k = in symmetric systems. When the 
confinement planes for electrons and hole have a distance z different from zero (asymmetric 
case), the polaron shift of the exciton level is positive, what is determined in an asymmetric 
system by the influence of the Pauli exclusion principle which is not compensated by the 
ordinary polaron effect. 

Fertig [16] investigated the excitation spectrum of two-layer and three-layer electron 
systems. In particular case the two-layer system in a strong perpendicular magnetic field with 

filling factor 1
2

ν =  of the lowest Landau level (LLL) in the conduction band of each layer 

was considered. Inter-layer separation z was introduced. The spontaneous coherence of two-
component two-dimensional (2D) electron gas was introduced constructing the function 

       ( v )k k
k

na b+ +Ψ = +∏ 0  ;  2 2 1v 2u = =   ,              (11) 

where ,  are the creation and annihilation operators of spin polarized electrons on the 
LLL of the layer a and ,  play the same role for the electrons resided on the layer b. 

ka +
ka

kb +
kb

 Here the vacuum state 0  was introduced  

    0 0k ka b= = 0                               (12) 
Both half filled layers a  and b are accompanied by a substrate with positive charge 

guaranteeing the electrical neutrality of the system.  The half filled layer a can be considered 
as a full filled with electrons in the LLL of the conduction band and a half filled by holes in 
the LLL of the same conduction band. The wave function of the full filled LLL of the layer a  
can be written as  
     0 0k

k

a +Ψ =∏                      (13) 

The hole creation operator in the conduction band of the layer a can be introduced  
k kd a+

−=                             (14) 
The electrons of the full filled conduction band are compensated by the charge of the 

substrate and we can only consider the electrons on the layer b and the holes on the layer a. 
Then the wave function (11) of the coherent two-layer electron system can be rewritten 

in the form 
   0( v )k k

k

u b d+ +
−Ψ = + Ψ∏    ,                       (15) 

which coincides with the BCS-type wave function of the superconductor. It represents the 
coherent pairing of the conduction electrons on the LLL of the layer b with the holes in the 
LLL of the conduction band of the layer a and describes the BEC of such unusual excitons 
named as FQHE excitons, because they appear in the conditions proper to the observation of 
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the fractional quantum Hall effect. Here only the BEC on the single exciton state with wave 
vector  is considered. 0k =

G

Fertig has determined the energy spectrum of the elementary excitations in the frame of 
this ground state. In the case of z=0 the lowest-lying excitations of the system are the higher 
energy excitons. 

Because of the neutral nature of the 0k =
G

 excitons the dispersion relation of these 
excitations is given in a good approximation by  
   ( ) ( ) (0)ex exk E k Eω = −= ,                          (16) 

where  is the energy of exciton with wave vector ( )exE k k
G

. This result was first obtained by 
Paquet, Rice and Ueda [3,17] using a random phase approximation [RPA]. In the case z=0 the 
dispersion relation ( )kω vanishes as  for , as one expect for Goldstone modes. 2k 0k →

For z>0 ( )kω  behaves as an acoustical mode ( )k kω ∼  in the range of small , 
whereas in the limit  ( )

k
k →∞ kω  tends to the ionization potential ( )zΔ  in the form  

    
2

2
0

( ) ( ) ek z
kl

ω
ε

= Δ −=                             (17) 

In the region of intermediate values of , when , the dispersion relation develops 
the dips as z is increased. At certain critical value of  the modes in the vicinity of the 
minima become equal to zero and are named as soft modes. Their appearance testifies that the 
two-layer system undergo a phase transition to the Wigner crystal state. 

k 1kl ∼
erz=z

The similar results concerning the linear and quadratic dependences of the dispersion 
relations in the range of small wave vectors q  were obtained by Kuramoto and Horie [18], 
who studied the coherent pairing of electrons and holes spatially separated by the insulator 
barrier in the structure of the type coupled double quantum wells (CDQW). 

The magnetic field is sufficiently strong, so that the carriers populate only their lowest 
Landau levels (LLL) in the conduction and valence bands. Apparently the electron-hole 
interaction becomes less important than the repulsive electron-electron and hole-hole 
interactions as the separation d increases. However at low densities the ground state of the 
system will be the excitonic phase, instead of the Wigner lattice, for which the repulsive 
interaction is responsible. The reason is that the energy per electron-hole pair in the excitonic 
phase is lower than in Wigner crystal. The BEC of magnetoexcitons in the state with zero 
total momentum was considered and the dispersion relation of the collective excitation modes 
was derived. In the case the lowest excitation branch has a linear dispersion relation in 
the region of small wave vectors  

0d ≠
q ( )q qlω ∼ ; whereas at d=0 it transforms in the quadratic 

dependence ; Kuramoto and Horie mentioned that the linear dispersion relation 
originates in the fact that at  the repulsive Coulomb interaction prevails and the carriers 
feel this resulting repulsive long-range force [18]. As in the Bogoliubov theory of weakly 
interacting Bose gas the repulsive interaction leads to the transformation of the quadratic 
dispersion relation into another one with the linear dependence at small wave vectors.  

2( ) ( )q qlω ∼
0d ≠

Spontaneous Coherence in a two-component electron gas  created in bilayer quantum 
well structure in a strong perpendicular magnetic field was recently studied experimentally by 
Eisenstein [19] and theoretically by MacDonald [20]. 

The bilayer electron-electron system is much easy to realize in experiment than e-h 
bilayer, when the holes are created in the valence band and are spatially separated from the 
electrons in the conduction band. The experimental indications of spontaneous coherence 
have been seen first in e-e bilayer, which is analogous to Josephson junction. When the two 
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2D electron layers each at half-filling of the lowest Landau level (LLL) are sufficiently close 
together, then the ground state of the system possesses interlayer phase coherence. The 
ground state can be considered as an equilibrium Bose-Einstein condensate of excitons 
formed by the electrons on the LLL in the conduction band with the residence on one layer 
and the holes on the LLL of the conduction band with the residence on another layer. This 
collective state exhibits the quantum Hall effect when electrical currents are driven in parallel 
through two layers [19]. Counterflow transport experiments were realized. The oppositely 
directed currents were driven through the two layers. The counterflow proceeds via the 
collective transport of neutral particles, i.e. interlayer excitons. The Hall resistance of the 
individual layer vanishes at  in the collective phase. A weak dissipation is present at 
finite temperatures. The free vortices are present at all temperatures being induced by the 
disorders. The existence of the anticipated Goldstone mode linearly dispersing was confirmed 
experimentally [19]. This mode is the consequence of a spontaneously broken symmetry 
in the bilayer system. Measurements of the tunneling conductance between the layers have 
shown that the tunneling conductance at zero bias grows explosively, when the separation 
between the layers is brought below a critical value [19].  

0T →

(1)U

The counterflow conductivity and inter-layer tunneling experiments both suggest that 
the system does not have long range order because of the presence of the unbound vortices 
nucleated by disorder. The finite phase coherence length appears [20]. 

The appearance of the soft modes in the spectrum of the collective elementary 
excitations may signalize not only about the possible phase transition of the two-layer system 
to the Wigner crystal state or to the charge-density-wave (CDW) of a 2D electron system, but 
also to another variant of the excitonic charge-density-wave (ECDW) state. This new state 
was revealed theoretically by Chen and Quinn [21,22], who studied the ground state and the 
collective elementary excitations of a system consisting of spatially separated electron and 
hole layers in strong magnetic field. When the interlayer Coulomb attraction in strong 
electrons and holes pair together to form excitons. Excitonically condensed state of e-h pairs 
is the preferable ground state. If the layer separation is larger than a critical value, a novel 
excitonic-density-wave state is found to have a lower energy than either a homogeneous 
exciton fluid or a double charge-density-wave state in 2D electron system. 
All these details and information will permit to better understand the results of our paper, 
which is organized as follows. 

In section two the breaking of the gauge symmetry of the initial Hamiltonian is 
introduced by an alternative method following the idea proposed by Bogoliubov in his theory 
of quasiaverages [23]. The equivalence with another Bogoliubov u-v transformation method 
is revealed.  

In section three the motion equations for the operators were obtained, whereas in 
section four on their base the main equations determining the many-particle Green`s functions 
were deduced.  

Section five is devoted to the discussion of the used approximations. One of them 
corresponds to the Hartree-Fock-Bogoliubov approximation (HFBA) and the second one to 
the calculations of the correlation energy [4,5]. The energy spectrum in HFBA is represented 
in section six. The more complete results are discussed in the seventh section.            
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2. The breaking of the gauge symmetry of the initial Hamiltonian. Two equivalent 
representations 

 
For the very beginning we will introduce the operators describing the magneto-excitons 

and plasmons, and their commutation relations. 
The creation and annihilation operators of magnetoexcitons are two-particle operators 

reflecting the electron-hole (e-h) structure of the excitons. They are denoted below as † ( )d pG  
and , where ( )d pG ( , )x yp p pG  is the two-dimensional wave vector. There are also the density 

fluctuation operators for electrons ˆ ( )e Qρ
G

and for holes ˆ ( )h Qρ
G

 as well as their linear 

combinations  and . They are determined below ˆ ( )Qρ
G ˆ ( )D Q

G
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e e

h h
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and are expressed through the Fermi creation and annihilation operators  for electrons 

and  for holes. The e-h Fermi operators depend on two quantum numbers. In Landau 
gauge one of them is the wave number p and the second one is the quantum number n of the 
Landau level. In the lowest Landau level (LLL) approximation n has only the value zero and 
its notation is dropped. The wave number p enumerates the N-fold degenerate states of the 2D 
electrons in a strong magnetic field. N can be expressed through the layer surface area S and 
the magnetic length l as follows 

† ,p pa a
† ,p pb b

                     2 ;
2

SN
lπ

=     2 cl
eH

=
=    ,                                                                (19) 

where H is the magnetic field strength. The operators (18) obey the following commutation 
relations, most of which being for the first time established by Apal`kov and Rashba [15] 
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2

2

2

ˆ ˆ ˆ( ), ( ) 2 ( )
2

ˆ ˆ ˆ( ), ( ) 2 ( )
2

ˆ ˆˆ ( ), ( ) 2 ( )
2

z

z

z

P Q l
Q P iSin P Q

P Q l
D Q D P iSin P Q

P Q l
Q D P iSin D P Q

ρ ρ ρ

ρ

ρ

⎛ ⎞⎡ ⎤×⎣ ⎦⎜ ⎟⎡ ⎤ = − +⎣ ⎦ ⎜ ⎟
⎝ ⎠
⎛ ⎞⎡ ⎤×⎣ ⎦⎜ ⎟⎡ ⎤ = − +⎣ ⎦ ⎜ ⎟
⎝ ⎠
⎛ ⎞⎡ ⎤×⎣ ⎦⎜ ⎟⎡ ⎤ = − +⎣ ⎦ ⎜ ⎟
⎝ ⎠

GG
G GG G

GG
G GG G

GG
G GG G

           (20) 

                     ( ) ( )
2 2

( ), ( ) ( , )

1 ˆˆsin cos
2 2

kr

z z

d p d Q P Q

P Q l P Q l
i P Q D

N

δ

ρ

+⎡ ⎤ = −⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤× ×⎣ ⎦ ⎣ ⎦⎢ ⎥⎜ ⎟ ⎜ ⎟− − +
⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
P Q−

GG

G GG G
G GG G  

                       ( ) ( ) ( )
2

ˆ , 2 sin
2

z
P Q l

P d Q i d P Qρ
⎛ ⎞⎡ ⎤×⎣ ⎦⎜ ⎟⎡ ⎤ = +⎣ ⎦ ⎜ ⎟
⎝ ⎠

GG
G GG G

 

                 ( ) ( ) ( )
2

ˆ , 2 sin
2

z
P Q l

P d Q i d P Qρ + +
⎛ ⎞⎡ ⎤×⎣ ⎦⎜ ⎟⎡ ⎤ = − − +⎣ ⎦ ⎜ ⎟
⎝ ⎠

GG
G GG G

 

                   ( ) ( ) ( )
2

ˆ , 2cos
2

z
P Q l

D P d Q d Q P+ +
⎛ ⎞⎡ ⎤×⎣ ⎦⎜ ⎟⎡ ⎤ = −⎣ ⎦ ⎜ ⎟
⎝ ⎠

GG
G GG G

 

                              ( ) ( ) ( )
2

ˆ , 2cos
2

z
P Q l

D P d Q d P Q
⎛ ⎞⎡ ⎤×⎣ ⎦⎜ ⎟⎡ ⎤ = − +⎣ ⎦ ⎜ ⎟
⎝ ⎠

GG
G GG G

 

One can observe that the density fluctuation operators (18) with different wave vectors 
 and Q

G
 do not commute. Their non-commutativity is related with the vorticity which 

accompanies the presence of the strong magnetic field and depends on the vector-product of 
two wave vectors  and  and its projection on the direction of the magnetic field [ ]

P
G

P
G

Q
G

zP Q×
GG

. 
These properties considerably influence the structure of the motion equations for the operators 
(1) and determine new aspect of the magneto-exciton-plasmon physics. Indeed in the case of 
3D e-h plasma in the absence of the external magnetic field the density fluctuation operators 
do commute [8]. The magneto-exciton  creation  and annihilation operators  and † ( )d pG ( )d Q

G
 

as in general case do not obey exactly the Bose commutation rule. Their deviation from it is 
proportional to the density fluctuation operators ˆ (P Qρ )−

GG
 and ˆ (D P Q−

G
)

G
. The discussed 

above operators determine the structure of the 2D e-h system Hamiltonian in the LLL 
approximation. In previous papers [1,2,3,4,5] the initial Hamiltonian was gauge-invariant.  

It has the form  
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                         1ˆ ˆ ˆˆ ˆ( ) ( )
2 e h e e hQ

Q

H W Q Q N N Nρ ρ μ μ⎡ ⎤= − − − −⎣ ⎦∑ G
G

G G ˆ ˆ
hN−  ,                              (21) 

where 

     
2 2 2

0

2
2Q

e Q lW Exp
S Q
π

ε
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

G G e h;    μ μ μ= +

l wave vector  and forms a ban

                                                         (22) 

The energy of the two-dimensional magnetoexciton  depends on the two-

dimensiona d with the dependence  

( )exE P

 P
G

  2 2 2 2
2

0

( ) ( ) ( );

( ) ( );
2

ex ex l

P l

ex l

E P I P I E P

P lI P I e I
−

= − = − +

=

G G G

         
2

0

;
2l

eI
l

π
ε

=                                                       (23) G

The ionization potential ( )exI P  is expressed through the modified Bessel function 

0 ( )I z , which has the limiting expressions [10]. 

      
2

0
0

( ) 1 ...;
4z

zI z
→

= + + 0 ( )
2

z

z

eI z
zπ→∞

=                                                      (24) 

It means that the function  can be approximated as follows ( )E P

 
2 2

0
( ) ;

2P

PE P
M→

=
G =       

2
0

2

2(0) 2 ;M M
e l
ε

π
= =

=            

                                                  (25) 
2

( ) (1 );l
P

E P I
Pl
π

→∞
= −     2 ;cl

eH
=
=  

Instead of the chemical potential μ  (22) we will use the value μ  accounted from the 
bottom of the exciton band  
       (0) ;ex lE Iμ μ μ= − = +                                                                              (26) 

In the case of BEC of the magnetoexcitons on the state with  the chemical 
potential accounted from the exciton level  will lead to the expression  

0k ≠
( )exE k

       ( ) ( );exE K E Kμ μ− = −
G G

                                                                            (27) 
For introduction of the phenomenon of Bose-Einstein condensation (BEC) of excitons 

the gauge symmetry of the initial Hamiltonian was broken by the help of the unitary 
transformation ˆ ( exD N )  following the Keldysh-Kozlov-Kopaev method [24]. We can shortly 
remember the main outlines of the Keldysh-Kozlov-Kopaev method [24], [25] as it was 
realized in papers [4,5]. The unitary transformation ˆ ( exD N )  was determined by the formula 
(25) [4]. Here  is the number of condensed excitons. It transforms the operators  to 
another ones 

exN ,p pa b
,p pα β , as is shown in formulas (30), (31) [4], and gives rise to the BCS-type 

wave function ( )g kψ  of the new coherent macroscopic state represented by expression (27) 
[4]. These results are summarized below  
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†

† †

†

†

†

ˆ ( ) exp[ ( ( ) ( ))]
ˆ( ) ( ) 0

ˆ ˆ v( )
2

ˆ ˆ +v( )
2

v( )
2

v( )
2

x

x

x

x

ex ex

g ex

x
p p p k p

x
p p p k p

x
p p k p

x
p p k p

D N N d k d k

k D N

kDa D ua p b

kDb D ub p a

ka u p

kb u p

ψ

α

β

α β

β α

−

−

−

−

= −

=

= = − −

= = −

= + −

= − −

†                        (28) 

 
                         0 0p pa b= = 0;      ( ) ( ) 0p g p gk kα ψ β ψ= =   

cos ;u g=  v sin ;g=                 (29) 
2

v( ) v yik tlt e−=

22 ;exg l nπ=   
2

2

v
2

ex
ex

Nn
S lπ

= =   v;g =       v=Sinv;

 
The developed theory [4,5] is true in the limit , what means the 

restriction . In the frame of this approach the collective elementary excitations can be 
studied constructing the Green’s functions on the base of operators 

2 2v Sin≈ v
12v <

,p pα β  and dealing with 

the transformed cumbersome Hamiltonian †ˆ ˆ( ) ( )ex exD N HD N=�H .  
We propose another way, which is supplementary but completely equivalent to the 

previous one and is based on the idea suggested by Bogoliubov in his theory of 
quasiaverages [23]. Considering the case of a 3D ideal Bose gas with the Hamiltonian  

2 2
†( )

2 p p
p

pH
m

μ= −∑ a aG G
G

=       ,                                                             (30) 

where  are Bose operators and ,pa a+
p μ  is the chemical potential, Bogoliubov added a term  

    0 0( iV a e a e )iϕ ϕν −− +                                                                     (31) 
breaking the gauge symmetry and proposed to consider the BEC on the state with p=0 in the 
frame of the Hamiltonian  

    
2 2

† †
0 0

ˆ (
2

i
p p

p

p a a V a e a e
m

)iϕ ϕμ ν −⎛ ⎞
= − − +⎜ ⎟

⎝ ⎠
∑ =H     ,                                         (32) 

where 

    0
0 ;N n

V
ν μ μ= − = −          0 ;nν

μ
− =                            (33) 

We will name the Hamiltonian of the type (32) as the Hamiltonian of the theory of 
quasiaverages. It is written in the frame of the operators  of the initial 
Hamiltonian (30). 

,pa a+
p

Our intention is to apply this idea to the case of BEC of interacting 2D magnetoexcitons 
and to deduce explicitly the Hamiltonian of the type (32) with the finite parameters μ  and ν  
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but with the relation of the type (33). We intend to formulate the new Hamiltonian with 
broken symmetry in the terms of the operators  avoiding the obligatory crossing to the 
operators 

,p pa b
,p pα β  (28) at least at some stages of the investigation where the representation in 

the  operators remains preferential. ,p pa b
Of course the two representations are completely equivalent and complimentary each 

other. We will follow the quasiaverage variant  (32) instead of  variant (29), because it 
opens some new possibilities, which were not studied up till now to the best of our 
knowledge. For example the Hamiltonian of the type (32) is simpler than the Hamiltonian 

u,v

†ˆ ˆ( ) (ex exD N HD N=�H )  in the ,p pα β  representation and the deduction of the motion 
equation for the operators (18) and for the many-particle Green’s functions constructed on 
their base is also much simple. We will profit by this advantage at some stages of 
investigation. On the contrary, when we will deal with the calculations of the average values 
of different operators on the base of the ground coherent macroscopic state (28) or using the 
coherent excited states, as we have done in papers [4,5 ], the most convenient way is to use 
the ,p pα β  representation. We will use in the wide manner the both representations. The new 
variant in the style of the theory of quasiaverages can be realized rewriting the transformed 
Hamiltonian †ˆ( ) (ex exD N HD N )  in the  representation as follows below. To 
demonstrate it we will represent the unitary transformation  

,p pa b

ˆ

0
ˆ†

ˆˆ ( )
!

( )

n
X

ex
n

X
ex

;XD N e
n

D N e

∞

=

−

= =

=

∑            ,                                                       (34) 

where 

       
†

†

ˆ ( ( ) ( )
ˆ ˆ ;

i i
ex );X N e d K e d K

X X

ϕ ϕ−= −

= −
                                                           (35) 

The creation and annihilation operators  (18) are written in the Landau 
gauge when the electrons and holes forming the magnetoexcitons are situated on their lowest 
Landau levels (LLL). Only this variant is considered here without taking into account the 
excited Landau levels (ELL) , as it was done in [4 ]. The BEC of 2D magnetoexcitons is 
considered on the single-exciton state characterized by two-dimensional wave vector 

( ), ( )d k d k+

k
G

. 
Expanding in series the unitary operators †( ), (ex exD N D N )  we will find the transformed 

operator  in the form �̂H

    ˆ ˆ 1 1 1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , ...
1! 2! 3!

X Xe He H X H X X H X X X H− ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ′= = + + + + = +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
�H H H    (36) 

Here the Hamiltonian  contains the main contributions of the first three terms in the 
series expansion (36), whereas the operator 

Ĥ
ˆ ′H  gathers the all remaining terms.  

As one can see looking at formulas (35) operator X̂  is proportional to the square root of 
the exciton concentration exN , which is proportional to the filling number . One can see 

that the contributions arising from the first commutator 

v
ˆ ˆ,X H⎡ ⎤⎣ ⎦  are proportional to , the 

contributions arising from the second commutator 

v

ˆ ˆ ˆ, ,X X H⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦  are proportional to  and so 2v
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)
on. Following the Bogoliubov’s theory of quasiaverages only the linear terms of the type 
( ( ) ( )i id k e e d kϕ ϕ ν+ −+  arising from the first commutator ˆ ˆ,X H⎡ ⎤⎣ ⎦  must be included into . 

But taking into account the deviation of the exciton creation and annihilation operators from 
the pure Bose statistics, we will take into account also the term proportional to  from 
the second commutator. 

Ĥ

(0)exN D

We will show below, that such foresight permits to obtain a Hamiltonian which will 
generate the motion equation of the exciton creation and annihilation operators in 
concordance with the basic suppositions concerning their BEC. Such supplimentary term in 
the Hamiltonian  introduces the needed corrections related with the deviation of the 
exciton operators from the true Bose statistics. The commutations were effectuated using the 
commutation relations (20). 

Ĥ

Ĥ

The Hamiltonian  with the broken gauge symmetry describing the BEC of 2D 
magnetoexcitons on the state with wave vector 

Ĥ
0k ≠  being written in the style of the 

Bogoliubov’s theory of quasiaverages has the form  
†

ˆ (0)ˆ ˆ ( ( ))( ( ) ( )) ( ( ) )(1 );

ˆ ˆ ˆ(0) ;

i i
ex ex

e h

DH N E K e d K e d K N E K
N

D N N

ϕ ϕμ μ−= + − + + − −

= +

G G G G
H

         (37) 

For the case of an ideal 2D Bose gas we can rewrite the coefficient Vν−  in the 
Hamiltonian (32), in the form Nν−  and comparing it with the deduced expression (37), we 
will find 
    ( ( ) vE k )ν μ= − ,                                                                     (38) 
where  and the filling number  are determined by expressions (19) and (23). Relation 
(38) coincides exactly with relation (33) of the Bogoliubov’s theory of quasiaverages. In the 
case of ideal Bose gas 

N v

ν  and ( ( )E k )μ−  both tend to zero, whereas the filling number is real 

and different from zero. In the interacting exciton gas the parameter ν  and ( )( )E k μ−  are 

both different from zero. But we kept in the expression for  else the last term proportional 
to 

Ĥ
( ) (2( ) v ( )exN E k N E k )μ μ− = − , which was absent in the theory of quasiaverages for the 

ideal Bose gas. It reflects, as was mentioned above, the deviation of the exciton creation and 
annihilation operators from the true Bose operators. The influence of the last term will be 
discussed below writing the motion equations for the exciton operators. 

Now the remaining terms gathered in ˆ ′H  will be written. They contain the 
contributions proportional to  and so on. There is also one term proportional to , but it 
is nonlinear containing the products of the exciton and plasmon operators. We suppose that 
their influence on the BEC of magnetoexcitons is less in comparison with the second term in 
expression (37). The first terms included in 

2 3v , v v

ˆ ′H  are  
 

( )
2

†ˆ ˆ ˆ(2 ) ( ) ( ) ( ) ( )
2

i iz
ex Q

Q

K Q l
i N W Sin e d K Q Q e Q d K Qϕ ϕρ ρ−

⎛ ⎞⎡ ⎤×⎣ ⎦⎜ ⎟′ = − − − − − +
⎜ ⎟
⎝ ⎠

∑ G
G

GG
G G G GG G

H  
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∑

G
G
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G

GG

+ − +

−

G G GG G G G

G G G GG G

G GG G
G G G ˆ ( )) ...D Q− +

G

G

        (39) 

Below we will construct the motion equations for the operators (18) on the base of the 
Hamiltonian (37) in the quasiaverages theory approximation (QTA).  

 
3. The motion equations for operators. Magneto-exciton-plasmon complexes.  
 

The starting Hamiltonian  of the variant developed below has the form Ĥ

†

1ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( )
2

ˆ (0)( ( ))( ( ) ( )) ( ( )) 1

e h e e h hQ
Q

i i
ex ex

W Q Q N N N N

DN E k e d k e d k N E k
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μ μ−
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⎛ ⎞
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⎝ ⎠

∑ G
G

G G

G G G G
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                         (40) 

The motion equations for the operators (18) are obtained using the commutation 
relations (20). They are 

      
2

2 2
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Here ν  and ~μ  are determined by the expressions 

2

2 2~ (1 ) ( );
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N N

E k E k
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    2v ;exN
N

=                                                      (42)   

The expression for ν  was deduced in the previous section. The last term in the 
Hamiltonian  (37) gives rise to the shift of the all exiton levels in the motion equations by 

the same value, what leads to the difference between 

Ĥ

μ  and ~μ .             
Now we must pay attention to one important aspect of the derived motion equations, 

which is closely related with the noncommutativity of the operators (18) expressed by 
formulas (20). Applying them one can prove, for example, the equalities  
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                      (43) 

They can be verified taking into account that  
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                        (44) 

The quantum energy  is related with the vorticity of the strong magnetic field. 
These quanta can be added in different combinations to the free energies of the exciton or of 
the plasmon, which in their turn themselves also are determined by these quanta. 

( )E P

The quantum energy  is due to Coulomb interaction of electrons in the presence of 
a strong magnetic field and can be named as a plasmon quantum. 

( )E P

The possibility to add or to subtract a photon quantum from the electron energy in the 
presence of laser radiation gives rise to the notion of quasi – energy [7], which reflects the 
possibility of formation of electron – photon replicas. 

In the same way one can understand the appearance of the different “free” magneto-
exciton energies in three variants of the motion equations (43) as a result of formation of three 

different magneto-exciton-plasmon complexes: one with the “free” energy ~( ( ) )E P μ− , the 

second with the “free” energy - ~( ( ) )E P μ+  and the third with the “free” energy - ~μ . Starting 
with different “free” energies we will deal with the BEC of different magneto-exciton-
plasmon complexes. In these three variants the constant ν of the broken gauge symmetry as 

well as ~μ  will be also different being conjugated with different  “free” energies of the 
condensed particles. One can conclude that in the case of 2D e-h system in a strong 
perpendicular magnetic field the plasmon quanta (44) can accompany and influence the 
exciton quantum – statistical phenomena. In the case of the fractional quantum Hall effect 

(FQHE) discussed in [6], there are N magnetic flux quanta 0
c
e

φ =
= accompanying the 

transport phenomena. The flux quanta enforce the formation of vortices in the 2D electron 
gas. The electrons and the vortices form composite particles and determine the properties of 
the electron liquid [6]. 

Instead of photons in the case of laser radiation and instead of magnetic flux quanta 0φ  
and vortices in the electron medium, which appear in the case of FQHE, in our case of 2D–e-
h system in a strong magnetic field we deal with plasmon quanta . Instead of electron – 
vortex composite particles we meet with the magneto-exciton-plasmon complexes. Equations 
(41) for four concrete interconnected operators and 

have the forms  
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On the base of these equations the Green’s functions will be introduced and the chains 
of equations will be developed. Only one variant between many ones reflected by equations 
(43) will be considered. 
 

4. Many – operator many – particle Green’s functions. 
 

Following the motion equations (45) we will introduce four interconnected retarded 
Green’s functions at T=0  [26, 27] 

  

† ( , ); ( ,0) ;
ˆ ( , ) ; ( ,0) ;

d P t d P

K P t d P
N

ρ

〈〈 〉〉

−
〈〈 〉〉
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〉
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and their Fourier – transforms 
†

11

13

( ) ;

ˆ ( )) ( ) ;

( , ) ( )

( , )

d P

K P d P
N

G P d P

G P
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G G G
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G   (47) 

They are determined by the relations 

ˆ ˆˆ ˆ( ); (0) ( ) ( ), (0) ;A t B i t A t B⎡ ⎤〈〈 〉〉 = − Θ 〈 〉⎣ ⎦  
ˆ ˆ

( ) ;
i t i t

A t e Ae
−

= = =
H H

       (48) ˆ ˆˆ ˆ ˆ, ,A B AB BA⎡ ⎤ = −⎣ ⎦
ˆ

where is the Hamiltonian (40). Ĥ
The average  is calculated at T=0 using the ground state wave function 〈〉 ( )g Kψ

G
 (28) 

as well as, if needed, the coherent excited states (46)-(56) [4,5]. 
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The time derivative of the Green’s function is calculated as follows  

           ˆ ˆ

ˆ ˆ ˆˆ ˆ( ); (0) ( ) , ( ); (0) ;
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=
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ˆ

〉

                              (49) 

The term  and other  similar ones will be denoted by constant C. The Fourier 

representation is introduced by 

ˆ ˆ,A B⎡ ⎤〈⎣ ⎦
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∫

∫

∫= =

                          (50) 

Calculating the Fourier transform of the retarded Green’s function one needs to 
guarantee the convergence of the time integral. It is achieved by introducing an infinitesimal 
value 0δ → +  in the form 

        
0

ˆ ˆ ˆˆ ˆ( ); (0) ( ); (0)i t i t tA B dte A t B dte A t Bω ω δ
ω

∞ ∞
−

−∞

〈〈 〉〉 = 〈〈 〉〉 = 〈〈 〉〉∫ ∫ ˆ                               (51) 

By this reason in the resonance denominators containing ω  we will substitute ω=  by 
( )iω δ+= .  

The Green’s  function (47) as well as (46) will be named as one – operator Green’s  
functions because they contain in the left hand side of the vertical line only one summary 

operator of the type † ˆ ( )( ), (2 ), K Pd P d K P
N

ρ −
−

G GG G G
and 

ˆ (D K P
N

)−
G G

. At the same time these 

Green’s functions are two – particle Green’s  functions because the summary operators (18) 
are expressed through the products of two Fermi operators.  

In this sense the Green’s  functions (47) are equivalent to the two – particle Green’s  
functions introduced by Keldysh-Kozlov in their theory of the collective elementary 
excitations in bulk crystals in the absence of the external magnetic field [24]. 

The exact equations determining the one operator, two – particle Green’s  functions (47) 
in the frame of the quasi-average variant of the theory of BEC of magnetoexcitons follow 
directly from the motion equations (45) 
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The constants , where depend on 1iC 1,2,3,4i = P
G

 and ω . But they are not needed in an 
explicit form, because we are interested only in the energy spectrum of the collective 
elementary excitations and it is determined only by the self – energy parts of the Green’s 
functions. All constants, which will appear in the equations for any Green’s functions will be 
denoted by C capital, without detalization. 

Equations (52) for one-operator Green`s functions (47) contain in their componence the 
two-operator (four-particle) Green`s functions generated by the nonlinear terms in motion 
equations (41), (45) for the operators (18). These two-operator (four-particle) Green`s 
function will be determined below. They will obey to new exact equations in the frame of 
Hamiltonian (40) containing new three-operator (six-particle) Green`s functions. And this 
process is infinite giving rise to infinite chains of equations with n-operator (2n-particle) 
Green`s functions, where n increases by one at each new step in the chains evolution. As 
usual such chains are truncated, what leads to concrete approximate solutions [27]. Below we 
will obtain the exact equations in the frame of Hamiltonian (40) for four two-operator Green`s 
functions appeared in the first-step equations (35). These second step equations will contain 
new three-operators (six-particle) Grenn`s functions. They are 



Moldavian Journal of the Physical Sciences, Vol.4, N2, 2005 
 

 162

†

2
†

2
†

ˆ ( )~ˆ( ) ( ) | ( ) ( ) ( ) ( , ) | ( )

[( ) ] ˆ ˆ2 ( ) ( ) ( ) | ( )
2

[ ] ˆ2 ( )
2

i
kr

z
R

R

z
R

R

K Pd P Q Q d P E P Q E Q C Ne Q P K d P
N

P Q R li W Sin d P Q R R Q d P

Q R li W Sin d P Q

ϕ

ω
ω

ω

ρρ ω μ ν δ

ρ ρ

ρ

−
⎡ ⎤ −

− − − + − − − = + −⎢ ⎥
⎢ ⎥⎣ ⎦

⎛ ⎞− ×
− − − − − +⎜ ⎟

⎝ ⎠
⎛ ⎞×

+ −⎜ ⎟
⎝ ⎠

∑

∑

G
G

G
G

G GG G G G GG G G G G G
=

GG G G GG G G G

G G GG

−

2
† †

2
†

2

ˆ( ) ( ) | ( )

[ ]2 ( ) ( ) | ( )
2

[ ]2 ( ) ( ) | ( )
2

ˆ[( ) ] ( ) ˆ ( ) | ( )
2

[

i z

i z

i z

i

R Q R d P

Q K li Ne Sin d P Q d K Q d P

Q K li Ne Sin d P Q d K Q d P

P Q K l K P Qi e Sin Q d P
N

e Cos

ω

ϕ

ω

ϕ

ω

ϕ

ω

ϕ

ρ

ν

ν

ρν ρ

ν

−

−

−

− − −

⎛ ⎞×
− − + +⎜ ⎟

⎝ ⎠
⎛ ⎞×

+ − − +⎜ ⎟
⎝ ⎠

⎛ ⎞− × − +
+ − −⎜ ⎟

⎝ ⎠

−

GG G G

G G G GG G G

G G G GG G G

G GG G G G G G

2 ˆ( ) ] ( ) ˆ ( ) | ( ) ;
2

zP Q K l D K P Q Q d P
N

ω

ρ
⎛ ⎞− × − +

−⎜ ⎟
⎝ ⎠

G GG G G G G G
(53) 

 

2

2

ˆ( )~ˆ( ) (2 ) | ( ) (2 ) ( ) ( , ) | ( )

[(2 ) ] ˆ ˆ2 ( ) ( ) (2 ) | ( )
2

[ ] ˆ2
2

i
kr

z
R

R

z
R

R

K PQ d K P Q d P E K P Q E Q C Ne Q K P d P
N

K P Q R li W Sin Q R d K P Q R d P

Q R li W Sin

ϕ

ω
ω

ω

ρρ ω μ ν δ

ρ ρ

⎡ ⎤ −
− − + − − − − = − − −⎢ ⎥

⎢ ⎥⎣ ⎦
⎛ ⎞− − ×

− − − − −⎜ ⎟
⎝ ⎠
⎛ ⎞×

− ⎜ ⎟
⎝ ⎠

∑

∑

G
G

G
G

G GG G G G GG G G G G G G G G
=

GG G G G GG G G G G

G G

2
†

2

2

ˆ( ) ( ) (2 ) | ( )

[ ]2 ( ) (2 ) | ( )
2

[ ]2 ( ) (2 ) | ( )
2

ˆ ˆ[( ) ] ( ) ( ) |
2

i z

i z

i z

R Q R d K P Q d P

Q K li e NSin d K Q d K P Q d P

Q K li e NSin d K Q d K P Q d P

P Q K l Q K P Qi e Sin d
N

ω

ϕ

ω

ϕ

ω

ϕ

ρ ρ

ν

ν

ρ ρν

−

− − − +

⎛ ⎞×
+ − − − −⎜ ⎟

⎝ ⎠
⎛ ⎞×

− + − − −⎜ ⎟
⎝ ⎠

⎛ ⎞+ × − −
− ⎜ ⎟

⎝ ⎠

G GG G G G G

G G G GG G G G

G G G GG G G G

G G GG G G G

2

( )

ˆˆ[( ) ] ( ) ( ) | ( ) ;
2

i z

P

P Q K l Q D K P Qe Cos d P
N

ω

ϕ

ω

ρν

+

⎛ ⎞+ × − −
+ ⎜ ⎟

⎝ ⎠

G

G G GG G G G G
(54) 

 
 

2

2

ˆ ˆ( ) ( ) | ( ) ( ) ( )

ˆ ˆ ˆ[( ) ] ( ) ( ) ( )2 |
2

ˆ ˆ ˆ[ ] ( ) ( ) ( )2 |
2

z
R

R

z
R

R

Q K P Q d P E K P Q E Q C
N

K P Q R l Q R K P Q Ri W Sin d P
N

Q R l R Q R K P Qi W Sin d P
N

ω

ω

ω

ρ ρ ω

ρ ρ ρ

ρ ρ ρ

− − ⎡ ⎤− − − − = −⎣ ⎦

⎛ ⎞− − × − − −
− −⎜ ⎟

⎝ ⎠

⎛ ⎞× − − −
− +⎜ ⎟

⎝ ⎠

∑

∑

G
G

G
G

G GG G

( )

( )

G GG G G
=

G G GG G G G G G G G

G G GG G G G G G

 



Moldavian Journal of the Physical Sciences, Vol.4, N2, 2005 
 

 163

2
†

2
†

[ ] ˆ2 ( ) (
2

ˆ( ) ( ) | ( )

[( ) ] ˆ2 ( ) (
2

ˆ ( ) (2 ) | ( ) ;

iz

i

iz

i

Q K li Sin e d K Q K P Q d P

e d Q K K P Q d P

P Q K li Sin e Q d P Q d P

e Q d K P Q d P

ϕ

ω

ϕ

ω

ϕ

ω

ϕ

ω

ν ρ

ρ

ν ρ

ρ

−

−

⎛ ⎞× ⎡+ − − −⎜ ⎟ ⎢⎣⎝ ⎠
⎤− + − − −⎥⎦

⎛ ⎞+ × ⎡− +⎜ ⎟ ⎢⎣⎝ ⎠
⎤− − − ⎥⎦

G G
) | ( )

) | ( )

−

−

G GG G G G

G GG G G G

GG G G GG G

G GG G G

                         (55) 

 

2

2

ˆˆ ( ) ( ) | ( ) ( ) ( )

ˆˆ ˆ[( ) ] ( ) ( ) ( )2 |
2

ˆˆ ˆ[ ] ( ) ( ) ( )2 |
2

[2

z
R

R

z
R

R

Q D K P Q d P E K P Q E Q C
N

K P Q R l Q R D K P Q Ri W Sin d P
N

Q R l R Q R D K P Qi W Sin d P
N

i Sin

ω

ω

ω

ρ ω

ρ ρ

ρ ρ

ν

− − ⎡ ⎤− − − − = −⎣ ⎦

⎛ ⎞− − × − − −
− −⎜ ⎟

⎝ ⎠

⎛ ⎞× − − −
− +⎜ ⎟

⎝ ⎠

+

∑

∑

G
G

G
G

G GG G

( )

( )

G GG G G
=

G G GG G G G G G G G

G G GG G G G G G

G
2

†

2
†

] ˆ( ) ( ) | ( )
2

ˆ( ) ( ) | ( )

[( ) ] ˆ2 ( ) ( ) | ( )
2

ˆ ( ) (2 ) | ( ) .

iz

i

iz

i

Q K l e d K Q D K P Q d P

e d K Q D K P Q d P

P Q K lCos e Q d P Q d P

e Q d K P Q d P

ϕ

ω

ϕ

ω

ϕ

ω

ϕ

ω

ν ρ

ρ

−

−

⎛ ⎞× ⎡ − − − −⎜ ⎟ ⎢⎣⎝ ⎠
⎤− + − − −⎥⎦

⎛ ⎞+ × ⎡− +⎜ ⎟ ⎢⎣⎝ ⎠
⎤− − − ⎥⎦

G G GG G G G

G GG G G G

GG G G GG G

G GG G G

−

               (56) 

As one can see, the second step equations (53)-(56) for the two-operator (four-particle) 
Green`s functions are exact what is the advantage of this method. They contain side by side 
with the three-operator Green`s functions other two-operator Greeen`s functions, for which in 
their turn the new equations must be deduced. It is one usual situation in the case of Green`s  
function method [13]. If one substitutes, for example, expression (53) for the two-operator 
Green`s function † ˆ( ) ( ) | ( )d P Q Q d P

ω
ρ− −
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 into the first equation (52) its contribution will 

be equal to 
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(57)   

The-two operator Green’s function (54) gives rise to the contribution to the second 
equation (52) in the form 
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The contribution of the Green`s functions (55) and  (56) to the third and fourth 
equations (52) are correspondingly  
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5. Decoupling of the elementary excitations. Shrinkage of the six-particle Green`s 
functions. 

 
Expressions (57),(58),(59),(60) are too cumbersome to be prolonged in the same way 

because the three-operator Green`s functions will be expressed through the four-operator 
Green`s functions and so on. The shrinkage of the chains of  Green`s functions can be 
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The decoupled and shrinked three-operator Green`s functions (61) being substituted into 
expressions (57) and (58) correspondingly will generate the following contributions to the 
desirable closed equations  
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  (65) 

The contributions (62)-(65) are proportional to Coulomb interaction in power two of the 
type . Formulas (57) and (58) contain side by side with the three-operator Green`s 
functions also the two-operator Green`s functions. The latter are incorporated into the terms 
proportional to 

RQW WG G

QWν G . After their expression through the three-operator Green`s functions and 
the following transformation into the one-operator Green`s functions their contribution will be 
proportional to . 2

QWν G
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The constant ν  and its dependence on μ  in our case was determined above. It is of the 
same type as (33) and its dependence on the Coulomb interaction originates from the 
dependence of μ , which was determined in [4]. In the Hartree-Fock-Bogoliubov 
approximation the chemical potential has the value [4] 

2( ) 2 ( )
HF

E K E Kμ ν− − =  
and depends linearly on the constant of the Coulomb interaction, whereas its correlation 
corrections are quadratic on this interaction. In all our next calculations we will confine 
ourselves to the self-energy parts linear and quadratic in Coulomb interaction. In these 
restrictions one can neglect all the terms containing two-operator Green`s functions in 
formulas (57)-(60) because their investements will be of the order 2

QWν G . By the same reason 

we will neglect the terms proportional to 2
QWν G . 

As a result in our present variant of the paper we will take into account the terms 
proportional to  ν , QW G , QWν G and  and will neglect  the terms proportional to ,2

QW G 3
QW G 2

QWν G  

and . In this approximation the nonlinear terms of the first and second equations (52) are   2
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2 2

†

( )
4 ( )

2 2

ˆ( ) ( )
;

~ ( ) ( )

z z
K PQ P K Q

Q

P Q l Q K P l
W W W Sin Sin

d P Q P Q K N

E P Q E Q i

ρ

ω μ δ

− − −

⎛ ⎞ ⎛⎡ ⎤ ⎡ ⎤× × −⎣ ⎦ ⎣ ⎦⎜ ⎟ ⎜− −
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎫
⎪

− − − ⎪⎪× ⎬
⎡ ⎤ ⎪− + − − − +⎢ ⎥ ⎪
⎢ ⎥ ⎪⎣ ⎦ ⎭

∑ G G G GG G
G

G GG G

G GG G G

G GG
=

⎞
⎟×
⎟
⎠

G

         (66) 

 
2

2
2 2

12

13

(2 )
ˆ2 ( ) (2 ) ( )

2

ˆ ˆ(2 ) ( ) ( )
4 (

2 ~ (2 ) ( )

2 ( )

( , )

z
Q

Q

z
Q

Q

i
K P

K P Q l
i W Sin Q d K P Q d P

K P Q l Q Q
C W Sin G P

E K P Q E Q i

P
i e W N Sin

G P

ω

ϕ

ρ

ρ ρ
, )ω

ω μ δ

ν

ω
−

⎛ ⎞⎡ ⎤− ×⎣ ⎦⎜ ⎟ 〈〈 − − 〉〉 ≈
⎜ ⎟
⎝ ⎠

⎛ ⎞⎡ ⎤− × −⎣ ⎦⎜ ⎟≈ − +
⎜ ⎟ ⎡ ⎤
⎝ ⎠ + − − − − +⎢ ⎥

⎢ ⎥⎣ ⎦

×

+ −

∑

∑

G
G

G
G

G G

GG G
G GG G G

GG G G G
G

G GG G
=

G G

G

2

2

~ ( ) ( )

z
K l

E K E K P iω μ δ

⎧ ⎛ ⎞⎡ ⎤⎣ ⎦⎪ ⎜ ⎟
⎜ ⎟⎪⎪ ⎝ ⎠ +⎨

⎡ ⎤⎪ + − − − +⎢ ⎥⎪
⎢ ⎥⎣ ⎦⎪⎩

G G G
=

 

2 2(2 ) ( )

2 2
4 ( )

~ (2 ) ( )

ˆ ( ) (2 )

z z

K PQ P Q K
Q

K P Q l Q K P l
Sin Sin

W W W

E K P Q E Q i

P Q K d K P Q N

ω μ δ

ρ

− + −

⎛ ⎞ ⎛⎡ ⎤ ⎡ ⎤− × × −⎣ ⎦ ⎣ ⎦⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎝ ⎠ ⎝+ −
⎡ ⎤

+ − − − − +⎢ ⎥
⎢ ⎥⎣ ⎦

× + − − − +

∑ G G G GG G
G

⎞
⎟
⎟
⎠ ×

G GG G G G

G GG G
=

G GG G G G
 

2

2

2 2

4
2

ˆ ( ) ( )
2~ ( ) ( )

(2 ) ( ) ( )

2 2
4

~ (2

z
K P

z
R

R

z z

K PQ
Q

P K l
W Sin

K R l
W Sin R d K R N

E K E K P i

K P Q l K Q K P l
Sin Sin

W W

E K

ρ

ω μ δ

ω μ

−

−

⎛ ⎞⎡ ⎤×⎣ ⎦⎜ ⎟
⎜ ⎟ ⎛ ⎞⎡ ⎤×⎣ ⎦⎝ ⎠ ⎜ ⎟+ −

⎜ ⎟⎡ ⎤
⎝ ⎠+ − − − +⎢ ⎥

⎢ ⎥⎣ ⎦

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤− × − × −⎣ ⎦ ⎣ ⎦⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠+

+ − −

∑

∑

G G

G
G

G G G
G

G G

G G
G G G

G G G
=

G GG G G G G

G G
=

+

ˆ ( ) ( )

) ( )

Q d K Q N

P Q E Q i

ρ

δ

⎫
⎪
⎪⎪− ⎬

⎡ ⎤ ⎪− − +⎢ ⎥ ⎪
⎢ ⎥⎣ ⎦ ⎪⎭

G GG

G G

 (67)
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Now the two first equations (52) can be written in the forms 
11 11 12 21 13 31

14 41 11
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11 12 12 22 13 32 14 42 12( , ) ( , ) ( , ) ( , )G P G P G P G P Cω ω ω ωΣ + Σ + Σ + Σ =
G G G G

ω +

                                            (68) 
Their self-energy parts are determined by the following expressions: 
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 determine the coefficients of the first equation (68). The 
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Now the remaining two equations (52) will be considered. The reduction of three-
operator Green`s functions encountered in the nonlinear terms (59) and (60) is made as 
follows 
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ˆˆ ˆ( , )) ( ) ( ) ( , ) ( ,0) ( ) ( )

kr

kr kr

D K P QR Q R d P G P R K P
N

ˆR Q P K Q P K D K P Q G P Q R R
ω

ρ ρ ω δ

δ ρ ω δ ρ

− −
− −

+ + − + − − − + −

GG GGG G G G G G G
�

G G G GG G G G G G G G G G
ρ

+
         (71) 

 

  
13

14

ˆ ( ) ˆˆ ˆ ˆ( ) ( ) | ( ) ( , )[( ( , ) ( ) ( )

ˆˆ ˆ ˆ( , )) ( ) ( ) ] ( , ) ( , ) ( ) ( ) .

kr

kr kr

D K P QQ R d P G P Q K P R D R
N

R K P Q D Q G P R Q Q Q
ω

ρ ρ ω δ ρ

δ ρ ω δ ρ ρ

− −
− − +

+ − − + − −

GG GG GG G G G G G
�

G G G G GG G G G G

G

 

 
They lead to approximate expression of two main components of (42)  
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2 2

2
2

13

ˆ ˆ ˆ( ) ( ) ( ) | ( )[( ) ] [ ]4
2 2 [ ( ) ( ) ]

[( ) ] ˆ ˆ( ) ( ) (
2

( , )4

z z
RQ

RQ

z
K PQ P K

Q
Q

R Q R K P Q d PK P Q l Q R lW W Sin Sin
E Q E K P Q i N

K P Q lW W Sin Q P K K P
G P W

ρ ρ ρ

ω δ

ρ ρ
ω

−+ −

− − −⎛ ⎞ ⎛ ⎞− × ×
≈⎜ ⎟ ⎜ ⎟

− − − − +⎝ ⎠ ⎝ ⎠
⎛ ⎞− ×

− + −⎜ ⎟
⎝ ⎠≈

∑∑

∑

G G
G G

G G GG G

G
G

− −

G GG G G G GG GG G G
G GG G

=
GG G G G G G G

G )
;

[ ( ) ( ) ]

Q

E Q E K P Q iω δ− − − − +

G

G GG G
=

(72) 

2 2

2
2

13

ˆ ˆ ˆ( ) ( ) ( ) | ( )[( ) ] [( ) ]4
2 2 [ ( ) ( ) ]

[( ) ] ˆ ˆ( , )4 ( ) ( ) ( ) .
2

z z
RQ

RQ

z
K PQ Q

Q

Q R K P Q R d PK P Q l K P Q R lW W Sin Sin
E Q E K P Q i N

K P Q lG P W W W Sin Q Q

ρ ρ ρ

ω δ

ω ρ ρ− −

− − −⎛ ⎞ ⎛ ⎞− × − − ×
≈⎜ ⎟ ⎜ ⎟

− − − − +⎝ ⎠ ⎝ ⎠
⎛ ⎞− ×

≈ − −⎜ ⎟
⎝ ⎠

∑∑

∑

G G
G G

G G G G
G

G GG G G G GG GG G G G G
G GG G

=
GG G G GG

 
Taking into account only the terms proportional to RQW WG G  and neglecting the last two 

terms in (59) because they give the contributions to the one-operator Green`s functions 

1( , )iG P ω
G

 proportional to  one will obtain 2
QWν G

2

2
2

13

ˆ[( ) ] ( )ˆ2 ( ) | ( )
2

[( ) ]( , )4
2

ˆ ˆ ˆ ˆ[( ) ( ) ( ) ( ) ( ) ( ) ]

[ ( ) ( )

z
Q

Q

z
Q

Q

K P K PQ Q P K

K P Q l K P Qi W Sin Q d P
N

K P Q lC G P W Sin

W W Q Q W W Q P K K P Q

E Q E K P Q

ω

ρρ

ω

ρ ρ ρ ρ

ω
− −− + −

⎛ ⎞− × − −
≈⎜ ⎟

⎝ ⎠

⎛ ⎞− ×
≈ + ×⎜ ⎟

⎝ ⎠

− − + − + − − −
×

− − − − +

∑

∑

G
G

G
G

G G G G G GG G

G GG G G GG G

GG GG

G G G GG G G G

G GG G
=

.
]iδ

                        (73) 

The same processing will be made with the contribution (60). Here we have obtained 

 

2 2

2
2

13

ˆˆ ˆ( ) ( ) ( ) | ( )[( ) ] [ ]4
2 2 [ ( ) ( ) ]

[( ) ]( , )4 ( )
2

ˆˆ ( ) (

z z
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z
K PQ Q P K

Q

R Q R D K P Q d PK P Q l Q R lW W Sin Sin
E K P Q E Q i N

K P Q lG P W W W Sin

Q P K D K

ω
ρ ρ

ω δ

ω

ρ

−+ −

− − −⎛ ⎞ ⎛ ⎞− × ×
≈⎜ ⎟ ⎜ ⎟

− − − − +⎝ ⎠ ⎝ ⎠
⎛ ⎞− ×

≈ − ×⎜ ⎟
⎝ ⎠

+ − −
×

∑∑

∑

G G
G G

G G G GG G
G

G GG G G G GG GG G G
G GG G

=
GG GG

G G G G
)

;
[ ( ) ( ) ]

P Q

E K P Q E Q iω δ

−

− − − − +

GG

G GG G
=

 

2 2

2
2 2

13

ˆˆ ˆ( ) ( ) ( ) | ( )[( ) ] [( ) ]4
2 2 [ ( ) ( ) ]

ˆˆ ( ) ( )][( ) ]( , )4
2 [ ( ) (

z z
RQ

RQ

z
Q

Q

Q R D K P Q R d PK P Q l K P Q R lW W Sin Sin
E Q E K P Q i N

Q D QK P Q lG P W Sin
E Q E K

ω
ρ ρ

ω δ

ρ
ω

ω

− − −⎛ ⎞ ⎛ ⎞− × − − ×
≈⎜ ⎟ ⎜ ⎟

− − − − +⎝ ⎠ ⎝ ⎠

−⎛ ⎞− ×
≈ ⎜ ⎟

− − −⎝ ⎠

∑∑

∑

G G
G G

G
G

G GG G G G GG GG G G G G
G GG G

=
G GGG GG

G G
=

2
2 2

14

) ]

ˆ ˆ( ) ( )][( ) ]( , )4 .
2 [ ( ) ( ) ]

z
Q

Q

P Q i

Q QK P Q lG P W Sin
E Q E K P Q i

δ

ρ ρ
ω

ω δ

−
− +

−⎛ ⎞− ×
− ⎜ ⎟

− − − − +⎝ ⎠
∑ G
G

GG

G GGG GG
G GG G

=

(74) 

In the same approximation as was applied to (59), the nonlinear term will be determined 
as equal to 
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2
2

13

14

ˆ[( ) ] ( )ˆ2 ( ) | (
2

[( ) ]( ) ( , )4
2

ˆ ˆˆ ˆ[( ) ( ) ( ) ( ) ( ) ]
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z
Q

Q

z
Q

Q

K PQ P K Q

K P Q l D K P Qi W Sin Q d P
N

K P Q lC G P W Sin

W W Q P K D K P Q W Q D Q

E Q E K P Q i

G

ω

ρ

ω ω

ρ ρ

ω δ
−+ −

⎛ ⎞− × − −
≈⎜ ⎟

⎝ ⎠

⎛ ⎞− ×
≈ + ×⎜ ⎟

⎝ ⎠

− + − − − + −
× −

− − − − +

∑

∑

G
G

G
G

G G G GG G

G
)

GG G G GG G

GG GG

G G GG G G G

G GG G
=

G

2
2 2

ˆ ˆ( ) ( )[( ) ]( , )4 .
2 [ ( ) ( )

z
Q

Q

Q QK P Q lP W Sin
E Q E K P Q i

ρ ρ
ω

]ω δ

−⎛ ⎞− ×
⎜ ⎟

− − − − +⎝ ⎠
∑ G
G

G GGG GG
G GG G

=

                        (75) 

Now we will substitute the nonlinear terms (74) and (75) into the third and fourth 
equations (52) correspondingly. These two equations can be written in the forms 

11 13 12 23 13 33

14 43 13

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , )

G P P G P P G P P

G P P C

ω ω ω ω ω

ω ω

Σ + Σ + Σ

+ Σ =

G G G G G G

G G
ω +

+

                                          (76) 

     11 14 12 24 13 34

14 44 14

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , )

G P P G P P G P P

G P P C

ω ω ω ω ω ω

ω ω

Σ + Σ + Σ

+ Σ =

G G G G G G

G G

Their self-energy parts are: 
2

13

2

23

2
2

33

[ ]( , ) 2 ;
2

[ ]( , ) 2 ;
2

[( ) ]( , ) ( ) 4
2

ˆ ˆ ˆ ˆ[( ) ( ) ( ) ( ) ( ) (

i z

i z

z
Q

Q

K P K PQ Q P K
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K P Q lP E K P W Sin

W W Q Q W W Q P K K P

ϕ

ϕ
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ω ν

ω ω
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−

− −− + −

⎛ ⎞×
Σ = ⎜ ⎟

⎝ ⎠
⎛ ⎞×

Σ = − ⎜ ⎟
⎝ ⎠

⎛ ⎞− ×
Σ = − − + ×⎜ ⎟

⎝ ⎠

− − + − + − − −
×

∑ G
G

G G G G G GG G

G GG

G GG

GG GG G G
=

G G G G G G G
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;
[ ( ) ( ) ]

Q

E Q E K P Q iω δ− − − − +

G

G GG G
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2
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2

24

(0) 0;

[ ]( , ) 2 ;
2

[ ]( , ) 2 ;
2

i z

i z
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P K lP e Cos

ϕ

ϕ
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ω ν −

Σ =

⎛ ⎞×
Σ = ⎜

⎝ ⎠
⎛ ⎞×
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⎝ ⎠

G GG

G GG

⎟                                                 (77) 
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×
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−
×

∑

∑

G
G
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G
G
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G G GG G G G

G GG G
=

GG GG G G
=

G

G

)
.

[ ( ) ( ) ]

Q

E Q E K P Q iω δ− − − − +

G

G GG G
=

 

The self-energy part (69) and (77) determine the full set of self-energy parts in the 
approximation which is equivalent to the taking into account of the correlation energy in the 
frame of coherent excited states discussed in [4,5] beyond the Hartree-Fock-Bogoliubov 
(HFB) approximation. But before we will study the energy spectrum in a simpler approach.    
 

6. Energy spectrum in the Hartree-Fock-Bogoliubov approximation. 
 

The exact equations for the Green`s functions (47) following expressions (52), (57)-(60) 
contains terms of type  linear in the Coulomb interaction ( )E p QW G , the terms of the type 

 quadratic in the Coulomb interaction as well as the mixed terms RQW WG G
QWν G , where the 

constant ν  characterizing the broken symmetry is proportional to 
_

( ( ) )E k μ− , if the BEC of 
magnetoexcitons takes place on the state with 0k ≠

G
. The last relation was established in (42). 

The chemical potential μ  was deduced in [4,5] and it also contains terms proportional to QW G  

and . In the Hartree-Fock-Bogoliubov (HFB) approximation we will confine ourselves 

only with the terms linear in Coulomb interaction 

2
QW G

QW G . The possibility of such approach must 
be verified posteriory. If so, equation (52) for the Green`s functions (47) will take the simple 
forms of Dyson equations with zeroth-order, or (HFB) self-energy parts ( , )HF

ij P ω∑  as 

follows  
( , ) ( , ) ( , )
11 1 12 2 13 3

( , )
14 4 1

( , ) ( , ) ( , )

( , ) ;

P HF P HF P HF
i i i

P HF
i i

G P G P G P

G P C

ω ω ω

ω

ω ω ω

ω

+ + +

=

∑ ∑ ∑

∑
                                  (78) 

1, 2,3, 4i =                   
 

If one will introduce the Green`s functions and self-energy parts in the matrix forms and 
if we will add a matrix formed by the coefficients  ijC

ˆ ( , ) ( , ) ;ijG P G Pω ω=
G G

 ˆ ( , ) ( , )HFHF
ij

P Pω ω∑ = ∑
G G

 ˆ
ijC C=                      (79) 

it will permit to write the Dyson equation in a matrix form 
ˆˆ ˆ( , ) ( , )HFG P P Cω ω∑ =

G G
                                (80) 
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Equations (68) coincide with one part of equations (80). The other part is not needed 
because they lead to the same dispersion equation as equations (52) do. The self-energy parts 

( , )HF

ij
P ω∑
G

 introduced into formulas (54), (55), (56) are listed below   

11
~( , ) ( ) ;

HF
HF P E Pω ω μ= + −∑
G G

=                         21 ( , ) 0;HF P ω =∑
G

 

2

31
[ ]( , ) ;

2
HF HF i zP K lP i e Sinϕω ν − ⎛ ⎞×

= − ⎜ ⎟
⎝ ⎠

∑
G GG

      
2

41
[ ]( , ) ;

2
HF HF i zP K lP e Cosϕω ν − ⎛ ⎞×

= ⎜ ⎟
⎝ ⎠

∑
G GG

 

12 ( , ) 0;HF P ω =∑
G

                                          22
~( , ) (2 );

HF
HF P Eω ω μ= + − −∑ K P
G G G

=               (81) 

2
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⎝ ⎠
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G GG
      

2
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2
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⎛ ⎞×
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⎝ ⎠
∑

G GG
 

2
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[ ]( , ) 2 ;

2
HF HF i zP K lP i e Sinϕω ν

⎛ ⎞×
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⎝ ⎠
∑

G GG
    

2

23
[ ]( , ) 2 ;

2
HF HF i zP K lP i e Sinϕω ν − ⎛ ⎞×

= − ⎜ ⎟
⎝ ⎠

∑
G GG

 

33 ( , ) ( );HF P E Kω ω= − −∑
G G

= P
G

                      43 ( , ) 0;HF P ω =∑
G

 

2
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[ ]( , ) 2 ;

2
HF HF i zP K lP e Cosϕω ν

⎛ ⎞×
= ⎜ ⎟

⎝ ⎠
∑

G GG
      

2

24
[ ]( , ) 2 ;

2
HF HF i zP K lP e Cosϕω ν − ⎛ ⎞×

= − ⎜ ⎟
⎝ ⎠

∑
G GG

 

44 ( , ) ( );HF P E Kω ω= − −∑
G G

= P
G

                        34 ( , ) 0.HF P ω =∑
G

 

The values ~μ  and ν  of the zeroth order are denoted by ~ HF
μ and HFν . It corresponds 

to the Hartree-Fock-Bogoliubov (HFB) approximation. Following formula (42) [4] 

  2
_

( ) 2 ( )
HF

E k E kμ ν− = −
The energy spectrum is determined by the solution of the determinant equation 

det ( , ) 0HF
ij P ω =∑                                              (82) 

which has the form 
11 31 41

22 32 42

13 23 33

14 24 44

( , ) 0 ( , ) ( , )

0 ( , ) ( , ) ( , )
0

( , ) ( , ) ( , ) 0

( , ) ( , ) 0 ( , )

HF HF HF

HF HF HF

HF HF HF

HF HF HF

P P

P P P

P P P

P P P

ω ω

ω ω ω

ω ω ω

ω ω ω

P ω

=

∑ ∑ ∑
∑ ∑ ∑

∑ ∑ ∑
∑ ∑ ∑

                    (83) 

The expressions ( , )HF
ij P ω∑

G
 obey one exact relation 

31 13 42 24 32 23 41 14

31 23 42 14 32 13 41 24

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

HF HF HF HF HF HF HF HF

HF HF HF HF HF HF HF HF

P P P P P P P P

P P P P P P P P

ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω

+ −

− −

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ 0=
(84) 
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ω =

P

It leads to simplification of the dispersion relation (83), which will take the form 

                                      (85) 
11 22 33 44

2
11 33 22 44

( , ) ( , ) ( , ) ( , )

2( ) ( , ) ( , ) ( , ) ( , ) 0

HF HF HF HF

HF HF HF HF HF

P P P P

P P P P

ω ω ω ω

ν ω ω ω

−

⎛ ⎞− +⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
Due to the equality 33 44( , ) ( , )HF HFP ω ω=∑ ∑ , this dispersion relation can be factorized 

and two relations can be written. One of them describes the simple plasmon solution 
        33 ( ) 0;HF P =∑ ( )E K Pω = −

G G
=                                                  (86) 

The other one is the third order equation 
2

11 22 44 11 22( , ) ( , ) ( , ) 2( ) ( , ) ( , ) 0HF HF HF HF HF HFP P P P Pω ω ω ν ω ω⎛ ⎞− +⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑ =

×

2 =

                  (87) 

which takes the form 

2 2

2

~ ~( ) ( ) ( ) (2 ) ( ( ) (2 )) ( ( ) (2 ))

( ( )) 2( ) (2 ( ) (2 )) 0

HF HF

HF

E P E K P E P E K P E P E K P

E K P E P E K P

ω μ ω μ

ω ν ω

⎡ ⎤
⎢ ⎥− − − + − − + + −
⎢ ⎥
⎣ ⎦
× − − − + − − =

G G G G G G G G G
= =

G G G G G
= =

 (88)   

In the special case  it looks as P K=
G G

3 2~( ) ( ( ) ) 4( ) 0
HF

HFE Kω ω μ ν
⎡ ⎤
⎢ ⎥− − +
⎢ ⎥
⎣ ⎦

G
= =  

and has three solutions 
1

2 2
2,3

( ) 0

~( ) ( ( ) ) 4(
HF

Hf

P K

P K E K

ω

ω μ

= =

= = ± − +

G G
=

G G G
= )ν

                                     (89) 

Now the more general case will be considered introducing the small deviation of the 
vector  from the condensate wave vector P

G
K
G

 in the form P K q= +
G G G  and using the series 

expansions on the small wave vector qG  as follows  
2 2

g( ) ( ) ( ) v ( )
2 ( )

qE P E K q E K K q
M K

= + = + +
G G G G =G G G G=  

g
( )v ( ) ;E KK
K

∂
=

∂

GGG G           
2

2

2

( ) ;
( )

( )

M K
E K
K

=
∂
∂

G = G                                   (90) 

( ) (E K P E q− =
G G

);G         (2 ) ( )E K P E K q− = −
G G G G  

Here the group velocity  and the magnetic mass gv ( )K
GG ( )M K

G
 at the condensate wave 

vector  are introduced.  K
G

Then the coefficients of equation (88) will become  
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(

( )

g

2
2 2 2

g

g

( ) (2 ) 2 v ( )

~ ~ ~( ) (2 ) ( ) v ( )
2 ( )

( ) ( ) (2 ) 2 ( ) v ( )

HF HF HF

E P E K P K q

qE P E K P E K K q
M K

E K P E P E K P E q K q

μ μ μ

− − =

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− − − = − + −
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

− − − =

G G G GG G=

G G G G = G GG =

G G G G G GG G G=

)G
 ;       (91) 

The third order dispersion equation (88) looks as complete cubic equation  

( ) ( ) ( ) ( )

( ) ( )

2
2 2 223 2

g g

2
2 2 22

g g

~2 v ( ) ( ) v 2 ( ) v 4
2 ( )

~( ) ( ) v 4 v 0
2 ( )

HF
HF

HF
HF

qq E q E K q E q q
M K

qE q E K q q
M K

ω ω ω μ ν

μ ν

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎡ ⎤+ − − − + − + +⎣ ⎦ ⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟− + − − =⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

G =G G G G G GG= = = = = =

= G G G GG = =

g +

 (92) 

It can be transformed by the substitution  

( g
1( ) ( ) ( ) 2 v
3

q y q E q qω = + −
G G= = )                     (93) 

into the incomplete cubic equation  
3 0y py g+ + =                        (94) 

with  the coefficients ( )p q and  ( )g q

( ) ( )
2

2 2 2 2

g
1~( ) ( ) 4 v ( ) 0
32 ( )

HF
HFqp q E K q E q

M K
μ ν

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − + + + + <⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

G = G GG =                               (95) 

( ) ( ) (
2

2 2 2 2

g g
2 1~( ) ( ) v ( ) 2 ( ) v
3 92 ( )

HF
HFqg q E q q E K E q q

M K
μ ν

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= + − + − − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

G =G G G GG= = )             (96) 

Because , the value ( ) 0p q <
3 2

3 2
p qQ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
can be negative, if 

3 2

3 2
p q⎛ ⎞ ⎛ ⎞− >⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. In 

this irreducible case there are trigonometric solutions for three real roots of equation (94). 
They are [29]  

( )

1

2,3

3

( )( )( ) 2 3 3
( ) 2( )2 3 3 3

( )( ) ;
( )2 3

qp qy q Cos

qp qy Cos

g qCos q
p q

α

α π

α

= −

⎛= − − ±⎜
⎝ ⎠

= −

−

⎞
⎟                                                 (97)  

    ( ) 1.Cos qα <         
The final solutions for the dispersion relations are  
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( )

1 g

2,3 g

3

1 2 ( )( )( ) ( ) v 2 33 3 3
1 2 ( ) 2( )( ) ( ) v 2 33 3 3

( )( ) ;
( )2 3

qp qq E q q Cos

qp qq E q q Cos

g qCos q
p q

αω

3
α πω

α

= − + −

⎛ ⎞= − + − ±⎜ ⎟
⎝ ⎠

= −

−

G G= =

G G= = ;      
3 2

3 2
p g⎛ ⎞ ⎛ ⎞− >⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
            (98) 

4 ( ) ( )q E qω ==      
In the limit  0q →

( )
2

2~(0) ( ) 4 ;
HF

HFp E K μ ν
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

G
  3(0) 0, (0)

2
g πα= =  

(0) ;
3 2

α π
=    (0) 2 2 3

3 3 2 3 2
Cos Cosα π π π⎛ ⎞ ⎛ ⎞± = ± =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∓                (99) 

1 4(0) (0) 0;ω ω= == =   ( )
2

2

2,3
~(0) ( ) 4

HF
HFE Kω μ

⎛ ⎞
⎜ ⎟= ± − +
⎜ ⎟
⎝ ⎠

G
= ν  

what coincides with formula (89). The fourth solution (86) ( )E K P−
G G

 equals  and also 
tends to zero when .   

( )E q
0q →

Now the value ν  and its relation with chemical potential μ  will be confirmed from 
another side. To do it, we will start with motion equation (41) for the macroscopical large 
amplitude of the coherent magnetoexcitons with  wave vector K

G
neglecting the influence on it 

of the noncoherent quasiparticles. It has the form   

( )2~( ) ( ) ( ) 1 2vidi d K E K d K Ne
dt

ϕμ ν
⎛ ⎞
⎜ ⎟= − − −
⎜ ⎟
⎝ ⎠

G
= ;              (100) 

( )( )2~( ) ( ) 1 2vE K E Kμ μ
⎛ ⎞
⎜ ⎟− = − −
⎜ ⎟
⎝ ⎠

 

where we have put approximatively  
ˆ (0) 0;e hN Nρ ≅ − =        2ˆ (0) 2 2 ve h exD N N N N≈ + ≈ =                                        (101) 

where is the filling factor of the LLL. Equation (100) has the form, as it was discussed by 
Khadzhi in this theory of coherent nonlinear light propagation in the exciton range of 
spectrum [30]. The time-dependent solution of equation (100) was find [30] in the form  

2v

( )

~( )

0
( , )

( )

i E K t
i tNed K t Ce

E K

μ
ϕ δ

δ

ν
μ

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠− −

→+
= +

−
=                         (102) 

In the limit  the damped oscillatory term vanishes and the stationary solution is 
established. It was determined in [4] as equal to  

t →∞

( ) vi i
exd K N e e Nϕ ϕ= =   
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Substituting it in equation (102) we will find in full accordance with (42) 
( ( ) vE K )ν μ= −                           (103) 

It differs from expression (33) by the term , which is due to BEC on the state with 
. It is a general relation, which is true also for 

( )E K
0K ≠ HFν and HFμ . 

 In such a way we have all necessary parameters to investigate and calculate numerically 
the desirable dispersion relations on the base of analytical solutions (98)  
obtained in the HFB approximation. The group velocity  is represented in fig.1, whereas 
the dispersion relations are drawn in plots 2-5, which correspond to condensate wave vectors 

, 1;3,6 and 4,6. They are represented in three observation geometries when the wave 
vector  of the elementary excitation is parallel, anti parallel or perpendicular to the 
condensate wave vectors . There are four branches of the energy spectrum, two of which 
correspond to acoustical and optical plasmon branches. Other two branches belong to BEC-ed 
magnetoexcitons. One of them is named as quasienergy branch. Mathematically they appear 
due to the fact that in Bogoliubov theory of BEC side by side with the exciton annihilation 
operator  one must take also into account the complex of three operators 

( )gV k

0kl =
qG

k
G

( )d P 2 †(0) ( )d d P− . 
The states described by these operators have the bare energies  and 

 correspondingly. Side by side with the branch  another 
branch  also appears, what is named as quasienergy branch. 

( ) ( )ex lE P I E P= − +
2 (0) ( ) (ex ex lE E P I E− − = − − − )P ( )E P

( )E P− −
From the physical point of view the BEC-te is nothing but an unlimited source of 

energy without a definite number of quanta, which permits to add or to substract to the energy 
quantum of any quasiparticle some energy quanta of the condensate. Just these four branches 
can be observed in fig.1. There are threefold degenerate branch  describing the two 
plasma branches and one energy branch of the BEC-ed magnetoexcitons. The fourth branch is 
a quasienergy branch and has a dispersion with the sign minus in comparison with the exciton 
energy branch. In the case  the two-dimensional magnetoexcitons form an ideal 
degenerate Bose gas because the interaction between the excitons without the motional dipole 
moments exactly equals zero. By this reason the energy branches of elementary excitations 
coincide with the energy spectrum of the bare noninteracting particles. The exciton-type 
branches of the collective elementary excitations do not contain the ionization potential 

( )E P

0k =

lI . It 
happens because in order to excite one exciton already existing in the componence of the 
condensate with wave vector  it is necessary to change the initial exciton energy 0k = lI−  so 
as to transfer it in the state with wave vector q  and final state energy ( )lI E q− + . The 
excitation energy is equal only to . This fact was mentioned first in [3]. ( )E q

When the condensate wave vector k increases so as kl equals 1;3,6 and 4,6 the attractive 
interaction between the magnetoexcitons appears, what makes the state of BEC-ed 
magnetoexcitons unstable. One can observe that in the next three figures one branch remains 
the same. It is not affected by the changes arised in other three branches. Only the acoustical 
plasmon branch is interconnected with two BEC-ed exciton branches. It results from the 
factorization of the fourth order determinant equation (66) and from subsequent equations 
(69), (71) and (77). Three remaining branches are interconnected and influence each other. 
When the condensate wave vector k

G
 increases it leads to the appearance of the growing 

attractive interaction in the system and to instabilities of the energy spectrum of the 
elementary excitations deduced in the frame of the HFBA. As was observed in the 
Introduction, the lowering of the positive energy spectrum of any branch in dependence on 
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the wave vector means the appearing of the soft mode. It testifies that the system tends to pass 
in another phase.  
  Dispersion relations (98) for 1 2 3, ,ω ω ω  depend on the group velocity , in the form ( )gV k

GG

2 ( )
3 gV k q−

GG G= , what is proportional to ( )k q−
G Gi , because ( )gV k

GG
 following (90) is proportional to 

. Due to such structure of expressions (98) there is a supplementary negative term in one 
geometry, when  is parallel to . This term becomes positive in the antiparallel orientation 
of   and  and turns to be zero when 

k
G

qG k
G

qG k
G

qG  is perpendicular to k
G

.  The negative term leads to 
negative values of one branch of the energy spectrum of the elementary excitations and such 
behavior takes place at all three values of the condensate dimensionless wave number 

 1;3,6;4,6.kl =
In fig.1 the group velocity ( )gV k

GG
 in dependence on  is represented. It has a maximum 

in the region of   
kl

1.kl ≅
In the next four figures the energy spectra for different values of  as well as for 

different geometries of observation are drawn. One can conclude that in the HFBA all energy 
spectra at kl  different from zero and reveal the instabilities of the system due to the 
attractive exciton-exciton interaction.           

kl

2v 0.3= 2

 
                                             

                            

( ) / l
g

I lV k
=

  

Fig.1. The group velocity V  of the magnetoexciton in units equal to ( )g k lI l
=

. 
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Fig.2.The energy spectrum of elementary excitations in the case when kl equals 0. 
The upper branch is threefold degenerate. 

 

   

a) qG  parallel to  k
G

  

b) qG  perpendicular to  k
G
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c) qG  antiparallel to k  
G

  
Fig.3. The energy spectrum of elementary excitations in the case when kl equals 1 for three different 

geometries of the observation: 

 

a) qG  parallel to  k
G

 

b) qG  perpendicular to  k
G
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c) qG  antiparallel to k
G

 

Fig.4. The energy spectrum of elementary excitations in the case when kl equals 3,6 for three different 
geometries of observation. 

 

a)  parallel to  qG k
G

 

 

b) qG  perpendicular to  k
G
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c) qG  antiparallel to k
G

 

Fig.5. The energy spectrum of elementary excitations in the case when kl equals 4,6 for three 
different geometries of observation. 

 
7. Self-energy parts in more complex expressions 

 
The self-energy parts (69), (70) and (77) contain the average values of the types 

†ˆˆ ˆ ˆ ˆ ˆ, ,D d and dρρ ρ ρ ρ . They may be calculated in different approximations. Because 

the more important averages happened to be of the type ˆ ˆρρ , we will discuss below the 
different approximations on the base of this example. The simpler way is to use the ground 
state wave function ( )g kψ  (28) of the BEC-ed magnetoexcitons and to calculate the 

averages in this approximation using the ,p pα β  representation instead of  

representation because the function 

,p pa b

( )g kψ  plays the role of vacuum state for the ,p pα β  
operators. 
Transforming the operators  and  in †ˆ ( ), ( ), ( )Q D Q d Pρ

G G
( )d P ,p pα β  representation and using 

the Wick theorem [26] we have found 

       

( )

2
2 2 2

2
2 2 2

2 2 2

[ ]ˆ ˆ( ) | ( ) ( ) | ( ) 4
2

[ ( )]ˆ ˆ( ) | ( ) ( ) | ( ) 4
2

ˆˆ( ) | ( ) ( ) | ( ) 2 [ ]

z
g g

z
g g

g g z

K Q lk Q Q k u v NSin

K Q P lk Q P K K P Q k u v NSin

k Q D Q k iu v NSin K Q l

ψ ρ ρ ψ

ψ ρ ρ ψ

ψ ρ ψ

⎛ ⎞×
− = ⎜ ⎟

⎝ ⎠
⎛ ⎞× +

+ − − − = ⎜ ⎟
⎝ ⎠

− = ×

GGG G

GG GG GG G G G

G G GG

    

      
( )2 2 2

2
† 3

ˆˆ( ) | ( ) ( ) | ( ) 2 [ ( )]

[ ]ˆ( ) | ( ) ( ) | ( ) 2
2

g g

z
g g

k Q P K D K P Q k iu v NSin K P Q l

K Q lk d K Q Q k N iuv NSin

ψ ρ ψ

ψ ρ ψ

+ − − − = × +

⎛ ⎞×
− − = ⎜ ⎟

⎝ ⎠

G GG G G G G G

GGG GG
z

G
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2
† 3

2
3

2
3

[ ( )]ˆ( ) | ( ) ( ) | ( ) 2
2

[ ]ˆ( ) | ( ) ( ) | ( ) 2
2

[ ( )]ˆ( ) | ( ) (2 ) | ( ) 2
2

z
g g

z
g g

z
g g

K P Q lk d P Q P Q K k N iuv NSin

K Q lk Q d K Q k N iuv NSin

K P Q lk P Q K d K P Q k N iuv NSin

ψ ρ ψ

ψ ρ ψ

ψ ρ ψ

⎛ ⎞× −
− − − = ⎜ ⎟

⎝ ⎠
⎛ ⎞×

− = − ⎜ ⎟
⎝ ⎠

⎛ ⎞× +
+ − − − = − ⎜ ⎟

⎝ ⎠

GG GG GG G G

GGG GG

GG GG GG G G G

   (104) 

The first two averages contain the coherence factor 
2

2 [ ]
2

zK Q lSin
⎛ ⎞×
⎜
⎝ ⎠

⎟

GG
, which is sign 

well determined and positive function at any values of wave vector Q
G

, whereas the another 
averages are represented by sign variable dependences and this fact will diminish significantly 
in some cases their contributions to the self-energy parts. The calculation of the average ˆ ˆρρ  
is in strong relation with the determination of the ground state energy and of correlation 
energy in papers [4,5]. 

The starting expression in these papers is 

                          ( )
2

†

0

1 1ˆ ˆ ˆ0 | ( ) ( ) | 0 ( )
2 2Q Q n

n
W Q Q W Qρ ρ ρ− = ∑G G

G G G
    ,                                  (105) 

where 0  denotes the ground state wave function and n  represents the wave function of the 

excited states. When the ground state wave function 0  was chosen in the form ( )g kψ  and 
the coherent excited states (46)-(56) [4] were used, they led to the expression 

                     ( )
2

†

0
0

1 ( ) Im
2 2 ( )Q HFn

n

dW Q
Q

ωρ
π

1
ε ω

∞ ⎛ ⎞
= − ⎜

⎝ ⎠
∑ ∫G

G = G ⎟              ,                                (106) 

which contains dielectric function of the system ( , )HF Qε ω
G

 in the HF approximation. The 
idea suggested by Nozieres and Comte [31] and the method proposed by them is based on the 
affirmation that the more exact value of expression (105) can be obtained if the dielectric 
constant ( , )RPA Qε ω

G
 in the random phase approximation (RPA) will be substituted in formula 

(106) instead of the value ( , )HF Qε ω
G

. 
This idea was applied when instead of approximation (82) in [4] the more exact 

expression (83) was used.  
The possible ground in favour of this method is the supposition that the ground state 

wave function 0  of the BEC-ed magnetoexcitons in not exactly equal to ( )g kψ  but 
contains some superposition with other states, which make the variational wave function more 
flexible with lower energy of the ground state. As one can see from expression (2.154) [25] 
between new states engaged in this contribution there are the excited states with two free e-h 
pairs outside the condensate. On the same grounds we can expect that the more exact value of 
the chosen expression will be 

              
0

1 ˆ ˆ( ) ( ) Im
2 2 ( , )Q RPA

dW Q Q
Q

ωρ ρ
π

1
ε ω

∞ ⎛ ⎞
− = − ⎜

⎝ ⎠
∫G

G G = G ⎟                                                     (107) 

The both expressions of the dielectric constants ( , )HF Qε ω
G

 and ( , )RPA Qε ω
G

 differ by 
their dependences on the polarizability of the system 04 ( ,HF Q )πα ω

G
, as follows 
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0

0

( , ) 1 4 ( , )
1 1 4 ( , )
( , )

RPA HF

HF
HF

Q Q

Q
Q

ε ω πα ω

πα ω
ε ω

= +

= −

G G

G
G

                                                                        (108) 

In the case of BEC-ed magnetoexcitons their polarizability due to the coherent excited 
states in the frame of LLL approximation, without taking into account of the excited Landau 
levels (ELL) was deduced in [4] and has the form 

2
2 2 2

0
[ ] 1 14 ( , ) 4

2 ( ) ( )
HF z

Q
ex ex

K Q lQ u v NW Sin
I k i I k i

πα ω
ω δ ω δ

⎛ ⎞ ⎡ ⎤×
= − −⎜ ⎟

G

⎢ ⎥− + + +⎣ ⎦⎝ ⎠
G

GG
= =

0; →   (109) δ

It contains in the first fraction a resonant denominator, when ω=  equals the ionization 
potential ( )exI k  of the magnetoexciton with wave vector k

G
. The singularity of expression 

(109) resulted in the case of correlation energy in its singular dependence of the type 1
( )exI k

 

when ( )exI k  tends to zero in the limit . To avoid both singularities in paper [5] instead 
of the infinitesimal value 

k →∞
0δ →  a finite value of the exciton level damping rate γ  was 

introduced, which transforms expression (109) and its real and imaginary parts as follows 

             
( )

0 0,1 0,2

2
2 2 2

4 ( , ) 4 ( , ) 4 ( , )

[ ]4 ( ,
2

HF HF HF

z
Q

Q Q i Q

K Q lu v NW Sin k i k

πα ω πα ω πα ω

ω ω

= + =

⎛ ⎞×
= − ∑ + Γ⎜ ⎟

⎝ ⎠
G

G G G

GG
) ( , ) ,
G G                                            (110) 

where 

          
( ) ( )

( ) ( )

2 22 2

2 22 2

( ) ( )( , ) ,
( ) ( )

1 1( , )
( ) ( )

ex ex

ex ex

ex ex

I k I kk
I k I k

k
I k I k

ω ωω
ω γ ω γ

ω γ
ω γ ω γ

− +
∑ = −

− + + +

⎡ ⎤
Γ = −⎢ ⎥

+ + − +⎢ ⎥⎣ ⎦

G = =
= =

G

= =

                                           (111) 

The needed imaginary part approximately equals 

           0,2 0,1 0,2
1Im 4 ( , ) 2 4 ( , ) 4 ( , )
( , )

HF HF HF
RPA Q Q

Q
Qπα ω πα ω πα

ε ω
⎛ ⎞

= − + ∗ ∗⎜ ⎟
⎝ ⎠

G G
G ω

G
                       (112) 

 
It leads to the desirable average value 

0

2 24 4 2
2 2 2 4

1ˆ ˆ( ) ( ) Im
( , )

16 v ( )
4 v ( )

2 ( ) 2

Q RPA

Qz z
Q

ex

dW Q Q
Q

K Q l K Q lu W N
u NW Sin Sin

I k

ωρ ρ
π ωε

∞ ⎛ ⎞
− = − =⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤× ×⎣ ⎦ ⎣ ⎦⎜ ⎟ ⎜ ⎟= −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝

∫G

G
G

G G = G

G GG G

⎠                    (113) 
if the infinitesimal damping rate 0δ → +  is used. The first term of (113) coincides exactly 
with the result (104) obtained in the HFA. The second term of (113) corresponds to 
correlation energy corrections, when the ground state energy is calculated. It contains the 
singular dependence on ( )exI k  discussed above. Taking into account the finite exciton 
damping rate γ and calculating the integral 
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0

2 2

2 2

1( ) ( , ) ( , )
2 2

( )1
2 ( ) 2 ( ) ( )

ex

ex

ex ex ex

dS k k k
4 ( )I k

I karctg
I k I k I k

ω πω ω
π π

γ γ
γ γ

∞ ⎡
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⎣
⎤⎛ ⎞−

− −

−

⎥⎜ ⎟ +⎝ ⎠ ⎦

∑∫
=

                (114) 
we will obtain the chosen expression without singularity 

( )

( )

2
2 2 2

24 4 2
4

ˆ ˆ( ) ( ) 4 v
2

16 v ( )
( ) 2

z
Q Q

z
Q

ex

K Q l
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K Q lu T k W N Sin
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⎜ ⎟
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−

GG
G G
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 ,                       (115) 
where  has the limiting expressions ( ) 4 ( ) ( )exT k S k I k=

( ) 1

0
( )ex

T k

I k
γ

=

→
 ; 

3
( )2( )

3
( ) 0

ex

ex

I kT k

I k
π γ

γ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

→
              (116) 

Now the more complete expressions for the self - energy parts will be calculated. They 
are listed below. 

The diagonal self - energy parts ( , )
ii

P ω∑
G

 were calculated taking also into account the 

terms proportional to  side by side with 4 4 3v Qu W G 2 2 2v Qu W G . 
2 2

2 2

2 2 2
11

2 2
2 4

4 4
3 2

2 2~( , ) ( ) 16 v
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z z
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G GG G

=

  (117) 

 
The nondiagonal self - energy parts ( , )

ij
P ω∑
G

 with i j≠  do not contain the average 

ˆ ˆ( ) ( )Q Qρ ρ −
G G

 and in their expressions there are no terms proportional to  :  3
QW G
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            (118) 

First of all we are interested to determine the energy spectrum of the collective 
elementary excitations with the wave vectors P

G
 not so far from the condensate wave vector 

, so that . There are seven more cumbersome expressions K
G

P K q= +
G G G ( , )

ij
P ω∑
G

 (117) and 

(118) and the remaining other simpler expressions ( , )
ij

P ω∑
G

 (69), (70) and (77), which in 

dependence on  and qG ω  have the forms ( , )
ij

q ω∑ G  
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Three nondiagonal self-energy parts 
31

( , )q ω∑ G , 
32

( , )q ω∑ G  and 
34

( , )q ω∑ G  look as 
follows 
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The remaining nine self-energy parts containing only the terms proportional to the 
parameter ν  are  
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The full set of self-energy parts ( , )ij q ω∑

G  will be used below for the calculation of the 
energy spectrum of the collective excitations beyond the HFBA. 
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8. Energy spectrum beyond the HFBA in collinear geometry 
 

The cumbersome dispersion equation in the form of fourth order determinant can be 
essentially simplified in collinear geometry when the vector product projection [ ] . It 

takes place, when  is parallel as well is as antiparallel to condensate wave vector . At this 
condition two self-energy parts vanish 

zq k× =
GG

qG k
G

                             13 23( , ) ( , ) 0q qω ω∑ = ∑ =
G G                                                                       (122) 

whereas other four self-energy parts equal to  

                        14

41
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q
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∑ =
∑ =

G
G            24

42

( , ) 2 ;
( , ) ;
q
q
ω ν
ω ν

∑ = −
∑ = −

G
G                                                     (123) 

The fourth order determinant becomes factorized in the form 

                 
11

33 22

44

( , ) 0
( , ) 0 ( , ) 0

2 2 ( , )

q
q q

q

ω ν
ω ω

ν ν ω

∑
∑ ∑ −

− ∑

G
G G

G
ν =       ,                                        (124) 

what leads to two dispersion equations. One of them is the separate equation determining the 
energy spectrum of an optical plasmon in the BEC-ed electron-hole system 
                                    33 ( , ) 0q ω∑ =

G                                                                                   (125) 
and another equation 
                                          (126) 2

11 22 44 11 22( , ) ( , ) ( , ) 2 ( ( , ) ( , )) 0q q q q qω ω ω ν ω ω∑ ∑ ∑ − ∑ +∑
G G G G G

=
determines the three interconnected branches. Two of them describe the collective elementary 
excitations of BEC-ed magnetoexcitons and the third branch describes the acoustical plasmon 
spectrum. Equation (126) is similar with equation (87) obtained in the HFBA, but their 
similitude is only apparent. Due to the chosen geometry the considerable simplification of the 
dispersion equation occurred. Below only the diagonal self-energy parts ( , )ii q ω∑

G  with 
 will be used, avoiding the more cumbersome components such as 1,2, 4i = 31( , )q ω∑

G  and 

32 ( , )q ω∑
G . 

In spite of the condition [ ]  equation (126) is not invariant under the inversion 
operation when q  is substituted by 

0zq k× =
GG

G q− G , because in the system there is a well selected 
direction determined by the BEC-ed wave vector k

G
. By this reason the elementary excitations 

with wave vectors  and  have different energies.  qG q− G

The investigations in this direction are in progress. 
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