
IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 21 (2009) 235801 (9pp) doi:10.1088/0953-8984/21/23/235801

Intra-Landau-level excitations of the
two-dimensional electron–hole liquid
S A Moskalenko1, M A Liberman2, E V Dumanov1, A G Stefan1

and M I Shmiglyuk1

1 Institute of Applied Physics of the Academy of Sciences of Moldova, Academic Street 5,
Chisinau MD-2028, Republic of Moldova
2 Department of Physics, Uppsala University, Box 530, SE-751 21 Uppsala, Sweden

Received 16 December 2008, in final form 8 April 2009
Published 11 May 2009
Online at stacks.iop.org/JPhysCM/21/235801

Abstract
The intra-Landau-level excitations of the two-dimensional electron–hole liquid are
characterized by two branches of the energy spectrum. The acoustical plasmon branch with
in-phase oscillations of electrons and holes has a linear dispersion law in the range of small
wavevectors, with a velocity which does not depend on the magnetic field strength, and
monotonically increases with saturation at higher values of the wavevectors. The optical
plasmon branch with oscillations of electrons and holes in opposite phases has a quadratic
dependence in the range of long wavelength, a weak roton-type behaviour at the intermediary
values of the wavevectors and monotonically increases with saturation similar to the case of the
acoustical branch. The influence of the supplementary in-plane electric field leads to the drift of
the charged particles in the crossed electric and magnetic fields and to the energy spectrum as in
the reference frame, where the e–h system is moving with the drift velocity. A perturbation
theory using the Green function method is developed on the basis of a small parameter
v2(1 − v2), where v2 is the filling factor and (1 − v2) displays the phase space filling effect.

1. Introduction

The plasma oscillations of the one-component electron gas in
the three-dimensional (3D) bulk crystals [1] as well as in the
two-dimensional (2D) layers are characterized by the squared

frequencies ω2
p(q) = 4πe2ne

ε0m and ω2
p(q) = 2πe2nS q

ε0m , where ne

and nS are the corresponding electron densities. Das Sarma and
Madhukar [2] have considered the two-component 2D electron
gas (2DEG). Two density fluctuation operators ρ̂1(q) and ρ̂2(q)
correspond to each layer combining in-phase and in opposite
phases forming the optical and acoustical plasmon oscillations
with the frequencies ωOP(q) ∼ √

q and ωAP(q) ∼ q in
the range of small wavevectors q . Kasyan et al [3, 4] have
investigated the interconnected plasmon–phonon excitations in
2D structures. The excitations of the 2DEG in the strong
perpendicular magnetic field are completely different due to
the quenching of the kinetic energy by the magnetic field and
Landau quantization.

Collective elementary excitations in the case of a one-
component (OC) two-dimensional electron gas including the
one-component plasma (OCP) have been investigated in many
papers. From the beginning we shall discuss such systems
because their energy spectrum is simpler without an excitonic

branch, which appears in two-component systems such as
the electron–hole system in a single-or double-well structures
or in a bilayer electron–electron system; all of them being
situated in a strong perpendicular magnetic field. They reveal
different types of elementary excitations depending on the
properties of their ground states. In the case of 2DEG
in a strong perpendicular magnetic field they represent an
incompressible quantum liquid (IQL) [5], charge density waves
(CDWs) [6], electron lattice or Wigner crystals [7], arrays in
the space of Landau orbitals without pinning [8] and others.
Girvin, MacDonald and Platzman (GMDP) [9] proposed the
magneto-roton theory of collective elementary excitations in
2DEG for the conditions of the fractional quantum Hall effect
(FQHE). This state occurs in low-disordered, high-mobility
samples with partially filled lowest Landau levels (LLLs) with
filling factors of the form ν = 1

q , where q is an integer
(q �= 1). The excitations are a collective effect arising
from the many-body correlations due to Coulomb interaction.
Considerable progress has been achieved by Laughlin [5]
towards understanding the nature of the many-body ground
state due to his variational wavefunctions. The theory of the
collective excitation spectrum proposed in [9] is analogous to
Feynman’s theory of superfluid helium [10]. Feynman’s main
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argument leads to the conclusion that the low-lying excitations
of any systems should include density waves. The Feynman–
Bijl formula determines the excitation energy �(k), as a ratio
of two values f (k) and s(k) in the form �(k) = f (k)

s(k) ,
where k is the wavevector, f (k) is the oscillator strength and
s(k) is the static structure factor. Both of them are effects
of the correlated motion of the particles and determine such
dynamic characteristics of the system as the excitation energy
�(k) [9, 10].

Similar dependence of the excitation energy on the
properties of the ground states of the systems will be discussed
below in other examples. In the case of filled Landau levels
ν = 1, the lowest excitations are necessarily the cyclotron
modes because of the Pauli exclusion principle, in which
particles are excited to the higher Landau levels. This case
was studied by Kallin and Halperin [11]. For the case of
FQHE and for the fractionally filled LLL, the Pauli principle
no longer excludes low-energy intra-Landau-level excitations.
The energy spectrum of elementary excitations can be obtained
considering the equation of motion for the density fluctuation
operators ρ̂( �Q), which means to commute them with the
Hamiltonian H of the system. In the case of 2DEG in a
strong perpendicular magnetic field the kinetic energy of the
electrons is quenched in the framework of the LLL. It could

be interpreted as if the derivatives ih̄ dρ̂( �Q)
dt and the commutator

[ρ̂(Q), Ĥ ] are equal to zero. If so, the density operators do
not change in time and the density wave oscillations do not
exist. This paradox was first discussed by Girvin et al [9], who
pointed out that in the presence of a strong magnetic field the
definition of the density fluctuation operator ρ̂( �Q) is changed
and does not coincide with the expression in the absence of
the magnetic field. In the paper by Girvin and Jach [12]
a general formalism within the LLL in two dimensions was
proposed including the new definition of the density fluctuation
operators. An alternative definition of the density fluctuation
operators proposed by Paquet et al [13] will be used in the
present paper. The integral density fluctuation operators ρ̂( �Q)
in the presence of the magnetic field are composed from the
partial operators, each of them with its proper phase different
from the phases of other components.

In the case of IQL the values f (k) and s(k) are
proportional to k4 and tend to zero as in the limit k → 0.
The dependence s(k) ∼ k4 means the incompressibility of
the ground state [9]. Side-by-side with IQL other ground
states were studied. Levesque et al [8] have compared the
state of CDW with IQL. The lattice state has lower energy
per electron than in the framework of IQL for the filling factor
ν = 1

9 of the LLL. Tao and Thouless [14] have shown that
the correlation energy of a 2DEG in a strong magnetic field
may be enhanced if the electrons are regularly arranged in the
space of Landau orbitals. A new macroscopic collective state
differs from the CDW state. The latter state should be pinned
and yields a threshold voltage for electrical conduction. Maki
and Zotos [15] have studied the stability of the CDWs at low
temperatures. The shear modulus and the phonon spectrum of
the electron lattice were calculated. In the long-wavelength
limit the lower phonon mode exhibits a dispersion relation of
the type q

3
2 as in the classical lattice in a magnetic field.

The density wave oscillations obtained in the case of
2D electron–hole liquids (EHL) have nothing to do with the
exciton branch of the spectrum, having a plasmon-type origin.
A review of the papers dedicated to OC2DEG in the absence
of a strong perpendicular magnetic field can be found in [16].
The two-component electron–electron and electron–hole 2D
systems in a strong perpendicular magnetic field reveal new
branches of collective elementary excitations. Fertig [17] has
investigated the excitation spectrum of two-layer and three-
layer electron systems in a strong perpendicular magnetic field.
The case of the two-layer electron–electron system with the
total filling factor for both layers equal to 1 was considered.
The spontaneous coherence of two-component 2DEG was
introduced, which is equivalent to the BCS-type ground state
of the superconductor. It represents the coherent pairing of the
conduction electrons in one layer with the holes in the same
conduction band of another layer. Such unusual excitons are
named FQHE excitons. In the asymmetric case, when the
distance between the layers is not zero, the energy spectrum of
elementary excitations is characterized by linear dependence
on the wavevector in the region of long wavelengths as well
as by a roton-type behaviour at the intermediate values of
the wavevectors. In the symmetric case, when the distance
between the layers vanishes and the Coulomb interaction inter-
layers and intra-layers are the same, the linear region of the
energy spectrum is transformed into the quadratic dependence.
Such a type of energy spectrum was also discussed by Joglekar
and MacDonald [18]. The 2D electron–hole fluid in a strong
perpendicular magnetic field was investigated by Paquet et al
[13] for the case when the ground state of the system represents
the Bose–Einstein condensation of magnetoexcitons on the
single-particle state with wavevector k = 0. The results
obtained earlier by Lerner and Lozovik [19] were explained
in [13] using a more simple and transparent derivation. Paquet
et al have discussed the collective excitations of the condensate
described by the BCS-type wavefunction introducing the �Q-
dependent density fluctuation operators ρ̂e( �Q) and ρ̂h( �Q)
for electrons and holes. These authors also introduced the
creation and annihilation operators for magnetoexcitons which
were used in papers [20, 21]. The equations of motion for
these operators in [13] were written using the random phase
approximation (RPA), which permits us to linearize them. The
RPA and the linearization procedure used in [13] mean that
the nonlinear terms are neglected and this does not permit us
to take properly into account the noncommutative property of
the density operators and its consequences, which have been
pointed out first and explored in GMDP [9]. This issue will be
discussed in detail in the present paper. In the present paper we
will use a more exact equation which is not restricted by linear
terms and makes possible to develop the theory of density
waves and plasmon oscillations in the 2D e–h system when
its ground state is either EHL or BEC of magnetoexcitons.

To better understand the difference between the ground
states of a one-component electron gas and of a two-component
electron–hole system it is useful to represent on the energy
scale the positions of their energies per one particle in
dependence on the filling factor ν = v2. Such behaviour was
observed in [22]. In the case of coplanar electrons and holes the
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photoluminescence (PL) spectrum in the FQHE regime does
not exhibit anomalies associated with the FQHE. However,
when electron and hole layers are separated a new peak in
the PL spectrum is introduced, when the filling factor exceeds
a fraction ν0 at which an IQL occurs. The new peak is
separated from the main spectral features by the quasiparticle–
quasihole gap. The most important for us are four states
such as electron–hole liquid (EHL), Laughlin’s incompressible
quantum liquid (IQL), the charge density wave (CDW) and
the metastable dielectric liquid (MDL) phase [20] formed by
the Bose–Einstein condensed magnetoexcitons. The EHL is
characterized by the energy per one e–h pair, whereas the MDL
is determined by the value of the chemical potential. These two
values determine the energy per one e–h pair as a whole and to
obtain the energy per one particle it is necessary to divide them
by two. Now these values can be compared with the energies
per one particle in the OC2DEG, especially in the case of IQL
and CDW as they were determined by Laughlin in [5] for the
fractional filling factors 1

3 and 1
5 . These values are represented

in figure 1. One can observe that at the points ν = 1
3 and

1
5 the IQL has lower energies per one particle than the CDW.
The state of the EHL at the points ν = 1

3 and 1
5 is less stable

than the previous two one-component states, but has a lowering
dependence on the filling factor of the energy per one particle,
which reaches the value − 1

2

√
π
2

e2

ε0l at the point ν = v2 = 1.

In the interval 1
2 < ν = v2 < 1, the existence of the EHL

state is of special interest. In the range 0 < ν = v2 < 1
2 the

MDL is of special interest in the case of the two-component
e–h system, though it requires a special description and will
not be discussed in the present paper. The four states can be
transformed into each other by changing two parameters d and
ν = v2.

2. The Hamiltonian and equations of motion for the
operators. Green’s functions

The Hamiltonian of the Coulomb interaction of the electrons
and holes in the frame of the lowest Landau levels has the
form [20]

H = 1
2

∑

�Q
W �Q[ρ̂( �Q)ρ̂(− �Q)− N̂e − N̂h]. (1)

Here W �Q is the Fourier transform of the Coulomb interaction,

and N̂e and N̂h are operators of the full numbers of electrons
and holes. The density fluctuation operators for electrons
ρ̂e( �Q) and for holes ρ̂h( �Q) as well as their linear combinations
ρ̂( �Q) and D̂( �Q) are determined as follows:

ρ̂e( �Q) =
∑

t

eiQy tl2
a†

t− Qx
2

at+ Qx
2

;

ρ̂h( �Q) =
∑

t

eiQytl2
b†

t+ Qx
2

bt− Qx
2
;

ρ̂( �Q) = ρ̂e( �Q)− ρ̂h(− �Q);
D̂( �Q) = ρ̂e( �Q)+ ρ̂h(− �Q).

(2)

Figure 1. Energies per one particle in units ( e2

ε0l ) in four different
ground states of the OC2DEG and the 2D e–h system such as:
incompressible quantum liquid (IQL) arising in the condition of
FQHE, charge density wave (CDW), one-component
two-dimensional plasma (OC2DP) with the properties of the
electron–hole liquid (EHL) and the metastable dielectric liquid
(MDL) phase formed by Bose–Einstein condensed 2D
magnetoexcitons.

They are expressed through the Fermi creation and annihilation
operators a†

p, ap for electrons and b†
p, bp for holes. The e–h

operators depend on two quantum numbers. Only the electrons
and holes on the lowest Landau levels ne = nh = 0 are
considered and their notations are dropped. The quantum
number p denotes the N-fold degeneracy of the Landau levels
in the Landau gauge. N = S

2π l2 , where S is the surface layer
area and l is the magnetic length l2 = h̄c

eH .

The density fluctuation operators (2) with different
wavevectors �P and �Q do not commute, which is related to the
helicity or spirality accompanying the presence of the strong
magnetic field [18]. They are expressed by the phase factors in
the structure of operators (2) and by the vector product of two
2D wavevectors �P and �Q and its projection in the direction
of the magnetic field. These properties considerably influence
the structure of the equations of motion for the operators and
determine new aspects of the 2D electron–hole (e–h) physics.
The equations of motion for the operators ρ̂( �P) and D̂( �P) can
be written in different ways with different free terms. One
possibility is

ih̄
dρ̂( �P)

dt
= [ρ̂( �P), H ] = −i

∑

�Q
W �Q sin

( [ �P × �Q]zl2

2

)

× [ρ̂( �Q)ρ̂( �P − �Q)+ ρ̂( �P − �Q)ρ̂( �Q)];

ih̄
dD̂( �P)

dt
= [D̂( �P), H ] = −i

∑

�Q
W �Q sin

( [ �P × �Q]zl2

2

)

× [ρ̂( �Q)D̂( �P − �Q)+ D̂( �P − �Q)ρ̂( �Q)].

(3)

3
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Another form of the equations of motion containing free energy
terms outside the nonlinear components is

ih̄
dρ̂( �P)

dt
= E( �P)ρ̂( �P)− 2i

∑

�Q
W �Q

× sin

( [ �P × �Q]zl2

2

)
ρ̂( �Q)ρ̂( �P − �Q);

ih̄
dD̂( �P)

dt
= E( �P)D̂( �P)− 2i

∑

�Q
W �Q

× sin

( [ �P × �Q]zl2

2

)
ρ̂( �Q)D̂( �P − �Q).

(4)

Here E( �P) is a quantum of the Coulomb electron–electron
interaction in the presence of a strong magnetic field equal to

E( �P) = 2
∑

�Q
W �Q sin2

( [ �P × �Q]zl2

2

)
. (5)

As long as the solution of the equations of motion is exact, the
particular choice of how the equations of motion are written,
either (3) or (4), is not important. However, because any
solution is approximate the initial forms of the equations of
motion are important and their physical meanings must be
understood from the very beginning. Some comparison of this
situation with another physical process could be useful and will
be discussed below.

The separation of the free energy part E( �P) in
equations (4) is similar to the rearrangement of the
Hamiltonians in the mean-field approximation, when forming
different quadratic parts with different meanings of the selected
quasiparticles. Thereby in the case of electron–electron and
electron–phonon interactions we can take into account first of
all the electron–electron interaction if it is stronger than the
electron–phonon interaction, or we can introduce the polaron
picture and then consider the interaction between the polarons.
It is useful to compare the 2D electron–hole (e–h) system with
the one-component 2D electron gas (2DEG) in the conditions
of the fractional quantum Hall effect (FQHE), as well as with
the electron system in the field of laser radiation, or with
the Bose gas in the condition of Bose–Einstein condensation
(BEC). For all these three examples we deal with the system
in the presence of unlimited reservoirs of energy which give
rise to new quasi-energy branches of the energy spectrum [23]
and composite particles [24, 25]. For instance, in the case
of FQHE the total flux of the magnetic field equals N flux
quanta φ0 = 2π h̄c

e . Each flux quanta creates a vortex in the
2DEG. The associations of the electrons and some flux quanta
give rise to charged composite bosons (CB) or composite
fermions (CF) [24]. The flux quanta also persist in the case
of the 2D e–h system. For example, in the case of one half-
filling factor ν = 1

2 there are two flux quanta per each e–
h pair or per each magnetoexciton. Neglecting the Coulomb
interaction between the electron and the hole one can represent
a neutral composite e–h pair as being formed by composite
charged particles in two variants. In one of them we have
a composite fermion formed by the electron and by two flux

quanta and a simple hole or vice versa. Another variant is
the equal distribution of the flux quanta between the electron
and the hole leading to the formation of two charged bosons,
when the electron is associated with one flux quantum and
the hole with another one. These two variants could coexist
simultaneously. Such a composite e–h pair is a quaternion
consisting of two quasiparticles and two flux quanta. It is
similar with the biexciton, which is also a quaternion, but
formed by two electrons and two holes. The similarity between
them can be expected by introducing the Coulomb interaction.
As was shown in [26] the biexciton formation can be viewed
as a pairing of two excitons or of one charged particle with the
opposite sign trions. Returning to the composite e–h pair one
can compare the charged composite boson with the exciton and
the composite charged fermion with the trion. We can expect
new interesting properties in these conditions.

Our investigations shown that the plasmon-type quasi-
energy complexes with free energy E(P) have large damping
rates and do not exist in reality. The only variant without the
damping in the framework of the method used is the variant of
equations (3) without the free energy E(P). This result can be
understood if one takes into account that E(P) does not depend
on the filling factor ν2 of the lowest Landau levels (LLLs),
and cannot be regarded as the energy of the intra-Landau-level
plasmon-type excitations even in the zero-order approximation
of the perturbation theory.

As was pointed out, see, for example, [27], perturbation
theory based on the electron–electron Coulomb interaction in
a strong magnetic field does not exist. One cannot introduce
a small parameter Vc

Tk
expressed by the ratio of the potential

energy Vc to the kinetic energy Tk, because the kinetic energy
is quenched, (Tk = 0), by the strong magnetic field in the
framework of the LLLs. As usual in the Green’s function
method, the free energy ε(P) determines the zero-order
Green’s functions G0(P, ω) = 1

h̄ω−ε(P)+iδ . The development
of perturbation theory is based on the choice of the small
parameter ν2(1 − ν2) as well as of the zero-order Green’s
functions. They are completely different in both cases (3)
and (4). All these considerations justify our choice in the
favour of the variant (3). To the best of our knowledge these
aspects have not been discussed in the literature before.

We will introduce the retarded Green’s functions at
temperature T = 0 as

G1( �P, t) = 〈〈ρ̂( �P, t); X̂†( �P, 0)〉〉;
G2( �P, t) = 〈〈D̂( �P, t); X̂†( �P, 0)〉〉.

(6)

They consist of two time-dependent operators ρ̂( �P, t) and
D̂( �P, t), which can be named as active participants of the
Green’s function structure, and of one idle term, which is
denoted as X̂†( �P, 0). The former one does not depend on
time, being taken at the point t = 0. The Green’s functions
are determined by the relation

G(t) = 〈〈Â(t); B̂(0)〉〉 = −iθ(t)〈[ Â(t); B̂(0)]〉;
Â(t) = e

iHt
h̄ Âe− iHt

h̄ ; [ Â(t); B̂(0)] = Â B̂ − B̂ Â; (7)

where Ĥ is the Hamiltonian (1). The average 〈 〉 will be
calculated using the ground state wavefunction of the electron–
hole liquid (EHL), which means to substitute the average

4
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occupation numbers of electrons and holes on the LLLs by the
filling factor v2.

3. Self-energy parts and the dispersion laws

Using Zubarev’s procedure for the Green’s function, which
is describing in the appendix, we obtain the closed Dyson
equation for the Green’s function G1( �P, ω):

G1( �P, ω)�11( �P, ω) = C (8)

where the self-energy part �11( �P, ω) has the form

�11( �P, ω) = (h̄ω + iδ)− 4

h̄ω + iδ

∑

�Q
W �Q(W �Q − W �P− �Q)

× sin2

( [ �P × �Q]zl2

2

)
〈ρ̂( �Q)ρ̂(− �Q)〉. (9)

The average 〈ρ̂( �Q)ρ̂(− �Q)〉 is calculated when the ground state
represents the EHL at the temperature T = 0. This state is
characterized by the average occupation numbers for electrons
and holes 〈a†

pap〉 = 〈b†
pbp〉 = v2 and leads to the values

〈ρ̂( �Q)ρ̂(− �Q)〉 = 2Nv2(1 − v2);
〈ρ̂( �Q)D̂(− �Q)〉 = 0.

(10)

Taking into account the vanishing value of the mixed average
〈ρ̂ D̂〉 = 0 we obtain the closed equation for the second Green’s
function:

G2( �P, ω)�22( �P, ω) = C (11)

where �22( �P, ω) equals

�22( �P, ω) = (h̄ω + iδ)− 4

h̄ω + iδ

×
∑

�Q
W 2

�Q sin2

( [ �P × �Q]zl2

2

)
〈ρ̂( �Q)ρ̂(− �Q)〉. (12)

As one can see both the self-energy parts have only
infinitesimal imaginary parts iδ, which means that both
the elementary excitations are without damping in a given
approximation. The variant with the free energy term E(P)
would lead to a damping of the same order as the value of the
real part.

The second Green’s function G2( �P, ω) describes the
intra-LLL excitations of acoustical type where the electron and
hole density fluctuations take place in phase. Their energy
spectrum is characterized by the dispersion law

(h̄ωAP( �P))2 = 4
∑

�Q
W 2

�Q sin2

( [ �P × �Q]zl2

2

)

× 〈ρ̂( �Q)ρ̂(− �Q)〉. (13)

Now we will express in dimensionless forms the
wavevector Pl = x and excitation energy h̄ωAP(x)

Il
, where l is

the magnetic length, Il = √
π
2 e2/ε0l is the ionization potential

of the magnetoexciton and ε0 is the dielectric constant of the
medium. Instead of (13) we will write [29]

(
h̄ωAP(x)

Il

)2

= 2v2(1 − v2)V1(x);

V1(x) = 1

2π

[
G + �

(
0,

x2

4

)
+ Ln

(
x2

4

)]
;

�(0, x) = −Ei(−x);

Ei(x) = G + Ln(−x)+
∞∑

k=0

xk

kk! .

(14)

Here G = 0.577 216 is the Euler constant and �(0, x) is the
incomplete Gamma function.

In the range of small values of x < 1, V1(x) = x2

8π and the
acoustical plasmon branch has a linear dispersion. In the range
of large values of x > 1, V1(x) is monotonically increasing
with the saturation function. It is worth mentioning that the
velocity of the acoustical plasmon branch c0 equals

c0 = e2

2h̄ε0

√
v2(1 − v2)

2
. (15)

It does not depend on the magnetic field strength, but only
on the filling factor. In the case ε0 = 13, v2 = 1

3 , c0 equals
6 × 106 cm s−1. It can be compared with the drift velocity Vd

discussed in section 4.
Another branch of the excitation spectrum corresponds

to optical plasmons, where the electron and hole density
fluctuations take part in opposite phases.

The optical plasmon branch has a dispersion law

(h̄ωOP( �P))2 = 4
∑

�Q
W �Q(W �Q − W �P− �Q)

× sin2

( [ �P × �Q]zl2

2

)
〈ρ̂( �Q)ρ̂(− �Q)〉. (16)

Taking into account that the most probable value of Q
obeys the condition Ql 
 1, we have expanded the expression
under the integral in the range x = Pl < Ql = 1 and in
the range x � 1. In these two regions of x variation we have
obtained

( h̄ωOP(x)
Il

)2

v2(1 − v2)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x2V1(x),

x < 1

2V1(x)−
[

Ẽ(x)− U1(x)

×
(

1 + 1

x2

)]√
2

π
(e− x2

2 )

/
x,

x > 1

(17)

where

Ẽ(x) = E(x)

Il
=

(
1 − e− x2

4 I0

(
x2

4

))
;

U1(x) = 1
4 e− x2

4

(
2e

x2

4 + (x2 − 2)

× I0

(
x2

4

)
− x2 I1

(
x2

4

))
.

(18)

Here Ii (x) are the modified Bessel functions.

5
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ω

Figure 2. The dispersion law for the acoustical plasmon branch.

Taking into account that in the range x < 1, V1(x) = x2

8π

we find 2x2V1(x) = x4

4π and a quadratic dependence on x of the
optical plasmon frequency. The dispersion laws for acoustical
and optical plasmon-type intra-LLL excitations are shown in
figures 2 and 3.

The optical branch has a quadratic dependence on x in
the range x < 1, a nonmonotonic behaviour of the faint roton
type in the intermediary region and a monotonic increase with
saturation at greater values of the variable x . Let us compare
our findings with the results of the papers [13, 17, 18]. The
main difference concerns the proportionality of the plasmon
frequencies to the parameter v2(1 − v2). Though the plasmon
branches do not depend on the excitonic-type energy spectrum,
nevertheless their dependences on the wavevectors can be
compared. In [13, 18] the bilayer electron system was
described as a double quantum well with spatially separated
electrons and holes in the same conduction band with the
filling factor ν = v2 = 1

2 for each component. In the
asymmetric case the electrons and holes are separated in
different layers, which diminishes the inter-layer electron–
hole interaction in comparison with the intra-layer interactions
of the homogeneous particles. In this asymmetric case the
repulsion prevails over the attraction and the dispersion law
as the energy spectrum in [17] becomes linear in the region
of small wavevectors. With vanishing distance between
the layers, the linear dispersion in [17] transforms into the
quadratic dispersion law.

In our case the electrons in the conduction band and the
holes in the valence band are situated on the same layer and
the electron–electron, hole–hole and electron–hole Coulomb
interactions are exactly the same in absolute value as in the
symmetric case considered in [17]. This explains the origin
of the quadratic dispersion law for the optical plasmon in
the region of long wavelengths obtained in our paper. The
acoustical plasmon branch has different contributions of the
Hartree and Fock Coulomb interaction terms in comparison
with the optical plasmon branch and its dispersion law in the
region of long wavelengths is linear.

ω

Figure 3. The dispersion law for the optical plasmon branch.

4. 2D electron–hole system in a strong perpendicular
magnetic field and a lateral electric field

We consider now the energy spectrum when a lateral electric
field is added supplementary to the strong perpendicular
magnetic field. Let the in-plane electric field be oriented in the
direction of Landau quantization in the Landau gauge. In this
case the wavefunctions of the electrons and holes in a crossed
magnetic and electric field in the Landau gauge are [30]

ψ i
p,n(y) = eipx

√
Lx
ϕi

n,p(y);

ϕi
n=0,p(y) = 1

√
l
√
π

exp

[
− (y − yi

p)
2

2l2

]
;

(19)

where

yi
p = qi

e
l2

(
−p + mi Vd

h̄

)
; i = e, h; qi = ∓e.

(20)

The energy spectrum of the electrons and holes, which
move with the drift velocity Vd, is the following:

Ei
n,p = −mi V 2

d

2
+ h̄Vd p + h̄ωci

(
n + 1

2

)
; Vd = c

E

H
.

(21)

It depends linearly on the one-dimensional continuous
wavevector p directed perpendicular to both crossed fields, in
the same direction as the drift velocity. The density fluctuation
operators are denoted as ρE

i (
�Q) and are determined by the

previous expressions multiplied by the phase factors

ρ̂E
i (

�Q) = e−iQy ui ρ̂i ( �Q); ui = Vd

ωci
; ωci = eH

mi c
.

(22)

Their linear combinations are introduced as

ρ̂E( �Q) = ρ̂E
e (

�Q)− ρ̂E
h (− �Q);

D̂E( �Q) = ρ̂E
e (

�Q)+ ρ̂E
h (− �Q).

(23)

6
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The Hamiltonian describing 2D electrons and holes in
crossed magnetic and electric fields has the form

H E = H0 + H E
Coul;

H0 =
∑

p

h̄Vd p(a†
pap + b†

pbp);

H E
Coul = 1

2

∑

�Q
W �Q[ρ̂E( �Q)ρ̂E(− �Q)− N̂e − N̂h].

(24)

In this case the energy spectrum of the plasma excitations
can be obtained substituting the frequency h̄ω(P) by the
difference h̄ω(P) − h̄Vd Px , as in the reference frame, where
the e–h system is moving with the drift velocity Vd.

The drift velocity Vd is less than the sound velocity c0 if

E <
c0

c
H ≈ 2 × 10−4 H.

For example, for H = 10 T, this means E < 6000 V. The
energy spectrum of the acoustical plasmon branch is stable if
the drift velocity Vd does not exceed c0. The optical plasmon
energy spectrum is unstable in the region of small wavevectors,
where h̄ωOP(P) < h̄Vd P . This means that the system will
emit spontaneously optical plasmons on account of the external
electric field, trying to diminish its drift velocity.

5. Conclusions

The plasmon-type intra-lowest-Landau-level (LLL) excitations
of the 2D EHL formed on the surface of the layer and subjected
to the action of a strong perpendicular magnetic field are
characterized by two branches of the energy spectrum. Their
frequencies are proportional to the generalized filling factor
v2(1 − v2) reflecting the filling of the LLLs and the phase
space filling effect. These collective elementary excitations
have different origins and different values compared to the
excitonic-type collective elementary excitations in the case of
the BEC of 2D magnetoexcitons. In the case of EHL the
acoustical plasmon branch has a linear dispersion law in the
range of small wavevectors and it monotonically increases
with saturation at higher wavevectors. The second branch of
the elementary excitations is an optical plasmon branch with
quadratic dispersion law at small wavevectors with faint roton-
type dispersion at intermediary wavevectors and with a similar
behaviour as the acoustical branch at higher wavevectors.
When a lateral electric field is supplementarily applied to the
system, the dispersion laws of the energy spectrum can be
obtained by substituting the energy h̄ω(P) by h̄ω(P)− h̄Vd Px

for both branches. Such an energy spectrum is usual in the
reference frame where the e–h system is moving with the drift
velocity Vd. The energy spectrum of the acoustical plasmon
branch is stable when the drift velocity Vd does not exceed c0.
The optical plasmon energy spectrum is unstable in the region
of the small wavevectors, where h̄ωOP(P) < h̄Vd P . It means
that the system will emit spontaneously optical plasmons on
account of the external electric field, trying to diminish its drift
velocity.
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Appendix

The Fourier transforms of the Green’s functions (6) are denoted
as

G1( �P, t) = 〈〈ρ̂( �P)|X̂†( �P)〉〉ω;
G2( �P, t) = 〈〈D̂( �P)|X̂†( �P)〉〉ω.

(A.1)

The equations of motion for the Green’s functions (A.1) are

(h̄ω + iδ)G1( �P, ω) = C − i
∑

�Q
W �Q sin

( [ �P × �Q]zl2

2

)

× 〈〈[ρ̂( �P − �Q)ρ̂( �Q)+ ρ̂( �Q)ρ̂( �P − �Q)]|X̂†( �P)〉〉
ω

(h̄ω + iδ)G2( �P, ω) = C − i
∑

�Q
W �Q sin

( [ �P × �Q]zl2

2

)

× 〈〈[D̂( �P − �Q)ρ̂( �Q)+ ρ̂( �Q)D̂( �P − �Q)]|X̂†( �P)〉〉ω.

(A.2)

Here, all average values which do not contain the Green’s
functions were denoted by C . Now we can formulate
the unambiguous requirement for the Green’s functions
determined by the Dyson equations (8) and (11) through the
self-energy parts�ii (P, ω). In the zeroth-order approximation
the general expression must be in agreement with the properties
of the electron and hole operators whose dependences on time
are a(0)p (t) = e− 1

2ωcet ap(0); b(0)p (t) = e− 1
2ωcht bp(0), which

lead to the lack of time dependence of the density fluctuation
operators ρ(0)(P, t) = ρ(P, 0); D(0)(P, t) = D(P, 0) and
to G(0)

1,2(P, ω) = 1
h̄ω+iδ . As one can see only the equation of

motion (3) is compatible with this requirement. The starting
one-operator Green’s functions (A.1) contain only one operator
on the left-hand side as regards the vertical line.

The equations of motion (A.2) lead to the appearance of
two-operator Green’s functions of the types 〈〈ρ̂ρ̂|X̂〉〉ω and
〈〈D̂ρ̂|X̂〉〉ω, for which the new equations of motion will be
derived. This procedure is well known in Zubarev’s variant
of the Green’s function method [28] and leads to the formation
of an infinite chain of equations of motion, which require to
be truncated. This will be done below, expressing for example,
the three-operator Green’s function approximated by the one-
operator Green’s function multiplied by the products of the
average values of the remaining two operators, which contain
the small parameter of the perturbation theory ν2(1 − ν2). In

7
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this way we obtain the exact equation of motion for the two-
operator Green’s function:

〈〈ρ̂( �P − �Q)ρ̂( �Q)+ ρ̂( �Q)ρ̂( �P − �Q)|X̂†( �P)〉〉ω(h̄ω + iδ)

= C − i
∑

�R
W �R sin

( [( �P − �Q)× �R]zl2

2

)

× 〈〈ρ̂( �P − �Q − �R)ρ̂( �R)ρ̂( �Q)+ ρ̂( �R)ρ̂( �P − �Q − �R)
× ρ̂( �Q)+ ρ̂( �Q)ρ̂( �P − �Q − �R)ρ̂( �R)
+ ρ̂( �Q)ρ̂( �R)ρ̂( �P − �Q − �R)
× |X̂†( �P)〉〉ω − i

∑

�R
W �R sin

( [ �Q × �R]zl2

2

)

× 〈〈ρ̂( �P − �Q)ρ̂( �R)ρ̂( �Q − �R)
+ ρ̂( �R)ρ̂( �Q − �R)ρ̂( �P − �Q)
+ ρ̂( �Q − �R)ρ̂( �R)ρ̂( �P − �Q)
+ ρ̂( �P − �Q)ρ̂( �Q − �R)ρ̂( �R)|X̂†( �P)〉〉ω. (A.3)

Substituting this expression into the first equation (A.2) we
obtain

−i
∑

�Q
W �Q sin

( [ �P × �Q]zl2

2

)
〈〈ρ̂( �P − �Q)ρ̂( �Q)

+ ρ̂( �Q)ρ̂( �P − �Q)|X̂†( �P)〉〉ω
= C − 1

h̄ω + iδ

∑

�Q

∑

�R
W �Q W �R sin

( [ �P × �Q]zl2

2

)

× sin

( [( �P − �Q)× �R]zl2

2

)
〈〈ρ̂( �P − �Q− �R)ρ̂( �R)ρ̂( �Q)

+ ρ̂( �R)ρ̂( �P − �Q− �R)ρ̂( �Q)+ ρ̂( �Q)ρ̂( �P − �Q − �R)ρ̂( �R)
+ ρ̂( �Q)ρ̂( �R)ρ̂( �P − �Q − �R)|X̂†( �P)〉〉ω
− 1

h̄ω + iδ

∑

�Q

∑

�R
W �Q W �R sin

( [ �P × �Q]zl2

2

)

× sin

( [ �Q × �R]zl2

2

)
〈〈ρ̂( �P − �Q)ρ̂( �R)ρ̂( �Q − �R)

+ ρ̂( �R)ρ̂( �Q − �R)ρ̂( �P − �Q)
+ ρ̂( �Q − �R)ρ̂( �R)ρ̂( �P − �Q)+ ρ̂( �P − �Q)
× ρ̂( �Q − �R)ρ̂( �R)|X̂†( �P)〉〉ω. (A.4)

A similar expression was derived for the two-operator Green’s
functions entering the second equation of motion (A.2). The
truncations and the decoupling of the three-operator Green’s
functions were made using the approximations

〈〈ρ̂( �P − �Q − �R)ρ̂( �R)ρ̂( �Q)|X̂†( �P)〉〉ω
≈ 〈〈ρ̂( �P)|X̂†( �P)〉〉ω[δkr ( �Q, �P)〈ρ̂( �R)ρ̂(− �R)〉
+ (δkr ( �R,− �Q)+ δkr ( �R, �P))〈ρ̂( �Q)ρ̂(− �Q)〉];

〈〈ρ̂( �P − �Q)ρ̂( �R)ρ̂( �Q − �R)|X̂†( �P)〉〉ω
≈ 〈〈ρ̂( �P)|X̂†( �P)〉〉ω[δkr ( �Q, 0)〈ρ̂( �R)ρ̂(− �R)〉
+ (δkr ( �R, �Q− �P)+ δkr ( �R, �P))〈ρ̂( �P− �Q)ρ̂( �Q− �P)〉];

〈〈ρ̂( �R)ρ̂( �Q − �R)D̂( �P − �Q)|X̂†( �P)〉〉ω
≈ 〈〈D̂( �P)|X̂†( �P)〉〉ωδkr ( �Q, 0)〈ρ̂( �R)ρ̂(− �R)〉
+ 〈〈ρ̂( �P)|X̂†( �P)〉〉ω[δkr ( �R, �P)
+ δkr ( �R, �Q − �P)]〈ρ̂( �Q − �P)D̂( �P − �Q)〉;

〈〈ρ̂( �R)ρ̂( �Q)D̂( �P − �Q − �R)|X̂†( �P)〉〉ω
≈ 〈〈D̂( �P)|X̂†( �P)〉〉ωδkr ( �R,− �Q)〈ρ̂( �Q)ρ̂(− �Q)〉
+ 〈〈ρ̂( �P)|X̂†( �P)〉〉ω[δkr ( �R, �P)〈ρ̂( �Q)D̂(− �Q)〉
+ δkr ( �Q, �P)〈ρ̂( �R)D̂(− �R)〉]. (A.5)

They permit us to represent the nonlinear terms in the right-
hand sides of equations (A.2) in the following ways:

−i
∑

�Q
W �Q sin

( [ �P × �Q]zl2

2

)
〈〈ρ̂( �P − �Q)ρ̂( �Q)

+ ρ̂( �Q)ρ̂( �P − �Q)|X̂†( �P)〉〉ω ≈ C + 4

h̄ω + iδ

×
∑

�Q
W �Q(W �Q − W �P− �Q) sin2

( [ �P × �Q]zl2

2

)

× 〈ρ̂( �Q)ρ̂(− �Q)〉G1( �P, ω);
−i

∑

�Q
W �Q sin

( [ �P × �Q]zl2

2

)
〈〈D̂( �P − �Q)ρ̂( �Q)

+ ρ̂( �Q)D̂( �P − �Q)|X̂†( �P)〉〉ω
≈ C + 4

h̄ω + iδ

∑

�Q

∑

�R
W 2

�Q sin2

( [ �P × �Q]zl2

2

)

× 〈ρ̂( �Q)ρ̂(− �Q)〉G2( �P, ω). (A.6)

On their basis the final expressions (9) and (12) for the self-
energy parts �11( �P, ω) and �22( �P, ω) were obtained.
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