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The spontaneous breaking of the continuous symmetries of the two-dimensional (2D) electron–hole
systems in a strong perpendicular magnetic field leads to the formation of new ground states and
determines the energy spectra of the collective elementary excitations appearing over these ground
states. In this review the main attention is given to the electron–hole systems forming coplanar
magnetoexcitons in the Bose-Einstein condensation (BEC) ground state with the wave vector �k = 0,
taking into account the excited Landau levels, when the exciton-type elementary excitations coexist
with the plasmon-type oscillations. At the same time properties of the two-dimensional electron gas
(2DEG) spatially separated as in the case of double quantum wells (DQWs) from the 2D hole gas
under conditions of the fractional quantum Hall effect (FQHE) are of great interest because they
can influence the quantum states of the coplanar magnetoexcitons when the distance between
the DQW layers diminishes. We also consider in this review the bilayer electron systems under
conditions of the FQHE with the one half filling factor for each layer and with the total filling factor
for two layers equal to unity because the coherence between the electron states in two layers is
equivalent to the formation of the quantum Hall excitons (QHExs) in a coherent macroscopic state.
This makes it possible to compare the energy spectrum of the collective elementary excitations of
the Bose-Einstein condensed QHExs and coplanar magnetoexcitons. The breaking of the global
gauge symmetry as well as of the continuous rotational symmetries leads to the formation of the
gapless Nambu-Goldstone (NG) modes while the breaking of the local gauge symmetry gives rise
to the Higgs phenomenon characterized by the gapped branches of the energy spectrum. These
phenomena are equivalent to the emergence of massless and of massive particles, correspondingly,
in the relativistic physics. The application of the Nielsen-Chadha theorem establishing the number of
the NG modes depending of the number of the broken symmetry operators and the elucidation when
the quasi-NG modes appear are demonstrated using as an example related with the BEC of spinor
atoms in an optical trap. They have the final aim to better understand the results obtained in the
case of the coplanar Bose-Einstein condensed magnetoexcitons. The Higgs phenomenon results
in the emergence of the composite particles under the conditions of the FQHE. Their description
in terms of the Ginzburg-Landau theory is remembered. The formation of the high density 2D
magnetoexcitons and magnetoexciton-polaritons with point quantum vortices attached is suggested.
The conditions in which the spontaneous coherence could appear in a system of indirect excitons
in a double quantum well structures are discussed. The experimental attempts to achieve these
conditions, the main results and the accumulated knowledge are reviewed.

Keywords: Spontaneous Coherence, Electron–Hole Pair, Bose-Einstein Condensation, Exciton,
Elementary Excitations, Symmetry Breaking.
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S. A. Moskalenko was born on September 26, 1928 in the village Bravicha Calarash district,
Republic of Moldova. Citizenship of Moldova. Moskalenko S. A. has graduated the Kishinev
State University in 1951. In 1956–1959 he was post-graduate student of the Institute of
Physics of the Academy of Sciences of Ukrainian SSR. He became Candidate of Physico-
mathematical Sciences equivalent to PHD degree in 1961. Doctor of Physico-mathematical
Sciences and the professor in the field of theoretical and mathematical physics beginning
with 1971 and 1974 correspondingly. He became Laureate of the State prize in the field
of Sciences and Technics of MSSR and USSR in 1981 and 1988 correspondingly. He was
elected member-correspondent and full member of the Academy of Sciences of Moldova in
1989 and 1992 correspondingly. The concept of excitonic molecule was introdused. Later
the exitonic molecule was called the biexciton. The biexciton represents the bound state of

four Fermi quasiparticles (quaternions), namely, two electrons and two holes. More simple it can be regarded as a bound
state of two excitons. The possibility of Bose-Einstein condensation (BEC) of quasiparticles with finite lifetime such
as excitons and biexcitons was suggested. It was pointed out that BEC can occur in the quasiequilibrium conditions,
when the relaxation time due to interpaticle scattering is much less than their life time and interaction between excitons
is repulsive. The superfluidity of excitons and biexcitons can provide a new way of non-dissipative energy transfer in
crystals. BEC can be induced by the resonant monochromatic photons. The results concerning the Bose-Einstein conden-
sation of excitons and biexcitons as well the coherent nonlinear optics with excitons were reviewed in the monograph
written together with Professor D. W. Snoke from Pittsburg University. Due to the collaboration with Professor M.
A. Liberman from Uppsala University last years the properties of excitons in a strong magnetic field are studied. The
polarizability, correlation energy and the dielectric liquid phase of Bose-Einstein condensed 2D magnetoexcitons with
motional dipole moments were studied. The possible existence of the metastable dielectric liquid phase formed by Bose-
Einstein condensed magnetoexcitons with wave vectors and motional dipole moments different from zero was established
theoretically.

M. A. Liberman was born in Moscow, USSR on October 23, 1942. He graduated from
Moscow State University in 1966. From 1969 to 2003 he worked at P. Kapitsa Institute
for Physical Problems, Academy of Sciences USSR. He received his Ph.D. in 1971 from
P. Lebedev Physical Institute in Moscow for the group theory in quantum mechanics and
invariant expansion of the relativistic amplitudes, and then his Doctor of Physical and Math-
ematical Sciences degree in 1981 for a thesis on ionizing shock waves. Since 1991, he is
professor of theoretical statistical physics working at the Physics Department, Uppsala Uni-
versity, Sweden. He is a citizen of both Russia and the Sweden. Among his achievements
are the nonlinear theory of electromagnetic wave propagating in nonequilibrium plasmas
(for example, in the ionosphere); a theory of the ionizing shock waves, exact solution for a
hydrogen atom in a magnetic field of arbitrary strength, theory of a hydrogen molecule in a

strong magnetic field, non-stationary nonlinear equation for a curved flame, theory of type I(a) supernova explosion. At
Uppsala University he continue his work on combustion theory, for which he was recently nominated for Gold Medal
of Combustion Institute, and he is also focused on the research of the Bose-Einstein condensate of excitons in low
dimensional semiconductors in a strong magnetic field. He is author of the books: “Physics of Shock Waves in Gases
and Plasmas,” Springer-Verlag, 1985 (with A. Velikovich), “Physics of High-Density Z-pinch Plasmas,” Springer-Verlag,
1998 (with J. DeGroot, A. Toor, R. Spielman), “Introduction to Physics and Chemistry of Combustion,” Springer-Verlag,
2008.

1. INTRODUCTION

The collective elementary excitations of the two-
dimensional (2D) electron–hole (e–h) systems in a strong
perpendicular magnetic field are discussed in the frame
of the Bogoliubov theory of quasiaverages1 taking into
account the phenomena related with the spontaneous break-
ing of the continuous symmetries. The main results in
this field have been obtained thanks to the fundamental
papers by Goldstone,2 Nambu,3 Higgs4 and Weinberg.5
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E. V. Dumanov was born on September 30, 1982 in the Chisinau city, Republic of Moldova.
Citizenship of Moldova. E. V. Dumanov has graduated the Moldova State University in
2004. In 2004–2007 he was post-graduate student of the Institute of Applied Physics of the
Academy of Sciences of Moldova. He received his Ph.D. in 2008 from Institute of Applied
Physics in Chisinau for the theoretical and mathematical physics. His research interests are
collective properties of elementary particle in semiconductors, effects of Bose-Einstein con-
densation 2D magnetoexcitons.

E. S. Moskalenko originally from Republic of Moldova was born in Chisinau in May 1963
and died unexpectedly in March 2012 in Sankt-Petersburg, Russia being 49 years old. He
graduated the middle school in Chisinau in 1980 and the physical faculty of the Sankt-
Petersburg State University in 1986. He was a doctoral student of the A. F. Ioffe Physico-
Technical Institute (PTI) in Sankt-Petersburg of the Russian Academy of Sciences under
the scientific guidance of the academician A. A. Kaplyanskii and in 1991 performed his
doctoral thesis and obtained the candidatus scientiarum degree. His thesis was dedicated to
the influence of the nonequilibrium acoustical phonons arising during the relaxation of the
photo-created carriers on the photoluminescence of excitons in semiconductors Si and Cu2O.
The exciton drag driven by the ballistic acoustical phonons was observed and the deficit of
the low-frequency terahertz phonon in comparison with the Planck distribution function was

revealed. The following 20 years of his post-doctoral activity were connected with the Department of the Solid State Optics
of PTI, where he became a senior scientific collaborator growing as an experimental physicist in the range of optical
spectroscopy of the solid states. His scientific interests were concentrated in the physics of excitons in semiconductors at
high level of excitations and low temperatures. In the first decade of this activity he was engaged together with another
collaborators of the PTI and of the University in Nottingham in England in the experimental attempts to achieve the
Bose-Einstein condensation of the trapped indirect excitons in the double quantum well structures. The efforts of many
experimental groups were concentrated many years in this direction, but this topic remains up till now as a desideratum.
In the last 12 years Evgenii Moskalenko simultaneously with his activity in PTI took part as an invited researcher in
the investigations of the optical properties of the semiconductor nanostructures organized by Professor P.O.Holtz in the
Department of Physics and Measurement Technology of the Linkoping University in Sweden. The phenomena of the
optical orientation and spin polarization of electrons and nuclei in quantum dots were revealed.

These investigations were influenced by the success of
the theory of superconductivity developed originally by
Bardin, Cooper and Schriffer,6 refined later by Bogoliubov1

as well as by the microscopic theory of superfluidity pro-
posed by Bogoliubov.1 The specific implementation of
these concepts and theorems in the case of 2D magnetoex-
citons with direct implication of the plasmon-type excita-
tions side-by-side with the exciton-type branches of the
energy spectrum is the main topic of the present review.
The coplanar electrons and holes in a strong perpendicular
magnetic field at low temperatures form the magnetoex-
citons, when the Coulomb interaction between electrons
and holes lying on the lowest Landau levels (LLLs) plays
the main role. However, when the electrons and holes are
spatially separated on the different layers of the double
quantum well (DQW) the Coulomb e–h interaction dimin-
ishes, and the two-dimensional electron gas (2DEG) on
one layer and the two-dimensional hole gas (2DHG) on
another layer are formed. Their properties under the con-
ditions of the fractional quantum Hall effect (FQHE) can

influence the properties of the 2D magnetoexcitons. To the
best of our knowledge these aspects of the magnetoexciton
physics were not discussed in literature.
A short review is given on the Bose-Einstein Condensa-

tion (BEC) of the quantum Hall excitons (QHExs) arising
in the bilayer electron systems under the conditions of the
FQHE at one half filling factor for each layer and the total
filling factor equal to unity for both layers. This enables us
to compare the phenomenon of the BEC of coplanar mag-
netoexcitons and of QHExs. Such comparison provides
better understanding of the underlying physics and allows
to verify accuracy of the made approximations. Because
the point vortices play an important role in the understand-
ing of the FQHE the corresponding additional informa-
tion should be included. The possibility to consider the
BEC at T = 0 as an estimate for the finite temperatures
below the Berezinskii–Kosterlitz–Thouless phase transi-
tion is suggested.
The article is organized as follow. In Section 2 the

Bogoliubov theory of the quasiaverages is overviewed.
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Section 3 is devoted to the Goldstone theorem. The Nambu-
Goldstone modes arising under the condition of BEC of the
sodium atoms are enumerated in Section 4. The breaking
of the local gauge symmetry and the Higgs phenomenon
are discussed in Section 5. Section 6 is devoted to the
quasi-Nambu-Goldstone modes. In Section 7 the Ginzburg-
Landau theory for the FQHE is formulated. The 2D point
quantum vortices are described in Section 8. The existence
of the statistical gauge vector-potential generated by the
vortices is considered in Section 9. The BEC of QHExs and
the energy spectrum of elementary excitations under these
conditions are discussed in Section 10. Section 11 contains
the main results concerning the energy spectrum of the
exciton and plasmon branches of the collective elementary
excitations of the Bose-Einstein condensed coplanar mag-
netoexcitons. The spontaneous coherence in 2D excitonic
systems is discussed in Section 12. Section 13 is devoted
to the Conclusions.

2. BOGOLIUBOV’S THEORY OF
QUASIAVERAGES

Bogoliubov1 has demonstrated his concept of quasiaver-
ages using the ideal Bose-gas model with the Hamiltonian

H =∑
k

(
�
2k2

2m
−�

)
a†kak (1)

here a†k� ak are the Bose operators of creation and annihi-
lation of particles, and � is their chemical potential.
The occupation numbers of the particles are

N0 =
1

e−��−1
� Nk =

1

e���2k2/2m−��−1
(2)

where �≤ 0 and �= 1/kT .
In the normal state, the density of particles in the ther-

modynamic limit at �= 0 becomes n= 2�612�mkBT �
3/2/

�2	�2�3/2. At this point, the Bose-Einstein condensation
occurs and a finite value of the density of condensed par-
ticles appears in the thermodynamic limit

n0 = lim
V→�

N0

V
� �=−kBT ln

(
1+ 1

N0

)
(3)

The operators a†0 and a0 asymptotically become
c-numbers, when their commutator

[
a0√
V
�
a†0√
V

]
= 1
V

(4)

asymptotically tends to zero and their product is equal
to n0. Then one can write

a†0√
V

∼√
n0e

i
�
a0√
V

∼√
n0e

−i
 (5)

On the other hand, the regular averages of the operators
a†0 and a0 in the Hamiltonian (1) are exactly equal to zero.

It is the consequence of the commutativity of the opera-
tor H and the operator of the total particle number N as
follows

N̂ =∑
k

a†kak� �H� N̂ �= 0 (6)

As a result, the operators H is invariant with respect to the
unitary transformation

U = eiN̂
 (7)

with an arbitrary angle 
. This invariance is called gradient
invariance of the first kind or gauge invariance. When 

does not depend on the coordinate x, we have the global
gauge invariance and in the case 
�x� it is called local
gauge invariance2–8 or gauge invariance of the second kind.
The invariance (7) implies H =U†HU� U†a0U = ei
a0,

which leads to the following average value.

	a0
 � Tr�a0e
−�H�= Tr�a0Ue

−�U †�= Tr�U †a0Ue
−�H�

= ei
	a0
� �1− ei
�	a0
 = 0

Because 
 is an arbitrary angle, there are the selection
rules:

	a0
 = 0� 	a†0
 = 0 (8)

The regular average (8) can also be obtained from the
asymptotical expressions (5) if they are integrated over the
angle 
. This apparent contradiction can be resolved if
Hamiltonian (1) is supplemented by additional term

−��a†0ei�+a0e
−i��

√
V � � > 0 (9)

where � is the fixed angle and � is infinitesimal value.
New Hamiltonian has the form

H��
=
∑
k

(
�
2k2

2m
−�

)
a†kak−��a†0ei�+a0e−i��

√
V (10)

It does not conserve the condensate number. Now the reg-
ular average values of the operators a†0 and a0 over the
Hamiltonian H��
 differ from zero, i.e., 	a0
H� �= 0 and
	a†0
H� �= 0. The definition of the quasiaverages designated
by 	a0
 is the limit of the regular average 	a0
H� when �
tends to zero

	a0
 = lim
�→0

	a0
H���
(11)

It is important to emphasize that the limit �→ 0 must be
effectuated after the thermodynamic limit V →�, N0 →
�. In the thermodynamic limit, � is also infinitesimal, and
it is possible to choose the ratio of two infinitesimal values
� and � obtaining a finite value

− �

�
=√

n0 (12)

To calculate the regular average 	a0
H���
one needs to rep-

resent the Hamiltonian (10) H��
 in a diagonal form with
the aid of the canonical transformation over the amplitudes

a0 =− �

�
ei�

√
V +
0� ak = 
k� k �= 0 (13)
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In terms of the new variables the Hamiltonian H��
 takes
the form

H��
 =−�
†0
0+
∑
k

(
�
2k2

2m
−�

)

†�k
�k+

�2V

�
(14)

In the diagonal representation (14), the regular average
value 	
0
H���

exactly equals to zero, while the value
	a0
H���

is equal to the first term on the right-hand side of
formulas (13).
As a result, the quasiaverage 	a0
 is

	a0
 = lim
�→0

	a0
H���
=√

N0e
i� (15)

It depends on the fixed angle � and does not depend
on �. The spontaneous global gauge symmetry breaking is
implied when the phase � of the condensate amplitude in
Hamiltonian (10) is fixed.
When the interaction between the particles is taken into

account, these differences appear for other amplitudes as
well. They give rise to the renormalization of the energy
spectrum of the collective elementary excitations. In such
a way, the canonical transformation

ak =
√
N0�k�0e

i�+
k (16)

introduced for the first time by Bogoliubov1 in his the-
ory of superfluidity, has a quantum-statistical founda-
tion within the framework of the quasiaverage concept.
At T = 0 the quasiaverage 	a0
 coincides with the average
over the quantum-mechanical ground state, which is the
coherent macroscopic state.9

The phenomena related to the spontaneous breaking of
the continuous symmetry play an important role in statis-
tical physics.
Some elements of this concept, such as the coher-

ent macroscopic state with a given fixed phase and
the displacement canonical transformation of the field
operator describing the Bose-Einstein condensate, were
introduced by Bogoliubov in the microscopical theory
of superfluidity1 and were generalized in his theory of
quasiaverages1 noted above.
The brief review of the gauge symmetries, their spon-

taneous breaking, Goldstone and Higgs effects will be
presented below following the Ryder’s monograph7 and
Berestetskii’s lectures.8

3. GOLDSTONE’S THEOREM

Goldstone has considered a simple model of the complex
scalar Bose field to demonstrate his main idea. In the clas-
sical description the Lagrangian is

L=
(
�
∗

�x�

)(
�


�x�

)
−m2
∗
−��
∗
�2 (17)

The potential energy V �
� has the form

V �
�=m2
∗
+��
∗
�2� � > 0 (18)

where m2 is considered as a parameter only, rather than a
mass term, � is the parameter of self-interaction, whereas
the denotations x� and x� mean

x� = �ct� �x�� x� = �ct�−�x� (19)

The Lagrangian is invariant under the global gauge trans-
formation


= ei∧
′� L�
�= L�
′�� �—constant (20)

It has the global gauge symmetry. The ground state is
obtained by minimizing the potential as follows.

�V �
�

�

=m2
∗ +2�
∗�
�2 (21)

Of interest is the case m2 < 0, when the minima are situ-
ated along the ring

�
�2 =−m2

2�
= a2� �
� = a� a > 0 (22)

The function V �
� is shown in Figure 1 being plotted
against two real components of the fields 
1 and 
2.

There is a set of degenerate vacua related to each other
by rotation. The complex scalar field can be expressed in
terms of two scalar real fields, such as ��x� and ��x�, in
polar coordinates representation or in the Cartesian decom-
position as follows


�x�= ��x�ei��x� = �
1�x�+ i
2�x��
1√
2

(23)

The Bogoliubov-type canonical transformation breaking
the global gauge symmetry is


�x�= a+ 
′
1�x�+ i
′

2�x�√
2

= ��′�x�+a�ei�
′�x� (24)

Fig. 1. The potential V �
� with the minima at �
� = a and a local
maximum at 
= 0.

644 J. Nanoelectron. Optoelectron. 7, 640–670, 2012



Delivered by Publishing Technology to: National Taiwan University of Science & Technology
IP: 140.118.123.85 On: Mon, 28 Jan 2013 06:28:27

Copyright American Scientific Publishers

R
E
V
IE
W

Moskalenko et al. Spontaneous Symmetry Breaking and Coherence in Two-Dimensional Electron–Hole and Exciton Systems

The new particular vacuum state has the average 	

0 = a
with the particular vanishing vacuum expectation values
	
′

1
0 = 	
′
2
0 = 	�′
0 = 	�′
0 = 0. It means the selec-

tion of one vacuum state with infinitesimal phase �′ → 0.
As was pointed in Ref. [7], the physical fields are the
excitations above the vacuum. They can be realized by
performing perturbations about �
� = a. Expanding the
Lagrangian (17) in series of the infinitesimal perturbations
�′, �′, 
′

1, 

′
2 and neglecting by the constant terms, we

obtain

L = 1
2
���


′
1���

�
′
1�+

1
2
���


′
2���

�
′
2�−2�a2
′2

1

−√
2�
′

1�

′2
1 +
′2

2 �−
�

4
�
′2

1 +
′2
2 �

2 (25)

or in polar description

L = ����
′�����′�+ ��′ +a�2����

′�����′�

− ���′4+4a��′3+4�a2�′2−�a4� (26)

Neglecting by the cubic and quartic terms, we will see
that there are the quadratic terms only of the type 4�a2�′2

and 2�a2
′2
1 , but there is no quadratic terms proportional

to �′2 and 
′2
2 . For real physical problems, for example,

for the field theory, the field components 
′
1 and �′ rep-

resent massive particles and dispersion laws with energy
gap, whereas the field components 
′

2 and �
′ represent the

massless particles and gapless energy spectrum.
The main Goldstone results can be formulated as

follows.
m2
�′ = 4�a2� m2


′
1
= 2�a2

m2
�′ = 0� m2


′
2
= 0

(27)

The spontaneous breaking of the global gauge symmetry
takes place due to the influence of the quantum fluctua-
tions. They transform the initial field 
 with two massive
real components 
1 and 
2, and a degenerate ground state
with the minima forming a ring into another field with
one massive and other massless components, the ground
state of which has a well defined phase without initial
symmetry.
The elementary excitations above the new ground state

changing the value 	�
 = a are massive. It costs energy
to displace �′ against the restoring forces of the potential
V ���. But there are no restoring forces corresponding to
displacements along the circular valley �
� = a formed by
initial degenerate vacua.
Hence, for angular excitations �′ of wavelength, � we

have �∼�−1 → 0 as �→�. The dispersion law is �∼ ck
and the particles are massless.7 The �′ particles are known
as the Goldstone bosons. This phenomenon is general and
takes place in any order of perturbation theory. The spon-
taneous breaking of a continuous symmetry not only of the
type as a global gauge symmetry but also of the type of
rotational symmetry entails the existence of massless parti-
cles referred to as Goldstone particles or Nambu-Golstone

gapless modes. This statement is known as Goldstone the-
orem. It establishes that there exists a gapless excitation
mode when a continuous symmetry is spontaneously bro-
ken. The angular excitations �′ are analogous to the spin
waves. The latter represent a slow spatial variation of the
direction of magnetization without changing of its abso-
lute value. Since the forces in a ferromagnetic are of short
range, it requires a very little energy to excite this ground
state. So, the frequency of the spin waves has the dis-
persion law � = ck. As was mentioned by Ryder,7 this
argument breaks down if there are long-range forces like,
for example, the 1/r Coulomb force. In this case, we deal
with the maxwellian gauge field with local depending on
x gauge symmetry instead of global gauge symmetry con-
sidered above.
After the specific application of the above statement will

be demonstrated following Refs. [10–16], where the spinor
Bose-Einstein condensates were discussed, we will con-
sider the case of Goldstone field 
 and of the maxwellian
field with local gauge symmetry.

4. BOGOLIUBOV’S EXCITATIONS AND THE
NAMBU-GOLDSTONE MODES

The above formulated theorems can be illustrated using the
specific example of the Bose-Einstein condensed sodium
atoms 23Na in an optical-dipole trap following the investi-
gations of Murata, Saito and Ueda10 on the one side and of
Uchino, Kobayashi and Ueda11 on the other side. There are
numerous publications on this subject among which should
be mentioned.12–17 The sodium atom 23Na has spin f = 1
of the hyperfine interaction and obey the Bose statistics.
Resultant spin of the interacting bosons with f = 1 is F
which takes the values F = 0�1�2. The contact hard-core
interaction constant gF = 4	�2aF /M is characterized by
s-wave scattering length aF , which is not zero for F = 0
when two atomic spins form a singlet, and for F = 2,
when they form a quintuplet. The constant g0 and g2 enter
the combinations c0 = �g0 + 2g2�/3 and c1 = �g2 − g0�/3
which determine the Hamiltonian. The description of the
atomic Bose gas in an optical-dipole trap is possible
in the plane-wave representation due to the homogeneity
and the translational symmetry of the system. It means that
the components of the Bose field operator �m��r� can be
represented in the form:

�m��r�=
1√
V

∑
k

akme
i�k�r (28)

where V is the volume of the system, and akm is the anni-
hilation operator with the wave vector �k and the mag-
netic quantum number m, which in the case f = 1 takes
three values 1, 0, −1. The spinor Bose-Einstein conden-
sates were realized experimentally by the MIT group12 for
different spin combinations using the sodium atoms 23Na
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in a hyperfine spin states �f = 1�mf = −1
 in a mag-
netic trap and then transforming them to the optical-dipole
trap formed by the single infrared laser. The Bose-Einstein
condensates were found to be long-lived. Some arguments
concerning the metastable long-lived states were formu-
lated. The states may appear if the energy barriers exist,
which prevent the system from direct evolving toward
its ground states. If the thermal energy needed to over-
come these barriers is not available, the metastable state
may be long-lived and these events are commonly encoun-
tered. Even the Bose-Einstein condensates in the dilute
atomic gases can also be formed due to the metastabil-
ity. Moreover, in the gases with attractive interactions the
Bose-Einstein condensates may be metastable against the
collapse just due to the energy barriers.12 Bellow we will
discuss the Bogoliubov-type collective elementary excita-
tions arising over the metastable long-lived ground states
of the spinor-type Bose-Einstein condensates (BEC-tes)
following Refs. [10, 11], so as to demonstrate the forma-
tion of the Nambu-Goldstone modes.
The Hamiltonian considered in Ref. [10] is given by

formulas (3) and (4), and has the form

H = ∑
�k�m

���k−pm+qm2�a†�kma�km

+ c0
2V

∑
�k
� �̂†�k�̂�k �+

c1
2V

∑
�k
� f̂ †�k f̂�k � (29)

Here the following designations were used

�k = �
2k2

2M � c0 = �g0+2g2�/3� c1 = �g2−g0�/3

�̂�k =
∑

�q�m a
†

�q�ma �q+�k�m� �̂f = �f̂ x� f̂ y� f̂ z�

�̂f�k =
∑

q�m�n
�̂fmna†q�maq+k�m

f̂ x =

∣∣∣∣∣∣∣

0 1 0

1 0 1

0 1 0

∣∣∣∣∣∣∣
1√
2
� f̂ y =

∣∣∣∣∣∣∣

0 −1 0

1 0 −1

0 1 0

∣∣∣∣∣∣∣
i√
2

f̂ x =

∣∣∣∣∣∣∣∣

1 0 0

0 0 0

0 0 −1

∣∣∣∣∣∣∣∣

(30)

The repeated indexes mean summation over 1�0�−1.
The symbol �� denotes the normal ordering of the oper-
ators. The coefficient p is the sum of the linear Zeeman
energy and of the Lagrangian multiplier, which is intro-
duced to set the total magnetization in the z direction to
a prescribed value. This magnetization is conserved due
to the axisymmetry of the system in a magnetic field. q is
the quadratic Zeeman effect energy, which is positive in
the case of spin f = 1 for 23Na and 87Rb atoms. The
spin-spin interaction is of ferromagnetic-type with c1 < 0
for f = 1 87Rb atoms and is antiferromagnetic-type with

c1 > 0 for f = 1 23Na atoms.10 Taking into account that
in many experimental situations the linear Zeeman effect
can be ignored and the quadratic Zeeman effect term q
can be manipulated experimentally, in Ref. [11] both cases
of positive and negative q at p = 0 were investigated for
spin 1 and spin 2 Bose-Einstein condensates (BECs). We
restrict ourselves to review some spinor phases with spin
1 discussed in Ref. [11] so as to demonstrate the relations
between the Nambu-Goldstone (NG) modes of the Bogoli-
ubov energy spectra and the spontaneous breaking of the
continuous symmetries. The description of the excitations
is presented in Refs. [10, 11] in the number-conserving
variant of the Bogoliubov theory.1 There is no need to
introduce the chemical potential as a Lagrangian multiplier
in order to adjust the particle number to a prescribed value.
The BEC takes place on a superposition state involving the
single-particle states with wave vector �k = 0 and different
magnetic quantum numbers

��
 =∑
m

�ma
†
0�m��ac
�

∑
m

��m�2 = 1 (31)

The order parameter has a vector form and consists of
three components: �� = ��1� �0� �−1�. The vacuum state
�vac
 means the absence of the atoms. The ground state
wave function of the BEC-ed atoms is given by the for-
mula (8) of Ref. [11]

��g
 =
1√
N !

( f∑
m=−f

�ma
†
0�m

)N

��ac
 (32)

In the mean-field approximation the operators a†0�m, a0�m
are replaced by the c-numbers �m

√
N0, where N0 is the

number of the condensed atoms. After this substitution,
the initial Hamiltonian loses its global gauge symmetry
and does not commute with the operator N̂ . The order
parameters �m are chosen so that to minimize the expec-
tation value of the new Hamiltonian and its ground state
and to satisfy the normalization condition

∑
m ��m�2 = 1.

To keep the order parameter of each phase unchanged it is
necessary to specify the combination of the gauge trans-
formation and spin rotations.11 This program was carried
out in Refs. [18–21].
The initial Hamiltonian (29) in the absence of the

external magnetic field has the symmetry U�1�× SO�3�
representing the global gauge symmetry U�1� and the
spin-rotation symmetry SO�3�. The generators of these
symmetries are referred to as symmetry generators and
have the form

N̂ =
∫
d �x�̂†

m�x��̂m�x�=
∑
�k�m

a†�k�ma�k�m

F̂ j = ∫
d �x�̂m�x�f jmn�̂n�x�� j = x� y� z

(33)

Unlike the SO�3� symmetry group with three generators
F̂ x, F̂ y and F̂ z, the SO�2� symmetry group has only one
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generator F̂ z which describes the spin rotation around the
z axis and looks as follows:

F̂ z =∑
�k�m

ma†�k�ma�k�m (34)

In the presence of an external magnetic field, the symmetry
of the Hamiltonian is U�1�×SO�2�. The breaking of the
continuous symmetry means the breaking of their genera-
tors. The number of the broken generators (BG) is denoted
as NBG. There are 4 generators in the case of U�1�×SO�3�
symmetry and two in the case of U�1�×SO�2� symmetry.
The phase transition of the spinor Bose gas from the

normal state to the Bose-Einstein condensed state was
introduced mathematically into Hamiltonian (29) using the
Bogoliubov displacement canonical transformation, when
the single-particle creation and annihilation operators with
the given wave vector �k, for example, �k = 0, were sub-
stituted by the macroscopically c-numbers describing the
condensate formation. The different superpositions of the
single-particle states determine the structure of the finally
established spinor phases.11 Nielsen and Chadha17 formu-
lated the theorem which establishes the relation between
the number of the Nambu-Goldstone modes, which must
be present between the amount of the collective elemen-
tary excitations, which appear over the ground state of
the system if it is formed as a result of the spontaneous
breaking of the NBG continuous symmetries. The number
of NG modes of the first type with linear (odd) dispersion
law in the limit of long wavelengths denoted as NI being
accounted once, and the number NII of the NG modes of
the second type with quadratic (even) dispersion law at
small wave vectors, being accounted twice give rise to the
expression NI + 2NII , which is equal to or greater than
the number NBG of the broken symmetry generators. The
theorem17 says

NI +2NII ≥ NBG (35)

The theorem has been verified in Ref. [11] for multiple
examples of the spin 1 and spin 2 Bose-Einstein con-
densate phases. In the case of spin 2 nematic phases,
the special Bogoliubov modes that have linear disper-
sion relation but do not belong to the NG modes were
revealed. The Bogoliubov theory of the spin 1 and spin
2 Bose-Einstein condensates (BECs) in the presence of
the quadratic Zeeman effect was developed by Uchino,
Kobayashi and Ueda11 taking into account the Lee, Huang,
Yang (LHY) corrections to the ground state energy, pres-
sure, sound velocity and quantum depletion of the conden-
sate. Many phases that can be realized experimentally were
discussed to examine their stability against the quantum
fluctuations and the quadratic Zeeman effect. The relations
between the numbers of the NG modes and of the broken
symmetry generators were verified. A brief review of the
results concerning the spin 1 phases of Ref. [11] is pre-
sented below so as to demonstrate, using these examples,

the relations between the Bogoliubov excitations and the
Nambu-Goldstone modes.
The first example is the ferromagnetic phase with

c1 < 0, q < 0 and the vector order parameter

��F = �1�0�0� (36)

The modes with m = 0 and m = −1 are already diag-
onalized, whereas the mode m = 1 is diagonalized by
the standard Bogoliubov transformation. The Bogoliubov
spectrum is given by formulas (33) and (34) of Ref. [11]

E�k�1 =
√
��k���k+2��c0+ c1��� E�k�0 = ��k−q

E�k�−1 = ��k−2c1n
(37)

The E�k�1 mode is massless. In the absence of a magnetic
field, when q = 0, the mode m = 0 is also massless with
the quadratic dispersion law. The initial symmetry of the
Hamiltonian before the phase transition is U�1�×SO�3�,
whereas the final, remaining symmetry after the process
of BEC is the symmetry of the ferromagnetic i.e., SO�2�.
From the four initial symmetry generators N̂ , F̂ x, F̂ y and
F̂ z remains only the generator F̂ z of the SO�2� symmetry.
The generators F̂ x and F̂ y were broken by the ferromagnet
phase, whereas the gauge symmetry operator N̂ was bro-
ken by the Bogoliubov displacement transformation. The
number of the broken generators N̂ , F̂ x, F̂ y is three, i.e.,
NBG = 3. In this case NI = 1, NII = 1 and NI +2NII = 3,
being equal to NBG = 3. The equality NI + 2NII = NBG

takes place. In the presence of an external magnetic field,
with q �= 0, the initial symmetry before the phase transition
is U�1�×SO�2� with two generators N̂ and F̂ z, whereas
after the BEC and the ferromagnetic phase formation the
remained symmetry is SO�2�. Only one symmetry gener-
ator N̂ was broken. It means NBG = 1, NI = 1 and NII = 0.
The equality NI +2NII = NBG also takes place.
The condition �c0 + c1� > 0 to be hold is required for

m = 1 the Bogoliubov mode to be stable. It ensures the
mechanical stability of the mean-field ground state. Oth-
erwise, the compressibility would not be positive definite
and the system would become unstable against collapse.
In the case q > 0, c1 > 0 and �c0+c1� < 0 the state would
undergo the Landau instability for the m= 0 and m=−1
modes with quadratic spectra and the dynamical instabil-
ity for the m = 1 mode with a linear spectrum (36) of
Ref. [11].
There are two polar phases. One with the parameters

��P = �0�1�0�� q > 0� q+2nc1 > 0 (38)

and the other with the parameters

��P = 1√
2
�1�0�1�� q < 0� c1 > 0 (39)

These two polar phases have two spinor configurations
which are degenerate at q = 0 and connect other by
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U�1�×SO�3� transformation. However, for nonzero q the
degeneracy is lifted and they should be considered as dif-
ferent phases. This is because the phase P has a remaining
symmetry SO�2�, whereas the phase P ′ is not invariant
under any continuous transformation. The number of NG
modes is different in each phase and the low-energy
behavior is also different. Following formulas (40)–(42) of
Ref. [11] the density fluctuation operator akd and the spin
fluctuation operators ak�fx and ak�fy were introduced

akd = ak�0� ak�fx =
1√
2
�ak�1+ak�−1�

ak�fy =
i√
2
�ak�1−ak�−1�

(40)

Their Bogoliubov energy spectra are

E�k�d =
√
��k���k+2c0�

E�k�fj =
√
���k+q����k+q+2nc1�

(41)

In the presence of an external magnetic field, the initial
symmetry is U�1�× SO�2�, whereas after the BEC and
the formation of the phase P with q �= 0 the remaining
symmetry is also SO�2�. Only the symmetry U�1� and
its generator N̂ were broken during the phase transition.
It means we have in this case NBG = 1, NI = 1 and NII = 0.
The equality NI + 2NII = NBG holds. Density mode is
massless because the U�1� gauge symmetry is sponta-
neously broken in the mean-field ground state, while the
transverse magnetization modes fx and fy are massive for
non zero q, since the rotational degeneracies about the x
and y axes do not exist being lifted by the external mag-
netic field. In the limit of infinitesimal q→ 0 nevertheless
nonzero, the transverse magnetization modes fx and fy
become massless. It occurs because before the BEC in the
absence of an external magnetic field the symmetry of the
spinor Bose gas is U�1�×SO�3�, whereas after the phase
transition it can be considered as a remaining symmetry
SO�2�. The generators N̂ , F̂ x, F̂ y were broken, whereas
the generator F̂ z remained. In this case we have NBG = 3,
NI = 3 and NII = 0 the equality looks as 3= 3.
In the polar phase P ′ with the parameters (39) the den-

sity and spin fluctuation operators were introduced by for-
mulas (57)–(59) of Ref. [11]

akd =
1√
2
�ak�1+ak�−1�� ak�fx = ak�0

ak�fy =
i√
2
�ak�1−ak�−1�

(42)

with the Bogoliubov energy spectra described by formulas
(65)–(67):11

E�k�d =
√
��k���k+2nc0�

E�k� fx =
√
���k−q����k−q+2nc1�

E�k� fz =
√
��k���k+2nc1�

(43)

At q < 0 in contrast to the case q > 0 one of the spin
fluctuation mode E�k� fz becomes massless. The initial sym-
metry of the system is U�1�×SO�2�. It has the symmetry
generators N̂ and F̂ z. They are completely broken dur-
ing the phase transition. After the phase transition and the
P ′ phase formation there are not any symmetry genera-
tors. The number of the broken generator is 2 (NBG = 2�,
whereas the numbers NI and NII are 2 and 0, respec-
tively. As in the previous cases, the equality occurs in
the Nielsen and Chadha rule. For the Bogoliubov spectra
to be real the condition q < 0, c0 > 0 and c1 > 0 must
be satisfied, otherwise, the state ��P ′

will be dynamically
unstable.
Side by side with the spinor-type three-dimensional

(3D) atomic Bose-Einstein condensates in the optical traps,
we will discuss also the case of the Bose-Einstein con-
densation of the two-dimensional (2D) magnetoexcitons in
semiconductors.22–25 The collective elementary excitations
under these conditions were investigated in Refs. [26–31]
and will be described in Section 11. As was shown
above, the spontaneous symmetry breaking yields Nambu-
Goldstone modes, which play a crucial role in determining
low-energy behavior of various systems.5�32–38 Side by side
with the global gauge symmetry the local symmetry does
exist.

5. SPONTANEOUS BREAKING OF THE
LOCAL GAUGE SYMMETRY AND THE
HIGGS PHENOMENON

The interaction of the electrons with the electromagnetic
field can be described introducing into the Lagrangian
the kinetic momentum operators instead of canonical ones
what is equivalent to introduce the covariant derivatives D
instead of the differential ones �. They are determined in
Ref. [8] as

x = �ct� �x�� � =
(
1
c

�

�t
� ��

)

D = �− ie

�c
A� A= ��� �A�

(44)

where � and �A are the scalar and vector potentials of the
electromagnetic field (EMF). Below we will use also the
denotations of Ref. [7]

x� = �ct� �r�� x� = �ct�−�r�� A� = ���− �A�

A� = ��� �A�� �� =
�

�x�
=

(
1
c

�

�t
� ��

)

�� = �

�x�

(
1
c

�

�t
�−��

)
� ���

� = 1
c2

�2

�t2
−�

p� =
(
E

c
� �p

)
� p� =

(
E

c
�−�p

)
(45)
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The Lagrangian of the free EMF has the form7

�EMF =−1
4
F��F

�� (46)

being expressed through the antisymmetric tensors F��
and F �� . They are determined as four-dimensional curls
of A� and A�.

F�� =−F�� = ��A�− ��A�� F �� = ��A�− ��A� (47)

The full Lagrangian of the electrons and EMF reads7

L =
[(
��+

ie

�c
A�

)



][(
�− ie

�c
A�

)

∗

]
−m2
∗


−��
∗
�2− 1
4
F��F

�� (48)

As before m2 is a parameter so that in the case m2 < 0 and
in the absence of the EMF vacuum values are determined
by the formula (22).
The invariance of the Lagrangian (48) under the

transformation8


′�x�= 
�x�ei��x� (49)

in the presence of the EMF can be achieved only under the
concomitant transformation of its potential in the form8

A′�x�= A�x�+ �c

e
���x� (50)

Indeed in this case the Lagrangian (48) remains invariant
[7] as follows[(

��+
ie

�c
A�

)



][(
��− ie

�c
A�

)

∗

]

=
[(
��+

ie

�c
A′
�

)

′
][(

��− ie

�c
A′�

)

′∗

]

F ′
�� = F��� F ′�� = F ��

(51)

Introducing the gauge transformation of the field function
(24) and expanding the Lagrangian in power series on
the small physical fields 
′

1 and 
′
2 we obtain the con-

stant, quadratic, cubic and quartic terms. The quadratic
part looks as7

�2 = −1
4
F ��F��+ e2a2A�A

�+ 1
2
���


′
1�

2+ 1
2
���


′
2�

2

−2�a2
′2
1 +

√
2eaA���


′
2 (52)

The second term is proportional to A�A
�. It indicates that

the photon becomes massive. The scalar field 
′
1 is also

a massive one. The field 
′
2 takes part in the mixed term

A���

′
2 and can be eliminated by the supplementary gauge

transformation (50). Following Ref. [7] the Lagrangian
(52) can be presented in the form

�2=−1
4
F ��F��+e2a2A�A

�+ 1
2
���


′
1�

2−2�a2
′2
1 (53)

It contains two fields only: the photon with longitudinal
component and spin 1 and field 
′

1 with spin 0. They are
both massive. The field 
′

2, which in the case of spon-
taneous breaking of the global gauge symmetry became
massless forming a Goldstone boson, in this case disap-
peared. The photon became massive. This phenomenon is
called the Higgs phenomenon.7

One possible illustration of the described above effect
will be considered below following the paper by Halperin,
Lee and Read.39 They considered the two-dimensional
(2D) system of spinless electrons under the conditions of
the quantum Hall effect. Then the Hamiltonian Ĥ = K̂+ V̂
consists of the kinetic energy operator K̂

K̂ = 1
2me

∫
d2 �r�̂†

e ��r�
[
− i� �� + e

c
�A��r�

]2

�̂e��r� (54)

with 2D electrons with the mass me and the charge −e sit-
uated in a uniform external perpendicular magnetic field B
with the vector-potential �A��r�. The potential energy oper-
ator V̂ depends on the Coulomb interaction between the
electrons. The creation and annihilation operators �̂†

e ��r�,
�̂e��r� obey to the Fermi statistics as was the case of
Ref. [39], but we will consider following the Ref. [40]
a more general case including also the Bose statistics

��̂e��r��̂†
e ��r ′�± �̂†

e ��r ′��̂e��r��= �2��r− �r ′� (55)

The signs ± correspond to the Fermi and Bose statistics.
In Ref. [39] the new “quasiparticle” operators �̂†��r�, �̂��r�
were introduced by the relations

�̂†��r�= �̂†
e ��r�e−im�̂��r�� �̂��r�= eim�̂��r��̂e��r� (56)

with an integer number m and with the phase operator

�̂��r�=
∫
d2 �r ′���r− �r ′��̂��r ′� (57)

It depends on the angle ���r− �r ′� between the vector �r− �r ′
and the in-plane axis x being determined by the formula

���r− �r ′�= arctan
y−y′

x−x′
(58)

and by the density operator �̂��r ′�
�̂��r ′�= �̂†

e ��r ′��̂e��r�= �̂†��r��̂��r ′� (59)

These operators have the properties

�̂��r�= �̂†��r�� ��̂��r�� �̂��r ′��= 0

��̂e��r�� �̂� �r ′��= �̂e�r��
2��r− �r ′�

��̂e��r�� �̂� �r ′��= �̂e��r����r ′ − �r�
�̂e��r��̂n� �r ′�= ��̂� �r ′�+���r ′ − �r��n�̂e��r�
�̂e��r�eim�̂�r ′� = eim��

�r ′−�r�eim�̂�r ′��̂e��r�
�̂†
e ��r�e−im�̂�r ′� = eim��

�r ′−�r�e−im�̂�r ′��̂†
e ��r�

(60)
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It will be shown below that m is the number of point vor-
tices attached to each bare initial particle forming together
with it a composite particle (CP). The statistics of the CPs
depends on the statistics of the initial particles and on the
number m of the attached vortices. Finally, we will cal-
culate the commutators of the operators �̂†��r�, �̂��r� with
the requirement that it will be �2��r− �r ′� as follows:
��̂��r�� �̂†��r ′��± = e−im��0�+im���r−�r�

×��̂e��r��̂†
e ��r ′�± eim	�̂†

e ��r ′��̂e��r��
×e−im��̂� �r ′�−�̂��r�� = �2��r− �r ′� (61)

Here we have taken into account the relation ���r ′ − �r�−
���r − �r ′� = 	 for �r �= �r ′. One can observe that the CPs
represented by the operators �̂†��r�, �̂��r� are composite
fermions (CFs) if the bare initial particles are fermions and
the number of vortices m is even as well as in the case
when the initial particles are bosons and the number of
vortices m is odd. In the same way the CPs are composite
bosons (CBs) if the initial particles are fermions and the
number of vortices is odd, or if the initial particles are
bosons and the number of vortices m is even.
The kinetic energy operator K̂ in terms of the operators

�†�r� and ��r� is

K̂ = �
2

2me

∫
d2 �r�†��r�eim�̂��r�

[
− i �� + e

�c
�A��r�

]2

× e−im�̂��r����r� (62)

It can be transformed taking into account that
(
−i ��+ e

�c
�A��r�

)
e−im�̂��r����r�

=e−im�̂��r�
(
−i ��+ e

�c
�A��r�−m ���̂��r�

)
���r� (63)

what leads to the formula

K̂ = �
2

2me

∫
d2 �r�†��r�

×
[
−i ��+ e

�c
�A��r�−m ���̂��r�

]2

���r� (64)

It contains a supplementary vector potential �̂a��r� named as
statistical Chern-Simons gauge potential41 determined as

�̂a��r� = −m�c

e
���̂��r�

= −m�c

e

∫
d2 �r ′ ��r���r− �r ′��̂��r ′� (65)

Its calculation needs a special precaution as was pointed
by Jackiw and Pi41 because ���r− �r ′� is a multivalued func-
tion. They cautioned against the moving of �� with respect
to �r out of the integral

∫
d2 �r ′���r − �r ′��̂��r ′�, because in

general it is not correct. The integration cannot be inter-
changed with the differentiation. The reason for this is that
the function ���r − �r ′� is multivalued and the integration
of ���r − �r ′� over the two-dimensional �r ′ plane requires
specifying the cut in the space �r ′, which begins at the
point �r . The range of the �r ′ integration depends on �r and
moving the �r derivative outside of the �r ′ integral gives an
additional contribution. To avoid these complications the
derivative �����r − �r ′� is introduced into the integrand for
the very beginning in the form

�����r− �r ′�=−curl ln ��r− �r ′� (66)

As it was shown in Ref. [41] the curl of a scalar S in the
2D space is a vector and the curl of the vector �a is a scalar
as follows

�curlS�i = ∈ij �jS� curl �a= ∈ij �iaj� i� j = 1�2

∈12 =− ∈21� ∈11 = ∈22= 0
(67)

The statistical gauge vector potential �̂a��r� can be
transcibed

�̂a��r�= m�c

e

∫
d2 �r ′curl ln ��r− �r ′��̂��r ′� (68)

what leads to the statistical gauge magnetic field b̂��r�

b̂��r� = curl �̂a��r�= m�c

e

∫
d2 �r ′ ∈ij∈jk �i�k ln ��r− �r ′��̂��r ′�

= −m�c

e

∫
d2 �r ′�r ln ��r− �r ′��̂��r ′� (69)

Taking into account the equality

� ln �r = 2	�2��r� (70)

we obtain
b̂��r�=−2	m�c

e
�̂��r� (71)

Substituting the density operator �̂��r� by its mean value
ne = ��/2	l2� with the fractional integer filling factor �
equal to � = 1/m with m≥ 1, and taking into account the
magnetic length l2 = ��c/eB� determined by the external
magnetic field B we will find the average value b̄ and
equality

B+ b̄ = 0 (72)

what means that the resulting magnetic field is exactly
zero. In this approximation the set of CPs does exist in
zero magnetic field. If they are fermions their ground state
will be a filled Fermi sea with the Fermi wave vector deter-
mined by the magnetic length. If they are bosons, they will
undergo the BEC.
In the Section 7 we will discuss the collective ele-

mentary excitations above the ground state in the case of
CBs on the base of Ginzburg-Landau theory. In Ref. [42]
it was shown that applying the mean-field theory one
must integrate out the short-distance fluctuations of the
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��r� field to obtain an effective action which describe the
physics at distance scales larger than the magnetic length.
It is supposed that the effective action is of the same form
as the microscopic action, but with renormalized stiffness
constant, bare mass and the effective interaction strength.

6. QUASI-NAMBU-GOLDSTONE MODES IN
THE BOSE-EINSTEIN CONDENSATES

The Goldstone theorem guarantees that the NG modes do
not acquire mass at any order of quantum corrections.
Nevertheless, sometimes soft modes appear, which are
massless in the zeroth order but become massive due to
quantum corrections. They were introduced by Weinberg,5

who showed that these modes emerge if the symmetry of
an effective potential of the zeroth order is higher than
that of the gauge symmetry and the idea was invoked to
account for the emergence of low-mass particles in rela-
tivistic physics. Following Ref. [32] now these modes are
referred to as quasi-Nambu-Goldstone modes, in spite of
the fact that their initial name introduced by Weinberg was
pseudo-modes instead of quasi-modes. Georgi and Pais33

demonstrated that the quasi-NG modes also occur in cases
in which the symmetry of the ground state is higher than
that of the Hamiltonian.32 This type of the quasi-Nambu-
Goldstone modes is believed to appear, for example, in the
weak-coupled limit of A phase of 3He.37�38

The authors of Ref. [32] underlined that the spinor BEC
are ideal systems to study the physics of the quasi-NG
modes, because these systems have a great experimental
manipulability and well established microscopic Hamilto-
nian. It was shown in Ref. [32] that the quasi-NG modes
appear in a spin-2 nematic phase. In the nematic con-
densate, three phases, each of which has a different sym-
metry, are energetically degenerate to the zeroth order36

and the zeroth order solution has a rotational symmetry
SO�5�, whereas the Hamiltonian of the spin-2 condensate
has a rotational symmetry SO�3�. By applying the Bogoli-
ubov theory of the BEC under the assumption that the
�k = 0 components of the field operators are macroscopi-
cally occupied, it was shown that the order parameter of
the nematic phase has an additional parameter independent
on the rotational symmetry. The ground state symmetry
of the nematic phase at the zeroth order approximation is
broken by quantum corrections, thereby making the quasi-
NG modes massive. The breaking of the SO�5� symmetry
occurs. The number n of the quasi-NG modes was deter-
mined by Georgi and Pais33 in the form of the theorem. It
was explained and represented in Ref. [32] as follows:

n= dim�M̃�−dim�M� (73)

where M̃ is the surface on which the effective poten-
tial assumes its minimal values to the zeroth order and
dim�M̃� is the dimension of this surface. The dimen-
sion dim�M� determines the number of the NG modes.

This implies that M is a submanifold of M̃ and n is the
dimension of the complementary space of M inside M̃ .32

In the case considered by Goldstone, the dimension of
the ring is 1 and the number of the NG modes is 1.
This leads to the absence of the quasi-NG modes �n= 0�.
Returning to the case of 2D magnetoexcitons in the BEC
state with small but nonzero wave vector �k ��k �= 0�
described by Hamiltonian (16) of Ref. [30], one should
remember that both continuous symmetries existing in the
initial form (10)30 were lost. It happened due the presence
of the term �̃�d†�k + d�k� in the frame of the Bogoliubov
theory of quasiaverages. Nevertheless, the energy of the
ground state as well as the self-energy parts �ij�P���,
which determine the energy spectrum of the collective ele-
mentary excitations depend only on the modulus of the
wave vector �k and do not depend at all on its direction.
All these expressions have a rotational symmetry SO�2� in
spite of the fact that Hamiltonian (16) of Ref. [30] has lost
it. We believe that the condition described by Georgi and
Pais33 may favor the emergence of the quasi-NG modes.
We are explaining the existence of the gapped, massive
exciton-type branches of the collective elementary excita-
tions obtained in our calculations just by these considera-
tions. These questions will be discussed in Section 11.

7. GINZBURG-LANDAU THEORY FOR THE
FRACTIONAL QUANTUM HALL EFFECT

In this section we will follow the collective monograph43

dedicated to the fractional quantum Hall effect (FQHE),
the clear and transparent candidatus scientiarum thesis by
Enger44 and many other papers cited below. The Landau
theory of the second order phase transition45 is based on
the introduction of the order parameter, 
�rt� assuming
that the free energy is a regular function of 
 at least
near the critical point. In the case of superconductors and
superfluids the role of the order parameter is played by
the condensate wave functions. The theory of supercon-
ductors was elaborated by Ginzburg and Landau46 whereas
for liquid helium by Ginzburg and Pitaevskii.47 The micro-
scopical foundations in the latter case were proposed by
Pitaevskii48 and by Gross49 and can be found in the mono-
graph by Nozieres and Pines.50 The microscopical theory
of superfluidity was firstly proposed by Bogoliubov in the
model of weakly interacting Bose gas.51 The density of the
Helmholz free energy f �r� expanded on the small order
parameter 
 has the form

f �r�= f0+
�
�2+ �

2
�
�4+ �

2

2m
��
�2 (74)

In the case of superconductor it is necessary to include the
effect of the applied electromagnetic field which can be
done by substituting the canonical momentum p̂ = −i��
by the kinetic momentum

�p− q

c
�A�r� (75)
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where �A is the vector potential, q is the charge of the
Cooper pair, q =−2e.
The density of the Gibbs free energy including also the

density of the magnetic field energy looks as

g�r� = f0+
�
�2+ �

2
�
�4

+ 1
2m

∣∣∣∣
(
−i�� + 2e

c
�A
)



∣∣∣∣
2

+ B2

2�0

(76)

where �B = rot �A. Minimizing the total Gibbs energy G=∫
g�r�dr with respect to 
 and �A gives

1
2m

(
−i�� + 2e

c
�A
)2


+

+��
�2
= 0

1
�0

�� × �B = ie�

m
�
∗�
−
�
∗�− 4e2

mc2
�
�2 �A

(77)

This is the Ginzburg-Landau equations, where �0 is the
magnetic permeability.
The Ginzburg–Pitaevskii–Gross equation for the Bose-

Einstein condensate wave function 
�r� t� is

i�
�
�r� t�

�t
=− �

2

2m
�
�r� t�+��
�r� t��2
�r� t� (78)

Separating the space and time parts 
�r� t�= ei�t
�r�, and
choosing the chemical potential � = ��0, one can trans-
form (78) into the equation

− �
2

2m
�
�r�+���
�r��2−�0�
�r�= 0 (79)

which is known as Gross-Pitaevskii equation or non-linear
Schrodinger equation. As was mentioned in Refs. [51, 52]
the GL theory is needed also for the FQHE to better under-
stand this phenomenon.
The FQHE also is a remarkable example of the quan-

tum effects observable on a macroscopic level similarly as
superconductivity and superfluidity. All these phenomena
have a ground state with non-zero density of particles and
in all three cases there are quasiparticle excitations in the
form of vortices. But there are some aspects of the FQHE,
which are not present in the GL theories of superconduc-
tors and superfluids. First of them there is a gap in the
spectrum of the collective elementary excitations, which
leads to the incompressibility of the FQHE systems. The
second important difference is related with the properties
of the vortices in the FQHE case. They play the role of the
single-particle excitations and have finite creation energy,
as opposed to the vortices in the superfluid He-II with
an extensive creation energy of the vortex proportional to
ln�R/a�, where R is the radius of the system and a is the
vortex core.
In addition the FQHE vortices have fractional charges.52

In numerous papers some variants of the G-L theory for

the FQHE were proposed starting with the Lagrangian of
the system containing the supplementary term known as
Chern-Simons term. It describes the gauge vector potential
generated by the vortices; which in their turn are induced
by the flux quanta created by the external magnetic field B.
Instead of Gibbs free energy the action of the system is
studied.
Girvin,52 and Girvin and MacDonald53 for the first time

proposed a phenomenological variant of the GL theory
writing the action S in the form

S =
∫
d2r

{∣∣∣∣
(
−i��+ e

c
A1�r���r�

)∣∣∣∣
2

+i��∗�r���r�−n0�

×
�r�− i�

8	2
�
�× �A1+ �A1×�
�

}
(80)

where
�A1 = �A+ �a� �B = rot �A (81)

is an effective summary vector-potential composed from
the physical external vector-potential �A generating the
magnetic field B, and from a gauge vector-potential �a cre-
ated by the vortices. The effective field A1 represents the
frustration arising in the system, when the density of the
particles ��r�= ���r��2 deviates away from the quantized
Lauglin’s density n0,

42 which determines the fractional fill-
ing factor �= 1/m with m integer. The density n0 is named
the flux density being determined by the magnetic field B
through the magnetic length l in the form n0 = 1/m2	l2,
where l2 = �c/eB. The equation of motion for vector �A1

in a static case is:

�� × �A1 = ��∗�−n0�� � = 2	/m (82)

The proposed phenomenological G-L theory allows us
to understand that the creation energy of a single vor-
tex is finite and that the vortex has a fractional charge.
The difference between the FQHE and ordinary super-
fluidity was explained by the strong phase fluctuations
induced by the frustration. Zhang, Hanson and Kivelson42

derived their field-theory model starting from the micro-
scopic Hamiltonian. They constructed the G-L theory in
a way similar to Girvin but contrary to Girvin in their
approach the Chern-Simons term contains only the gauge
field a�r�.42 As in the previous papers53 it was confirmed
that the disturbances of the localized density moving the
system away from the good filling fractions lead to cre-
ation of single-particle excitations. These quasiparticle and
quasihole excitations have the form of vortices with static
nonuniform finite-energy solutions. Side by side with the
single-particle excitations in the Ref. [42] the collective
elementary excitations were discussed. For this end the
Lagrangian was expanded up to terms quadratic in �
 and
�a about the constant solutions corresponding to vacuum
expectation values. The fluctuating values �
 and �a were
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represented in the form of plane waves with vector q. The
dispersion relation was found in the form42

�2�q�= �e�B�2+ 1
4
�q2��q2+8�n0� (83)

It has a gap in the point q = 0 proportional to the exter-
nal magnetic field B. For negative �, but for sufficiently
small parameter ���/� the dispersion curve has a roton-
type behavior with the same shape as was derived by
Girvin, MacDonald and Platzman.54 The GL theory pro-
posed by Ref. [42] describes the incompressibility, frac-
tional charge and fractional statistics of the quasiparticles.
But being a coarse-grained version of the FQHE it makes
errors on the magnetic length scale. It treats the gauge field
with a mean-field approximation, and reproduces correctly
the long-wavelength effects of the quantum Hall systems
excluding such details as the description of the vortex core.
The idea that the long-wavelength effects of the physical
magnetic field are canceled by the gauge field was also
suggested by Laughlin55 and in Ref. [56].

8. POINT VORTICES UNDER THE
CONDITIONS OF FQHE

Because the vortices play an important role in the under-
standing of the FQHE we will provide here more infor-
mation on this subject. The presentation below beginning
with classical hydrodinamics and proceeding to the quan-
tum vortices is given following the paper Ref. [57] and
Enger44 and Myklebust theses.58 An ideal fluid without
viscosity is described in classical hydrodynamics by the
continuity equation.

��

�t
+ �����v�= 0 (84)

and Euler’s equation

��v
�t

+ ��v · ����v =− ��p
�

(85)

where ��p and �v are the density, pressure and velocity
field correspondingly in each point of the liquid. The vor-
ticity is defined in 3D hydrodynamics as ��= ��× �v. If the
liquid is not only ideal but also isoentropic with constant
entropy along it, then the vorticity �� obeys to a supple-
mentary continuity equation. The flow is irrotational with
a potential flow if �� = 0 at all points of the fluid. In this
case one can introduce the velocity potential 


�v = ��
� ��= �� × �v = 0 (86)

In physical fluids the vorticity is localized in small areas.
Outside the vortices most of fluid is irrotational. In a 3D
liquid the vortex is a tube with the strength � defined as

�=
∫

��d � =
∮
�vd�l (87)

The Helmholtz theorem (also known as Kelvin’s
circulation theorem) says that in the absence of rotational
external forces a fluid that is initially irrotational remains
irrotational all the time. In case of 2D fluid the notion
of point vortex with zero area is introduced. The velocity
field generating such a vortex may be represented by the
expressions

�v = �

2	r
�e� =

�

2	

(
−�i y
r2

+ �j x
r2

)

�e� = �j cos�−�i sin �� �er = �i cos�+ �j sin �
�� = �i �

�x
+ �j �

�y
= �

�r
�er +

1
r

�

��
�e�

(88)

Here � is the vortex strength, whereas the unit vectors
�i� �j� �er and �e� corresponds to rectangular and polar 2D
coordinates. Following Ref. [41] we must take into account
the definition of the curl in the 2D space, namely that the
curl of the vector is a scalar and the curl of the scalar is a
vector as follows

�= Curl�v = �� × �v = �ij�ivj� �CurlS�i = �ij�jS (89)

where �ij is an antisymmetric tensor with the properties

�12 =−�21 = 1� �11 = �22 = 0

These rules lead to the vorticity of the point vortex with
the velocity field (88)

��r�= Curl�v = �

2	
� ln r = ���2���r� (90)

The velocity field created by a point vortex has a singular-
ity. It is irrotational or potential almost in all space except
of the origin in the point r = 0. By this reason the vortex
area is zero. Nevertheless the summary vorticity due the
singularity (90) is finite. In the same way the circulation
of the vortex is also finite as follows∫

�d2 �r = lim
r→�

∮ �

2	r
�e�d�l = �� d�l = rd� �e� (91)

A fluid containing a point vortex will have potential flow
almost everywhere. A point vortex in an incompressible
liquid has energy

∫ mv2

2
d2 �r = m�2

2	
ln
R

a
(92)

where R is the length scale of the whole system and a is
the core radius. A classical system of N point vortices in
an incompressible liquid has the kinetic energy associated
with each vortex and the interaction energy between them.
This interaction does not come from an electric charge of
the vortices because they are neutral. For two vortices with
guiding centers �R1 and �R2 it is useful to define a guiding
center of a pair �Rgc and its relative coordinate �Rrel in the
form

�Rgc = �R1+ �R2� �Rrel = �R1− �R2 (93)

J. Nanoelectron. Optoelectron. 7, 640–670, 2012 653



Delivered by Publishing Technology to: National Taiwan University of Science & Technology
IP: 140.118.123.85 On: Mon, 28 Jan 2013 06:28:27

Copyright American Scientific Publishers

R
E
V
IE
W

Spontaneous Symmetry Breaking and Coherence in Two-Dimensional Electron–Hole and Exciton Systems Moskalenko et al.

The equations of motion for a pair of vortices with equal
strengths �1 = �2 = � are

Ẋgc = Ẏgc = 0� Ẋrel =− �Yrel
	R2

rel

� Ẏrel =
�

	

Xrel

R2
rel

(94)

These equations describe a circular motion around a fixed
point named as stationary guiding center with an angular
velocity ! depending on the constant separation distance
of the vortices � �Rrel� as follows

!= �

	� �Rrel�2
(95)

For a pair of vortices with opposite vorticities � = �1 =
−�2 i.e., for a vortex–antivortex pair the equations of
motion are

Ẋgc =
�

	

Yrel

� �Rrel�2
� Ẏgc =− �

	

Xrel

� �Rrel�2
Ẋrel = Ẏrel = 0 (96)

The vortices will not move relative each other, but will
follow a straight line perpendicular to the vector �Rrel con-
necting the vortices.44

This picture is exactly the same as the structure of a 2D
magnetoexciton moving with wave vector �k perpendicular
to the vector �d connecting the electron and hole in the pair
with a constant distance d = kl2 at a given �k.
One can remember that the existence of the quantum

vortices was suggested for the first time by Onsager,59

who proposed that the circulation in the superfluid He-II is
quantized with the quantum of circulation h/m. The quan-
tum vortices in the He-II were discussed by Feynman,60

whereas a quantized line was observed by Vinen.61 The
quantization of the vorticity in the He-II can be explained
in the frame of GL theory. The velocity field of a super-
fluid described by the wave function


=√
�eiS (97)

can be written as
�v = �

m
��S (98)

The circulation around a close path C becomes

�=
∮
�v d�l = �

m

∮ ��S d�l = �

m
�S (99)

�S is the change in the phase of the wave function, as
one moves around the close path C. But the wave function
must be single valued. By this reason �S must be integer
multiple of 2	. It means that

�= �

m
2	s� s = 0�±1�±2� � � � (100)

The vorticity of the quantum vortex has discrete values
with the quanum h/m. This definition of vorticity differs

from the classical hydrodynamics �� = �� × �v. The only
rotational invariant wave function having the property
(100) being written in polar coordinated has S = s�


��r�= f �r�eis� (101)

It produces the same velocity field as the classical point
vortex

�v = �s

mr
�e� =

�

2	r
�e� (102)

The kinetic energy

E =
∫ 1
2
mv2d2r = �

2	

m
s2 ln�R/�� (103)

is now expressed through the coherence length � instead
of the core radius a. The cutoff at � is used to avoid the
logarithmic divergence neared the vortex core.
Inserting the vortex function (101) into the Ginzburg–

Pitaevskii–Gross equation, Myklebust44�58 found the fol-
lowing equation for the function f �r�

d2f

dr2
+ 1
r

�f

�r
+
(
2− s2

r2

)
f −2f 3 = 0 (104)

It depends only on s2. Contrary to the He-II, the Bose-
Einstein condensate in superconductors is formed by the
Cooper pairs with the charge q = −2e instead of the
neutral atoms. The type II superconductors allow the mag-
netic field to penetrate in metals forming quantized vor-
tices, while in the type-I superconductors the magnetic
field cannot penetrate.62 The quantized vortices exist in the
form of filaments named Abrikosov’s lines. They have a
mixed electron and electromagnetic field origin and were
described for the first time by Abrikosov63 on the base
of the G-L theory with nonzero electromagnetic field �A.
It was shown that the magnetic flux through the vortex
tube is quantized with the flux quantum 
0

∫
�Bd � =

∮ �Ad�l = n
0� 
0 =
2	�c
�q� (105)

The total energy per a unit length of the vortex tube is
finite and equals to

E =
(

0

4	�

)2

ln
�

�
� � > � (106)

where � is the penetration length of the magnetic field into
the II-type superconductors as was introduced by London
and London64 and � is the correlation length between the
electrons in the Cooper pair. Girvin52 suggested that the
contribution of the electromagnetic field in the resultant
current density �j��r� determined in the case of FQHE as

�j��r� = 1
2
"�∗�r��−i� �����r�+��r��i� ����∗�r�#

+ e

c
�A�∗�r���r� (107)

654 J. Nanoelectron. Optoelectron. 7, 640–670, 2012



Delivered by Publishing Technology to: National Taiwan University of Science & Technology
IP: 140.118.123.85 On: Mon, 28 Jan 2013 06:28:27

Copyright American Scientific Publishers

R
E
V
IE
W

Moskalenko et al. Spontaneous Symmetry Breaking and Coherence in Two-Dimensional Electron–Hole and Exciton Systems

reorganizes the point vortex state in such a way that its
resultant circulation at great distance r →� will be zero∮

�j�r�d�l = 0 (108)

It is possibly only for the condition when the magnetic
flux through the vortex surface is quantized in the form∫

rot �Ad2 �r =
∮ �Ad�l =−m
0� 
0 =

2	�c
�e� (109)

This value being multiplied by n0�e�/c compensates
exactly the circulation arising from the electron part of the
current density∮ 1

2
"�∗�r��−i� �����r�+��r��i� ����∗�r�#d�l

= 2	�mn0 (110)

because the wave function ��r� has the form

��r�=√
n0f �r�e

im�� f �r�→ 1� r →� (111)

The number of magnetic flux quanta −m must be oppo-
site to the magnetic quantum number of the electron wave
function. The creation energy of such point vortex is finite
and no extensive as in the case of a pure electron vortex.
As was mentioned by Girvin and MacDonald53 the iso-
lated vortex cost only a finite energy. They can be excited
thermally by one. Earlier it was necessary to create a pair
vortex-antivortex with finite creation energy for a pair as a
whole, but with extensive energy for each of them. Only in
the last case the Kosterlitz-Thoulless phase transition was
possible being related with the unbinding of the vortices
in the pairs.

9. GAUGE TRANSFORMATIONS AND
STATISTICAL GAUGE FIELD

Girvin and MacDonald53 revealed a hidden symmetry of
the Laughlin’s65 ground state wave function describing the
FQHE of the 2D one-component electron gas (OCEG).
This wave function is

��z1� � � � � zN �=
∏
i<j

�zi− zj�
m exp

[
−1
4

∑
k

�zk�2
]

(112)

The filling factor of the lowest Landau level (LLL) is a
fractional integer � = 1/m, with integer m> 1. zk = xk+
iyk are the complex coordinates of the particles in sym-
metric gauge. With respect to the interchanging of any two
particles the wave function (112) is anti-symmetric at odd
values of m and symmetric at even values, describing the
fermions and bosons, correspondingly. But changing the
phase of the wave function (111) using a singular gauge
transformation

�new�z1� � � � � zN � = exp�−im∑
i<j

arg�zi− zj����z1� � � � � zN �

= ∏
i<j

�zi− zj �m exp
[
−1
4

∑
k

�zk�2
]

(113)

we have obtained a bosonic type wave function at any
integer values of m > 1. The off-diagonal matrix ele-
ments of the density matrix ��z� z′� calculated with the
function (112) are short-ranged with a characteristic scale
given by the magnetic length, while those calculated with
the wave function (113) �̃�z� z′� have a slowly decreas-
ing behavior with a power law �z− z′�m/2. The singular
gauge density matrix �̃�z� z′� has an off-diagonal long-
range order (ODLRO). The physical origin of this dif-
ference is related to the presence of the vortices induced
around each particle under the influence of the magnetic
flux quanta, as was explained by Stormer.66

The presence of the vortices can be demonstrated using
more simple example proposed by Enger44 with a wave
function ��z� of two particles depending only on their
relative coordinate z. It is supposed that ��z� obeys to any
statistics and after the particle interchanging it becomes

��ei	z�= ei���z�� � = 	�2n+1� for fermions

n= 0�±1�±2 � � � � = 2	n for bosons
(114)

A gauge transformation ei��z� transforms the wave function
��z� into another bosonic type wave function

ei��z���z�= 
�z�= 
�ei	z� (115)

To satisfy this requirement and the equalities

ei��e
i	 z���ei	z�= ei��z���z�= ei��e

i	 z�ei���z� (116)

the function ��z� must satisfy the equation

��z�− ei	z= �

��z�=− �

	
arg z=− �

	
arctan

y

x
(117)

The transformation of the wave function (115) must be
accompanied by the transformation of the electromagnetic
field potentials A�

44

e

�c
A� →

e

�c
A�+ ����z�=

e

�c
�A�+a��

�= 0�1�2 (118)

In such a way side by side with the electromagnetic poten-
tial A� supplementary gauge potential a� created by the
vortices appears.

e

�c
a���r�= �����r�

a���r�=
�c

e
�����r�=−�c�

	e
�� arctan

y

x
(119)

The statistical gauge vector potential has the expression

�a= �c�

	e
Curl ln r = �c�

	e
�� × ln r

ai =
�c�

	e
�ij�j ln r� i� j = 1�2

(120)
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This vector potential is created by the vortices arising near
each particle. It leads to magnetic field strength41

b�r� = Curl �a�r�= ��× �a�r�=�ij�iaj=−�c�

e	

×�lnr=−2�c�
e

�2��r�� �lnr
2	

=�2��r�
(121)

The magnetic flux created by this magnetic field is

∫
b�r�d2 �r =−2	�c�

e
=− �

	

0� 
0 =

hc

e
(122)

It equals to −�2n + 1�
0, when the initial particles
described by the function ��z� were fermions, and equals
to −2n
0 for boson wave function ��z�. This result shows
that the initial fermion particles each of them attaching
an odd number of flux quanta transform themselves into
a composite bosons described by the new wave function

�z� which obeys to Bose statistics. The effective mass m
and charge e remain the same at least in the given approxi-
mation but the composition and statistics of the final quasi-
particles are changed. It is said that the electron attached
an odd number of flux tubes, though in reality such tubes
do not exist. We can say that in our case the initial parti-
cles are fermions or electrons whereas the final quasipar-
ticles are bosons. Formula (121) may be generalized for
any number of particles, which create in a common way
the resultant magnetic field

b�r�=−2�c�

e

N∑
i=1

�2��r− �ri�=−2��c
e

���r� (123)

where ���r� is the density of the particles.
As was mentioned above, Zhang, Hanson and

Kivelson42 have generalized the Ginzburg-Landau theory
introducing into the Lagrangian a supplementary Chern-
Simoms35 term related with the influence of the statistical
gauge field. The Lagrangian of the Ginzburg–Landau–
Chern–Simons (GLCS) theory in the form presented by
Enger44 looks as

L = i�
∗
(
�t+

ie

�c
�A0+a0�

)

+ �

2

2m

∗

(
��+ ie

�c
� �A+ �a�

)2

×
− �

2
�
∗
−�0�2+

�

2
ea���a (124)

Here the following denotations were used: ���� =
0�1�2� �0 = �t , �i = "�1 = �x� �2 = �y#. The tensor ��� 

has the nonzero components only for different values of
���� . They change the signs at any permutations of two
indexes as follows:

�012 = 1� �021 =−1� �102 =−1� �120 = 1 etc (125)

The external electromagnetic 2D vector-potential �A
and the scalar potential A0 are taken as A� = �A0� �A�. a� is
the statistical gauge potential with three components. Two

of them �a = �a1� a2� generate the statistical “magnetic”
field and the third component a0 gives rise to the statistical
“electric” field. Two parameters m and e of the Lagragian
(124) are the effective mass and charge of the final type
quasiparticles obeying the Bose statistics. They can differ
from the mass and charge of the initial particles. The �
and �0 parameters are typical for the G-L theory, while �
is the Chern-Simons parameter.67 Variations of (124) with
respect to 
∗ leads to the nonlinear Shrodinger equation:

[
i��t−

e

c
�A0+a0�

]

 = − �

2

2m

[
�� + ie

�c
� �A+ �a�

]2




−��
∗
−�0�
 (126)

The variation of (124) with respect to a0 gives

��ij�iaj = e
∗
= e� (127)

which can be transcribed as

�Curl �a= � �� × �a= �b = e� (128)

Parameter � can be determined comparing it with the
expression (119)

�=−2��c
e2

(129)

For the initial fermion particles with � = 	�2n + 1�
the parameter � of the Lagrangian (124) equals to
−�2	�c/e2��2n+ 1� = −�2n+ 1��
0/e�. The third vari-
ation with respect to ai gives

��ij� ��a0− �t �a�= e �j�r� (130)

where �j�r� is the current density 2D vector determined as

�j = �

2mi

{

∗

(
�� − ie

�c
� �A+ �a�

)



−


(
�� + ie

�c
� �A+ �a�

)

∗

}
(131)

The Eq. (130) states that the statistical “electric” field

��=−��a0+
1
c

�

�t
�a (132)

is related with the particle current density �j�r�. The energy
density of the GLCS system in the purely static external
magnetic field �A0 = 0� equals to

E = �
2

2m

∣∣∣∣
(
�� − ie

�c
� �A+ �a�

)



∣∣∣∣
2

+ �

2
��−�0�

2 (133)

A simple solution to these equations can be obtained by
setting


��r�=√
�0e

iS�−→r � (134)

It must obey the equation

��S+ e

�c
� �A+ �a�= 0 (135)
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In the case S = Const we have

�A+ �a= 0 (136)

It means that the corresponding magnetic fields B= ��× �A
and b = �� × �a cancel each other. The final quasiparti-
cles named as composite bosons68–70 do not feel the net
magnetic field and behave as bosons interacting with each-
other via the 
4 type interaction. The notion of compos-
ite particles (CPs) consisting from electrons and attached
magnetic flux quanta was introduced firstly by Wilczek.68

As was mentioned above, the collective elementary exci-
tations of the described ground state are the plane waves.
Their dispersion law has a gap, and this means that the
system is an incompressible quantum liquid, which can not
be excited by a very small perturbation.69�70

Above we have discussed the case when the initial wave
function ��z� with Fermi statistics was transformed into
another wave function 
�z� obeying Bose statistics using a
singular gauge transformation. Read40�71–73 investigated the
system of 2D charged bosons interacting with a transverse
magnetic field and between themselves. The filling factor
of the LLL was supposed to be one. It means that there is
one flux quantum for each particle. Following Read40�71–73

it is equivalently to say that there exists one vortex for each
particle. In this case the vortex has the charge of oppo-
site sign in comparison with the charged boson and the
Fermi statistics. Now the gauge transformation attaching
one vortex to each charged boson will create composite
particles with resulting charge zero and with Fermi statis-
tics. The neutral composite fermions (CFs) will move in
zero magnetic field. Such system can be described in the
frame of the Fermi-liquid-theory. Another variant proposed
by Halperin, Lee and Read39 was considered in Section 5.
The starting Hamiltonian describes the electrons forming
a 2D electron gas (2DEG) with filling factor � of the LLL
equal to one half �� = 1/2�. Now for each electron there
are two flux quanta or two vortices each of them having the
charge −e/2 and Fermi statistics. Two vortices are equiv-
alent to one 2-fold vortex with charge −e and Bose statis-
tics. The gauge transformation of the wave function will
transform the initial charged electrons into the composite
neutral fermions each of them consisting from one elec-
tron and 2-fold vortex. The Hamiltonian of the system will
be changed because side by side with the external mag-
netic field will appear a supplementary gauge magnetic
field, which in well definite conditions cancels exactly
the external magnetic field. The initial charged fermions
were converted in neutral CFs moving in a zero resulting
magnetic field. The fictitious Chern-Simons “magnetic”
field created by the vortices being averaged in the mean-
field approximation cancels exactly the external magnetic
field only in statistical sense and under the definite condi-
tions. It happens when the mean density of the electrons
corresponds to the fractional integer filling factor. In the
present example with � = 1/2 the gauge transformation

does not modify the statistics of the composite particles
(CPs). As earlier, they are neutral CFs in a zero mag-
netic field. The singular gauge transformations were firstly
introduced by Wilczek.68

The single-particle elementary excitations appear in
the form of the fractionally charged vortices. They are
fermions and have finite creation energy as was underlined
by Girvin,52 and Girvin and MacDonald.53 Read39�40�71–73

argued that the ground states of the systems in the condi-
tion of FQHE with different fractional integer filling fac-
tors � = 1/m with m= 1�2�3� � � � contain electrons bound
to vortices, since such binding lowers the system’s energy.
A m-fold vortex carriers a charge −e�m in the fluid, where
e is the electron charge e = −�e�. The electron-m-vortex
composite, named as CP, at � = 1/m has a net charge
zero and behaves like a particle in a zero magnetic field.
The vortex is sensitive to the density of electrons, which
can vary in space and time even when the external mag-
netic field and the average filling factor are fixed. The
m-fold vortices are fermions for m odd and bosons for
m even. The composite boson particles can undergo the
Bose-Einstein condensation (BEC), because it minimizes
their “kinetic” energy. Just the BEC of CBs is the interpre-
tation of the Laughlin’s states.65 The origin of the “kinetic”
energy is the potential energy of the interaction between
the particles. In the case of electrons it is the Coulomb
electron–electron interaction which is not canceled by the
gauge transformation and CS gauge potential. It is named
as “kinetic” because it depends on the wave vector of the
operators.39 The bound objects such as CPs do, in fact,
have such an effective “kinetic” energy. There is an attrac-
tion between an electron and m-fold vortex. It plays for
the electron the role of a correlation quasihole. As was
shown in Ref. [39] the CPs may exist in the form of plane
waves and the many-particle wave functions also can be
characterized by the wave vector �k.
The creation operator in the coordinate representation

(56) can be rewritten in momentum representation as
follows

�†��k�=
∫
d2 �rei�k�r�†��r� (137)

A CP with �k = 0 would have the electron exactly at the
zeroes of the wave function or in the center of the vortex,
whereas the CP with wave vector �k� �= 0 has the electron
displaced by the distance �k�l2 from their center. One can
say that the electron and its correlation quasihole or in
another words the electron and the m-fold vortex experi-
ence a potential V ��k�� due to the Coulomb interaction of
the electron with other electrons excluded from the vortex
core. All these interactions take place in the presence of
the neutralizing background. The electron and the m-fold
vortex experience the magnetic field of the same strength.
Both components of the pair drift in the same direction
perpendicular to the vector connecting their centers, so
that their separation remains constant and equal to �k�l2.
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The energy of a pair is V ��k�� and its group velocity is
�V ��k��/��k�.40�71–73 We can add that this picture coincides
with the structure of the 2D magnetoexciton, where the
energy V ��k�� equals to the expression E��k��39

E��k��= 2
∑
Q

WQSin
2

(
� �Q×�k�zl2

2

)

WQ = 2	e2

�0S� �Q�
e2I 2/2 (138)

Here �0 is the dielectric constant and S is the layer surface
area.
Girvin, MacDonald and Platzman54 elaborated the the-

ory of the collective elementary excitation spectrum in
the case of FQHE, which is closely analogous to the
Feynman’s theory of superfluid helium. The predicted
spectrum has a gap at k = 0 and a deep magneto-roton
minimum at finite wavevector, which is a precursor to
the gap collapse associated with Wigner crystal instabil-
ity. They supposed the existence of only one branch of the
collective elementary excitations spectrum. In this approx-
imation named as single mode approximation (SMA) they
have constructed the wave functions of the excited states

k acting with the operator of the particle density �̂k on
the ground state wave function �g in the form 
k = �̂k�g .
They determined the energy of the excited state ��k� as

��k� = 	
k��H −E0��
k

	
k�
k


= 	�g�P†
k �H0� Pk���g


	�g�P†
k Pk��g


= f �k�

s�k�
(139)

where f �k� is the oscillator strength and s�k� is the static
structure factor. The total oscillator strength sum is satu-
rated by the cyclotron mode contribution, and f �k� has a
dependence of the type �k�4. As was established by Lee
and Zhang74 the influence and the contribution of the quan-
tum vortices to the dynamical and static structure factors
is important. It leads to dependence s�k�∼ �k�2 at k→ 0.
In this case ��k� has a gap. Neglecting the influence of
the quantum vortices the dependence s�k� is proportional
to �k�2 and the energy spectrum is gapless ��k� ≈ k2 at
k→ 0 as a Goldstone mode.2 In conclusion, for the FQHE
in the case � < 1 with fractionally filled Landau level
the Pauli principle no longer excludes the low-lying intra-
Landau-level excitations. They exist side by side with the
inter-Landau-level excitations. The last excitations have a
cyclotron energy gap.75

We are studying a coplanar electron–hole (e–h) sys-
tem with electrons in conduction band and with holes in
valence band in a strong perpendicular magnetic field. Pre-
viously such system has been studied in a series of papers
Refs. [9, 22–25, 27, 76]. Most of them were dedicated to
the theory of 2D coplanar magnetoexcitons. All the same,

there were papers dedicate to another aspects of these sys-
tems. For example MacDonald, Rezayi and Keller77 as
well as Joglekar and MacDonald78 have discussed the pho-
toluminescence (PL) spectrum of the coplanar system in
the FQHE regime. It was mentioned that the PL spectrum
does not exhibit anomalies associated with the FQHE.
However when the electron and hole layers were separated
a new peak in the PL spectrum appears, when the filling
factor exceeds a fraction �0 at which an incompressible
quantum liquid occurs. The new peak is separated from
the main spectral features by the quasiparticle–quasihole
gap. We are interested in the distribution of the flux quanta
in the case of e–h system with equal average numbers of
electrons and holes N̄e = N̄h with the filling factor � =
N̄e/N , where N is the total number of flux quanta N =
S/2	l2, where S is the layer surface area and 2	l2 is the
area of the cyclotron orbit. For the fractional integer fill-
ing factor there are an integer number of flux quanta per
each e–h pair. The creation of the vortices in this case
is not studied at present time. But one can expect that
in the case of magnetoexcitons vortices will be neutral,
whereas in the case of pure electron and pure hole vortices
their “magnetic” gauge fields will compensate each other,
so that the charge, the statistics of the particles and the
external magnetic field will remain the same in the mean-
field approximation with equal densities of electrons and
holes. Nevertheless due to quantum fluctuations and the
deviations in space and time of the electron and hole den-
sities from their average values one can expect the influ-
ence of the pure electron and hole quantum vortices on the
physics of magnetoexcitons side by side with the influence
of the neutral quantum vortices formed by the magnetoex-
citons themselves. The last quantum vortices determine the
Berezinskii–Kosterlitz–Thouless phase transition.79�80

10. QUANTUM HALL EXCITONS IN BILAYER
ELECTRON SYSTEMS

In this section we give a short review of the Bose-
Einstein condensation (BEC) of the quantum Hall excitons
(QHExs) arising in the bilayer electron systems under the
conditions of the quantum Hall effect (QHE) at one half
filling factor � = 1/2 for each layer and the total filling
factor for two layers equal to unity �t = 1. The purpose is
to compare this phenomenon with the case of BEC of two-
dimensional (2D) magnetoexcitons. Such comparison will
give a better understanding of the underlying physics and
allows to verify the accuracy of the made approximations.
In the Ref. [81] Fertig investigated the energy spectrum

of a bilayer electron systems in a strong perpendicular
magnetic field and introduced the concept of the interlayer
phase coherence of the electron states in two adjacent lay-
ers, which leads to the model of quantum Hall excitons
under the condition of their BEC. Unexpectedly a strong
evidence of exciton BEC was ultimately found in such
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surprising system as a double layer 2D electron system
at a high magnetic field.82 In the QHE regime the exci-
tons consist of electrons in the lowest Landau level (LLL)
of the conduction band of one layer being bound to the
holes which appear in the LLL of the conduction band in
another layer. The formation of such unusual holes is due
to the possibility to consider the half-filled LLL by elec-
trons of the conduction band, for example, of the first layer
as being completely filled by electrons with filling factor
� = 1 and simultaneously being half-filling by holes in the
same conduction band. The full-filling electrons of the first
layer are considered as being compensated by the impurity
doped adjacent layer and the theoretical model takes into
account only the holes in the first layer and the electrons in
the second layer. Both components belong to the LLLs of
the same conduction band and are characterized by a half-
filling factor for each of them. This new type of excitons
named QHExs appears whenever the temperature and the
layer separation are small enough and the total density nt
of electrons in the double layer system equals to the degen-
eracy eB/hc= nt = 1/2	l2 where l is the magnetic length.
The total filling factor �t = nt2	l

2 equals unity. The new
collective electronic state introduced by Fertig81 exhibits
several dramatic electrical transport properties revealed in
Ref. [83–85]. As was mentioned in REf. [82] the BEC of
the QHExs reflects the spontaneously broken U�1� sym-
metry in which the electrons are no-longer confined to one
layer or to the other, but instead they reside in a coher-
ent linear combination of the two layers. This interlayer
phase coherence develops only when the effective inter-
layer separation d/l is less than a critical value �d/l�c.
At large d/l the bilayer system behaves qualitatively like
the independent 2D electron systems. Following86 this
new state can be distinguished as a Fermi liquid state
of composite fermions. It is unique because unlike other
QH states it possesses a broken symmetry in the absence
of the interlayer tunneling. It can be viewed as a pseu-
dospin ferromagnet with the pseudospin encoding the layer
degrees of freedom or as an exciton BEC with QHExs
formed from electrons and holes confined to different
layers.
There are two energy scales in the double-layer sys-

tems. One is the potential energy V between the electrons
in different layers. The second is the energy gap �SAS

between the symmetric and asymmetric states of electrons
in two layers measuring the tunneling amplitude between
them. The capability of tuning the strength of the inter-
layer interaction by changing the gate voltage provides the
opportunity to explore the �t = 1 system through its trans-
formation between the weak and strong interaction limits
and to study the phase transitions between the compress-
ible Fermi liquid and the incompressible QH states as a
function of d/l.86 In the most theoretical investigations
of the QHExs, except the paper Ref. [86], the simplify-
ing assumption of the fully spin polarized electrons was

used. Below, in our discussions the Zeeman energy will
be not included. Following the Ref. [87], in the absence
of the interlayer tunneling there are two U�1� symmetries.
One is associated with the conservation of the total elec-
tric charge N1+N2, where N1 and N2 are the numbers of
electrons in two layers, and the other is related with the
conservation law of N1−N2. For these conditions the gap-
less mode appears. It is the Nambu-Goldstone (NG) mode
arising from the broken U�1� symmetry associated with
N1−N2 and characterized by the off-diagonal long-range
order in the tunneling operator a†1pa2q , where a1p and a2q
are the electron annihilation operators in the LLLs of the
conduction band of two layers.
Within the mean-field effective theory the appearance of

the gapless mode may be attributed to the coherent fluctua-
tion of the electron flux and density describing the relative
fluctuations of the electron densities in two layers. At finite
interlayer tunneling the number N1−N2 is no-longer con-
served. As well, the currents in each layer are no-longer
separately conserved.
The collective excitation spectrum of the two-layer elec-

tron system with �t = 1 was investigated by Fertig81 on
the basis of the theoretical model without tunneling but
with different interlayer separation including d = 0 and
taking into account that at d > 0 the Coulomb interlayer
electron–electron interaction is smaller than the intralayer
interaction. The ground state wave function proposed by
Fertig81 introduces the interlayer phase coherence reflect-
ing a new state, in which the electrons are no-longer con-
fined to one layer or to another, but instead they reside
in coherent linear combinations of the two layer states as
follows

��
 =∏
t

�ua†1t+va†2t��0
� u2+v2 = 1 (140)

The lowest levels of the Landau quantization in the Lan-
dau gauge are characterized by the quantum number n= 0
and the uni-dimensional wave number t, with �0
 being
the vacuum state. The equality u2 = v2 = 1/2 reflects the
half-filling of the LLL in each layer. Introducing the hole
operator d†t � dt for the first layer instead of the operators
a†1t and a1t the function (144) was transcribed in the form

��
 =∏
t

�u+va†t d
†
−t���0
� ��0
 =

∏
t

a†1t�0


a2t = at� a†2t = a†t � a1t = d†−t� a1t
† = d−t

(141)

The operators a†t d
†
−t create the electron–hole pairs with

total wave vector equal to zero. The wave function (141)
can be interpreted as describing the BEC of the QHExs.
This model is similar to the case of BEC of 2D magne-
toexcitons studied in Refs. [22–24, 76]. In the last case the
holes were formed in the frame of the valence band. The
valley-density two-particle integral operators introduced in
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Ref. [81] in the electron–hole representation are

�±�q�=∑
t

eiqytl
2
�d†−qx/2−tdqx/2−t+a†−qx/2+taqx/2+t

±�dqx/2−taqx/2+t−a†−qx/2+td†−qx/2−t��
�Z�q�=

∑
t

eiqytl
2
�dqx/2−taqx/2+t+a†−qx/2+td†−qx/2−t�

�F �q�=
∑
t

eiqytl
2
�a†−qx/2+taqx/2+t−d†−qx/2−tdqx/2−t�

(142)

We introduce our designations for the exciton, optical and
acoustical plasmon operators with holes in the conduction
band, as follows

��q�=∑
t

eiqytl
2
�d†−qx/2−tdqx/2−t+a†−qx/2+taqx/2+t�

D�q�=∑
t

eiqytl
2
�a†−qx/2+taqx/2+t−d†−qx/2−tdqx/2−t�

d�q�= 1√
N

∑
t

eiqytl
2
dqx/2−taqx/2+t

d†�q�= 1√
N

∑
t

eiqytl
2
a†qx/2+td

†
qx/2−t

(143)

In the case of holes in the valence band there are opposite
signs in the expressions for ��q� and D�q�.
The relations between two sets of operators are

�±�q�= ��q�±√
N�d�q�−d†�−q��

�z�q�=
√
N�d�q�+d†�−q��

�F �q�=D�q�

(144)

The response functions were introduced as follows81

$±�q���=−i
∫ �

0
dtei�t	��∓�q� t�� �±�−q�0��


$z�q���=−i
∫ �

0
dtei�t	��z�q� t�� �z�−q�0��


$F �q���=−i
∫ �

0
dtei�t	��F �q� t�� �F �−q�0��


(145)

The poles of these functions represent the excitations of
the system. The excitations may be thought as a valley-
density waves or pseudospin density waves. The calcula-
tion of the response functions were effectuated by Fertig81

using the diagrammatic expansion elaborated by Kallin
and Halperin.75 The response functions were written in
terms of vertex functions, Green’s functions and self-
energy parts. This approximation is shown by the diagrams
in Figure 3(a) Ref. [81] neglecting the diagrams which
contain supplementary the e–h bubbles. Their contribution
is negligible only when the excited Landau levels (ELLs)
are taken into account and the bubbles have an energy
denominator ��c, where �c is the cyclotron frequency
increasing in the strong field limit. A self-consistent cal-
culation of the vertex function including the bubbles is

quite difficult. Below we will present the results obtained
in Ref. [81] for the energy spectrum of the collective ele-
mentary excitations.
For d= 0 the interaction Hamiltonian is invariant under

the unitary transformation SU�2�. The specific choice of
the ground state wave function (141) is a broken symmetry
state and one expects the appearance of a NG mode. At
d = 0 the NG mode has a dispersion relation ��k� ∼ k2

for the small k. For d > 0 the problem can be mapped
onto an equivalent spin system with linear dispersion rela-
tion at small wave vectors. The NG mode at d > 0 has a
linear dispersion law with a slope dependence on d, which
is similar with that of the acoustical plasmon mode of a
two-layer system in the absence of the magnetic field.88

To better understand this result one may recall the BEC
interpretation of the ground state wave function. Indeed. at
d > 0 the inter-layer electron–hole Coulomb attraction is
smaller than the intralayer electron–electron and hole–hole
repulsions, that leads to a resultant repulsion in the system
and to the transformation of the parabolic dispersion law
into the linear one at small values of wave vectors as in
the Bogoliubov theory of superfluidity of the Bose gas.1

At kl of the order unity the dispersion law of Ref. [81]
develops a dip at certain critical values of d, indicating
that the system trends to undergo a phase transition.
Another considerations concerning the gapless modes

in the FQHE of multicomponent fermions can be found
in Refs. [89, 90]. The above branch of the energy spec-
trum corresponds to the response function $±�q���. The
operators �±�q� describe two superpositions of the optical
plasmon and exciton mode operators. There are two other
operators �z�q� and �F �q� which describe the pure exciton
modes and the acoustical plasmon mode. As was estab-
lished in Ref. [81] the last two response functions $z�q���
and $F �q��� have no poles when the excitations in the
frame of the LLLs are considered. The excitations asso-
ciated with these functions are considered to be higher in
energy than the NG mode discussed above by an amount
of energy of the order ��c. It means that the pure exciton
and acoustical plasmon modes in the system of BEC-ed
QHExs cannot be described by the NG gapless modes. As
will be shown in the next section, in similar case of the
BEC of coplanar 2D magnetoexcitons the optical plasmon
branch is also the unique NG mode. The exciton branches
(energy and quasienergy) of the spectrum have the gaps
in the point k= 0, the roton-type behavior at intermediary
values of the wave vectors and a saturation dependences at
k→�. At the same time the acoustical plasmon branch
in the case of magnetoexcitons in the range of small wave
vectors reveals the absolute instability. Its values are pure
imaginary. In the case of BEC of magnetoexcitons there is
one NG optical plasmon mode, two gapped exciton modes
and one unstable acoustical plasmon mode. This agrees
qualitatively with the results obtained by Fertig81 in the
case of BEC of QHExs where a single gapless NG mode
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of the optical plasmon type was revealed while the other
modes of the spectrum were not identified at infinitesimal
energies.

11. TRUE, QUASI AND UNSTABLE
NAMBU-GOLDSTONE MODES OF THE
BOSE-EINSTEIN CONDENSED
COPLANAR MAGNETOEXCITONS

In this section we will present the results following the
Refs. [30, 31] for the energy spectrum of the collective
elementary excitations arising above the ground state of
the Bose–Einstein condensed coplanar magnetoexcitons.
The full Hamiltonian describing the interaction of elec-

trons and holes lying on the LLLs is:

H =HCoul+HSuppl (146)

Where HCoul is the Hamiltonian of the Coulomb interaction
of the electrons and holes lying on their LLLs:

ĤCoul =
1
2

∑
�Q
W �Q��̂� �Q��̂�− �Q�− N̂e− N̂h�

−�eN̂e−�hN̂h (147)

and HSuppl is the supplementary indirect interactions
between electrons and holes, which appear due to the
simultaneous virtual quantum transitions of two particles
from the LLLs to excited Landau levels (ELLs) and their
return back during the Coulomb scattering processes. The
expression for this interaction was obtained in Ref. [25]
and has the form:

Hsuppl =
1
2
Bi−iN̂ − 1

4N

∑
Q

V �Q��̂� �Q��̂�− �Q�

− 1
4N

∑
Q

U�Q�D̂� �Q�D̂�− �Q� (148)

Here �̂� �Q� are the density fluctuation operators expressed
through the electron �̂e� �Q� and hole �̂h� �Q� density opera-
tors as follows:

�̂e
��Q�=∑

t e
iQytl

2
at−Qx/2at−Qx/2

�̂h
��Q�=∑

t e
iQytl

2
b†t−Qx/2bt−Qx/2

�̂ ��Q�= �̂e
��Q�− �̂h− ��Q�� D̂e

�Q = �̂e
��Q�+ �̂h− ��Q�

N̂e = �̂e�0�� N̂h = �̂h�0�

N̂ = N̂e+ N̂hW ��Q� =
2	e2

�0S� �Q�
e−Q

2l2/2

(149)

The density operators are integral two-particle operators.
They are expressed through the single-particle creation and
annihilation operators a†p�ap for electrons and b†p, bp for

holes. Here, �0 is the dielectric constant of the background;
�e and �h are chemical potentials for electrons and holes,
and coefficients V �Q�, U�Q� and Bi−i were calculated in
Refs. [25, 29].
The starting Hamiltonian (146) has two continuous sym-

metries. One is the gauge global symmetry U�1� and
another one is the rotational symmetry SO�2�, so that the
total symmetry is U�1�×SO�2�. The gauge symmetry is
generated by the operator N̂ of the full particle number,
when it commutes with the Hamiltonian. It means that the
Hamiltonian is invariant under the unitary transformation
Û ��� as follows

Û ���ĤÛ−1���= Ĥ� Û ���= eiN̂�� �Ĥ� N̂ �= 0 (150)

The operator N̂ is referred to as the symmetry genera-
tor. The rotational symmetry SO�2� is generated by the
rotation operator Ĉz��� which rotates the in-plane wave
vectors �Q on the arbitrary angle � around z axis, which
is perpendicular to the layer plane and is parallel to the
external magnetic field. Coefficients W �Q, U� �Q� and V � �Q�
in formulas (6) and (9) of Ref. [30] depend on the square
wave vector �Q which is invariant under the rotations
Ĉz���. This fact determines the symmetry SO�2� of the
Hamiltonian (146). The gauge symmetry of Hamiltonian
(146) after the phase transition to the Bose–Einstein con-
densation (BEC) state is broken as it follows from expres-
sion (16) of Ref. [30]. In terms of the Bogoliubov theory
of quasiaverages, it contains a supplementary term propor-
tional to �̃. The gauge symmetry is broken because this
term does not commute with operator N̂ . Moreover, this
term is not invariant under the rotations Ĉz���, because
the in-plane wave vector �k of the BEC is transformed
into another wave vector rotated by the angle � in com-
parison with the initial position. The second continuous
symmetry is also broken. Thus, the installation of the
Bose–Einstein condensation state with arbitrary in-plane
wave vector �k leads to the spontaneous breaking of both
continuous symmetries.
We will consider a more general case of �k �= 0 taking

the case �k = 0 as a limit �k→ 0 of the cases with small
values kl <<1. One should keep in mind that the supple-
mentary terms in Hamiltonian (146) describing influence
of the ELLs are actual in the range of small value kl < 0�5.
Above we established that the number of the broken gen-
erators (BGs) denoted as NBG equals to two (NBG = 2�.
As discussed in previous papers,22–25�27�76�91�92 the

breaking of the gauge symmetry of the Hamiltonian (146)
can be achieved using the Keldysh–Kozlov–Kopaev93

method with the unitary transformation

D̂�
√
Nex�= exp�

√
Nex�d

†��k�−d��k��� (151)

where d†��k� and d��k� are the creation and annihilation
operators of the magnetoexcitons. In the electron–hole
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representation they are:22–25�27�76�91�92

d†� �P�= 1√
N

∑
t

e−iPy tl
2
a†t+Px/2b

†
−t+Px/2

d� �P�= 1√
N

∑
t

eiPytl
2
b−t+Px/2at+Px/2

(152)

BEC of the magnetoexcitons leads to the formation of a
coherent macroscopic state as a ground state of the system
with wave function

��g��k�
 = D̂�
√
Nex��0
� ap�0
 = bp�0
 = 0 (153)

Here �0
 is the vacuum state for electrons and holes. In
spite of the fact that we kept arbitrary value of �k, nev-
ertheless our main goal is the BEC with �k = 0 and we
will consider the interval 0�5> kl ≥ 0. The function (153)
will be used to calculate the averages values of the type
	D� �Q�D�− �Q�
. The transformed Hamiltonian (146) looks
like:

�̂ =D�
√
Nex�HD

†�
√
Nex� (154)

and is succeeded, as usual, by the Bogoliubov u–v trans-
formations of the single-particle Fermi operators


p=D̂�
√
Nex�apD̂

†�
√
Nex�=uap−v

(
p− kx

2

)
b†kx−p�


p��g��k�
=0

�p=D̂�
√
Nex�bpD̂

†�
√
Nex�=ubp+v

(
kx
2
−p

)
a†kx−p�

�p��g��k�
=0
(155)

Instead of this traditional way of transforming the
expressions of the starting Hamiltonian (146) and of the
integral two-particle operators (149) and (152), we will
use the method proposed by Bogoliubov in his theory of
quasiaverages,1�51 remaining in the framework of the orig-
inal operators. The new variant is completely equivalent to
the previous one, and both of them can be used in different
stages of the calculations. For example, the average values
can be calculated using the wave function (153) and u-v
transformations (155), whereas the equations of motion for
the integral two-particle operators can be simply written
in the starting representation.
The Hamiltonian (146) with the broken gauge symmetry

in the lowest approximation has the form

�̂ = 1
2

∑
�Q
W �Q��� �Q���− �Q�−N̂e−N̂h�−�eN̂e−�hN̂h

+ 1
2
Bi−iN̂− 1

4N

∑
Q

V �Q��̂� �Q��̂�− �Q�− 1
4N

×∑
Q

U�Q�D̂� �Q�D̂�− �Q�

−�̃√N�d†�k�+d�k�� (156)

For simplicity another smaller term of this type propor-
tional to �̃ was dropped. Here parameter �̃, which deter-
mines the breaking of the gauge symmetry, depends on
the chemical potential � and on the square root of the
density, similar to the case of weakly non-ideal Bose-gas
considered by Bogoliubov.1�51 In our case the density is
proportional to the filling factor � = v2 and we have:

�= �e+�h� �̄= �+ Il� Nex = v2N�

Ẽex�k�=−Il−��k�+E�k�

�̃ = �Ẽex�k�−��v = �E�k�−��k�− �̄�v�

E�k�= 2
∑
Q

WQSin
2

(
�K×Q�zl

2

2

)
(157)

The equations of motion for the integral two-particle oper-
ators with wave vectors �P �= 0 in the special case of BEC
of magnetoexcitons with �k = 0 are

i�
d

dt
d� �P�
= �d� �P�� �̂ �= �−�̄+E� �P�−�� �P��d� �P�

−2i
∑
�Q
W̃ � �Q�Sin

(
� �P × �Q�zl2

2

)
�̂� �Q�d� �P − �Q�

− 1
N

∑
�Q
U� �Q�Cos

(
� �P × �Q�zl2

2

)

×D� �Q�d� �P − �Q�+ �̃
D� �P�√
N

i�
d

dt
d†�− �P�
= �d†�− �P�� �̂ �= ��̄−E�− �P�+��− �P��d†�− �P�

+2i
∑
�Q
W̃ � �Q�Sin

(
� �P × �Q�zl2

2

)
d†�− �P − �Q��̂�− �Q�

+ 1
N

∑
�Q
U� �Q�Cos

(
� �P × �Q�zl2

2

)
d†�− �P − �Q�

×D�− �Q�− �̃
D� �P�√
N

i�
d

dt
�̂� �P�

= ��̂� �P�� �̂ �=−i∑
�Q
W̃ � �Q�Sin

(
� �P × �Q�zl2

2

)

× ��̂� �P − �Q��̂� �Q�+ �̂� �Q��̂� �P − �Q��

+ i

2N

∑
�Q
U� �Q�Sin

(
� �P × �Q�zl2

2

)

×�D� �P − �Q�D� �Q�+D� �Q�D� �P − �Q�� (158)
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i�
d

dt
D̂� �P�

= �D̂� �P�� �̂ �− i
∑
�Q
W̃ � �Q�Sin

(
� �P × �Q�zl2

2

)

×��̂� �Q�D̂� �P − �Q�+ D̂� �P − �Q��̂� �Q��

+ i

2N

∑
�Q
U� �Q�Sin

(
� �P × �Q�zl2

2

)

×�D̂� �Q��̂� �P − �Q�+ �̂� �P − �Q�D̂� �Q��
+2�̃

√
N�d� �P�−d†�− �P��

Following the equations of motion (158) we introduce four
interconnected retarded Green’s functions at T = 094�95

G11� �P� t�= 		d� �P� t�� X̂†� �P�0�


G12� �P� t�= 		d†�− �P� t�� X̂†� �P�0�



G13� �P� t�=
〈〈
�̂� �P� t�√

N
� X̂†� �P�0�

〉〉

G14� �P� t�=
〈〈
D̂� �P� t�√

N
� X̂†� �P�0�

〉〉
(159)

We also need their Fourier transforms Gij� �P���, for which
the equations of motion of the type similar to the equa-
tions of motion (158) were obtained. These Green’s func-
tions can be named as one operator Green’s functions,
because they contain only one two-particle operator of the
type d†, d, �, D. At the same time, in the right hand
side of the corresponding equations of motion there is a
second generation of two-operator Green’s function con-
taining the different products of the two-particle opera-
tors mentioned above. For these operators was derived
the second generation of the equations of motion contain-
ing in their right sides the Green’s function of the third
generation. They are the three-operator Green’s functions
for which it is necessary to derive the third generation
of equations of motion. However, we have to terminate
here the evolution of the infinite chains of equations of
motion for multi-operators Green’s function following the
procedure proposed by Zubarev.95 The truncation of the
chains of the equations of motion and the decoupling of
the one-operator Green’s functions from the multi-operator
Green’s functions was achieved substituting the three oper-
ator Green’s functions by the one-operator Green’s func-
tions multiplied by the average value of remaining two
operators. The average values were calculated using the
ground state wave function (153) and u–v transformations
(155). The Zubarev procedure is equivalent to a perturba-
tion theory with a small parameter of the type v2�1−v2�,
which represent the product of a filling factor � = v2 and
the phase-space filling factor �1− v2� reflecting the Pauli
exclusion principle.

The closed system of Dyson equations has the form

4∑
j=1

G1j � �P����jk� �P���= C1k� k = 1�2�3�4 (160)

There are 16 different components of the self-energy parts
�jk� �P��� forming a 4× 4 matrix. Due to the structure
of the self-energy parts the cumbersome dispersion equa-
tion can be expressed in general form by the determinant
equation

det ��ij� �P���� = 0 (161)

It splits into two independent equations. One of them con-
cerns only the optical plasmon branch and has a simple
form

�33� �P���= 0 (162)

It does not include the chemical potential �̄ and the quasi-
average constant �̃. The second equation contains the self-
energy parts �11, �22, �44, �14, �41, �24 and �42, which
include both parameters �̄ and �̃. The second equation
reads

�11� �P����22� �P����44� �P���
−�41� �P����22� �P����14� �P���
−�42� �P����11� �P����24� �P���= 0 (163)

The solution of the Eq. (162) is

����P��2 = 	D�P�D�−P�

N 2

×∑
Q

U�Q��U�−Q�−U�Q−P��

×Sin2
(
�P ×Q�zl

2

2

)
(164)

The right hand side of this expression at small val-
ues of P has the dependence �P �4 and tends to satura-
tion at large values of P . The optical plasmon branch
��OP�P� has a quadratic dispersion law in the long wave-
length limit and saturates in the range of short wave-
lengths. It depends on concentration as

√
v2�1−v2� what

coincides with the concentration dependencies of 3D
plasma �2

p = �4	e2ne�/�0m
96 and 2D plasma �2

p�q� =
�2	e2nsq�/�0m,88 where ne and ns are the correspond-
ing density of electrons. The supplementary factor �1−v2�
in our case reflects the Pauli exclusion principle and the
vanishing of the plasma oscillations at � = v2 = 1. The
obtained dispersion law is shown in Figure 2. Similar dis-
persion law was obtained for the case of 2D electron–
hole liquid (EHL) in a strong perpendicular magnetic
field,97 when the influence of the quantum vortices created
by electron and hole subsystems is compensated exactly.
However, the saturation dependencies in these two cases
are completely different. In the case of Bose–Einstein con-
densed magnetoexcitons it is determined by the ELLs,
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Fig. 2. Three branches of the collective elementary excitations: the
exciton-type quasi-NG mode with a gap in the point pl = 0; the second-
type NG mode describing the optical plasmons and the first-type NG
mode with absolute instability (dotted line) describing the acoustical
plasmons.

whereas in the case of EHL97 it is determined by the
Coulomb interaction in the frame of the LLLs.
The acoustical plasmon branch has the dispersion law,

which is completely different from the optical plasmon
oscillations. It has an absolute instability beginning with
the small values of wave vector going on up to the con-
siderable value pl ≈ 2. In this range of wave vectors, the
optical plasmons have energies which do not exceed the
activation energy U�0�. It means that the optical plasmons
containing the opposite-phase oscillations of the electron
and hole subsystems without displacement as a whole of
their center of mass are allowed in the context of the attrac-
tive bath generated by the ELLs. On the other hand, the
in-phase oscillations of the electron and hole subsystems
in the composition of the acoustical plasmons are related
to the displacements of their center of mass. Such displace-
ments can take place only if their energy exceeds the acti-
vation energy U�P� existing due the attractive bath. As a
result, the acoustical plasmon branch has an imaginary part
represented by the dashed line and is completely unstable
in the region of wave vectors pl ≤ 2. At greater values
pl > 2 the energy spectrum is real and nonzero, approach-
ing to the energy spectrum of the optical plasmons.
In case of 2D magnetoexcitons in the BEC state with

small wave vector kl < 0�5 described by the Hamiltonian
(156), one should take into account that both continu-
ous symmetries usual for the initial form (146) are lost.
It happened due to the presence of the term �̃�d†�k + d�k�
in the frame of the Bogoliubov theory of the quasiaver-
ages. Nevertheless the energy of the ground state as well
as the self-energy parts �ij�P��� were calculated only in
the simplest case of the condensate wave vector �k = 0.
These expressions can be relevant also for infinitesimal
values of the modulus ��k� but with a well defined direc-
tion. In this case the symmetry of the ground state will be
higher than that of the Hamiltonian (156), what coincides

with the situation described by Georgi and Pais.33 It is one
possible explanation of the quasi-NG modes appearance
in the case of exciton branches of the spectrum. Another
possible mechanism of the gapped modes appearance is
the existence of the local gauge symmetry, the breaking
of which leads to the Higgs effect.7 The interaction of the
electrons with the attached vortices gives rise to a gapped
energy spectrum of the collective elementary excitations
as was established in Refs. [42, 54]. The number of the
NG modes in the system with many broken continuous
symmetries was determined by the Nielsen and Chadha17

theorem. It states that the number of the first-type NG
modes NI being accounted once and the number of the sec-
ond type NG modes NII being accounted twice equals or
prevails the number of broken generators NBG. It looks as
follows NI +2NII ≥ NBG. In our case the optical plasmon
branch has the properties of the second-type NG modes.
We have NI = 0; NII = 1 and NBG= 2. It leads to the equal-
ity 2NII = NBG. The three branches of the energy spec-
trum are represented together in the Figure 2. One of then
is a second-type Nambu-Goldstone (NG) mode describing
the optical plasmon-type excitations, the second branch is
the first-type NG mode with absolute instability describ-
ing the acoustical-type excitations and the third branch is
the quasi-NG mode describing the exciton-type collective
elementary excitations of the system.
We can repeat that results obtained in the magnetoex-

citon system are similar to those obtained for the sys-
tem of BEC of the quantum Hall excitons (QHExs).81

In these both models there is only one gapless Nambu-
Goldstone mode between four branches of the energy spec-
trum. In our model it is related with the optical plasmon
branch, whereas in the case of QHExs this mode is repre-
sented by the superposition of the operators describing the
optical plasmon and exciton modes. In both models the
exciton branches of the spectrum are not gapless and differ
from the NG modes. In our case the exciton energy and
quasienergy branches corresponding to normal and abnor-
mal Green’s functions have a gaps in the point p = 0,
a roton-type segments in the region of intermediary wave
vectors pl ∼ 1 and saturation-type behaviors at great val-
ues of pl. In the case of Ref. [81] the exciton type response
function $z�q��� and the acoustical-type response func-
tion $F �q��� have no poles in the region of small ener-
gies in the frame of the LLLs. It was concluded that the
energies of these excitations may be situated at greater val-
ues. In our case the acoustical plasmon branch reveals an
absolute instability in the range of small and intermediary
values of p. It means that a real values of the pole does
not exist in the range of small energies, which is similar
with the results of Ref. [81]. One can conclude that the
qualitative properties of the energy spectra in both models
are similar in spite of the mentioned differences. It is an
additional argument supporting the accuracy of our calcu-
lations, which satisfy to the Nielsen and Chadha theorem.17
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The result concerning the BEC at T = 0 are esti-
mates which describe the real situation at finite tem-
peratures lower than the critical temperature of the
Berezinskii–Kosterlitz–Thouless (BKT) topological phase
transition79�80 related with the existence of the vortices and
their clusters such as bound vortex-antivortex pairs. Just
the unbinding of these pairs determines the critical tem-
perature TBKT = 	n�2/2mkB, where n is the surface den-
sity of the Bose particles and m is their mass. On one
side of the phase transition there is a quasi-ordered fluid
and on the other is a disordered unbounded vortex plasma.
Although the formation of an isolated vortex will not occur
at low temperature due its extensive creation energy, there
always can be production of a pair of vortices with equal
and opposite charges since the perturbation produced by
such a pair falls off sufficiently rapidly at large distances
so that their energy is finite.80 Such topological formations
can be easily created by the thermal fluctuations.
The presence of the vortex clusters makes the previously

infinite homogeneous 2D e–h system to become nonho-
mogeneous as a whole. However, the local homogeneity
with finite local surface areas can exist leading to the BEC
with finite critical temperature Tc = 2	n�2/mkB lg�nS�.

98

Instead of an off diagonal long-range order as in the case
of 3D Bose gas in the 2D systems there is only a long rang
correlations, which decays algebraically with distance. In
such a way the quantum vortices promote the BEC and the
formation of the superfluid component of the 2D Bose-gas
at finite temperatures and at the same time the superfluid
component is necessary for the formation of the quantum
vortices. It is a self-organization-type situation. The BKT
phase transition is a widely studied phenomenon.99–101

Attempts to discover experimentally the spontaneous
symmetry breaking in the exciton range of the spectrum
and the efforts to evidence the spontaneous coherence in
the 2D excitonic systems will be considered in the next
section on the basis of the Refs. [102–146].

12. SPONTANEOUS COHERENCE IN 2D
EXCITONIC SYSTEMS

As was mentioned by Snoke in Refs. [102, 103] recent
experimental efforts of several groups have demonstrated
the spontaneous coherence in polariton systems, which can
be viewed as a type of nonequilibrium BEC. The system of
polaritons in the quantum wells embedded into the micro-
cavity reveals the phenomenon of BEC and superfluity. The
achievements in this field are presented in Refs. [104–110].
In these systems the polariton lifetime is longer than,
but not much longer than the polariton–polariton scat-
tering time, which leads to the thermalization. By con-
trast over past twenty years several groups of investigators
represented by Snoke,111–121 Butov,122–130 Timofeev,131–138

Krivolapchuk,139–143 Fukuzawa144–146 and their coworkers
have pursued experiments in double quantum well (DQW)

excitonic systems with very long lifetime. In these systems
the indirect excitons (IXs) formed from spatially separated
electrons and holes have dipole moments oriented perpen-
dicularly to the layers. They are named dipole excitons
and their interaction is not a short-range contact interac-
tion but instead a long-range dipole–dipole repulsion. We
briefly recall the results obtained in Refs. [142, 143].
When analyzing the possibility of BEC in a 2D sys-

tem it should be noted that at T �= 0 condensation of a
homogeneous 2D gas is impossible because of destruc-
tion of the condensate by thermal fluctuations.147 In a 2D
system ��E� is constant and the integral N = ∑

k Nk =∫�
0 ��E�dE/e�E−��/kBT −1 would diverge at � → 0 and
T �= 0 because of the zero denominator at the lower inte-
grating limit and therefore BEC is impossible here. Phys-
ically this fact means that the maximal occupation of free
states �E > 0� is infinite. However, if in a 2D boson sys-
tem, together with free excitons, there are present some
discrete states (localized states whose existence is caused
by the appearance of fluctuations of the heterointerface
potential148) �0, �1 etc, such that �0 < �1 < E = 0, the
situation changes essentially. In this case under increas-
ing number of bosons in the system the value of chemical
potential cannot be arbitrarily close to the E = 0 value
because of the N��0� ≥ 0 requirement, so �−��min = ��0�
and, consequently, the integral N has a finite value:149

nc�T �=−mkBT

2	�
ln�1− exp−��0�/kBT � (165)

Therefore, at the moment when n exceeds nc�T �, local-
ized states are occupied by a macroscopic number of parti-
cles: n−nc�T �= n��0�+n��1�. This means that BEC into
localized states occurs in a limited space region. In this
sense BEC in a system of 2D bosons, having a discrete
spectrum of energy together with a continuous one, resem-
bles the experimentally discovered phenomenon of BEC
in atoms of alkali metals in space-limited traps produced
by a magnetic field.150

The obvious advantage of an IX in a DQW as a per-
spective system to reveal BEC is the possibility of con-
trolling effectively its radiative lifetime %R with the help
of external effects. So, for example, an electric field Vdc

applied to a DQW in the direction of the growth axis of
the structure causes an essential decrease of the overlap of
wave-functions of an electron and a hole in an IX in the z
direction and, as a result, %R increases significantly (by up
to three orders of magnitude145). This allows a more effec-
tive cooling of the system to the bath temperature and, of
equal importance, gives an opportunity to increase the con-
centration of the IX gas without increasing the pumping
density. The latter circumstance plays an important role
in the experiment since it allows us to decrease heating
of the sample by phonons that are inevitably radiated at
relaxation of photoexcited carriers and excitons. Just this
heating of the sample under investigation is often the main
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cause of the impossibility of reaching the critical tempera-
ture of the boson gas in experiments that use large optical
pumping densities to create the critical density of bosons
having very short lifetimes.
Convincing evidence of the BEC effect would be an

appropriate exciton distribution function over energies
(momenta) obtained in an experiment. In general the exci-
ton distribution function can be determined in experiment
by the form of the phonon replica line in luminescence
spectra, but in the performed study no phonon replica was
observed. This was why in this paper the nonphonon lumi-
nescence line of space IXs was studied. However, since the
intensity of exciton radiation is proportional to the occupa-
tion of radiative states by particles, it indirectly reflects the
distribution function of excitons over the free and local-
ized states, which both contribute to the formation of the
inhomogeneously broadened IX line. Due to this fact one
can hope that studies of IX luminescence will reveal the
BEC effect predicted149 for a system of 2D bosons which
are distributed over the free and localized states.
A giant (threefold) increase of luminescence intensity

of a part of the spectral profile of the IX line in DQWs
of GaAs/Al0�33Ga0�67As on changing the temperature of the
sample and the value of the external electric field applied
to DQWs was discovered. Besides that, the luminescence
intensity of this part of the spectral profile of the IX line
fluctuated with the characteristic time of tens of seconds.
Such an unusual behaviour of the IX line was regarded
as possible evidence for BEC in a system of 2D bosons
placed in fluctuations of potential formed by heterointer-
faces of the sample.
Figure 1 of the Ref. [142] is reproduced in Figure 3.

It shows the luminescence spectra of the DQW, dependent
on Vdc at T = 1�8 K and the density of optical excitation
P = 5 W cm−2. Here, at Vdc = 0 (figure (a)) the radia-
tion spectrum was close to that of the flat-band case and
it consisted of two lines, DXW and DXN, corresponding
to luminescence of direct excitons (DXs) from the wide
and the narrow wells respectively. At nonzero Vdc (figures
(b)–(e)) an indirect regime was achieved (see the inset)
when the IX line took the lowest energetic position in the
PL spectra. When Vdc increased the IX line moved mono-
tonically towards lower energies.
It was noted that in some interval of Vdc a giant (up

to threefold) increase (shot) of intensity of a part of the
IX spectral line profile (figure (d)) Ref. [142] occurred.
A very important circumstance was that the intensity shot
was absent from the whole investigated interval of spectral
positions of the IX line at any temperature 4.2 K ≤ T ≤
30 K and optical pumping densities of P ≤ 5 W cm−2.
Thus the spectral profile of the IX line corresponding to
the case of figure (d) was shown on a large scale in
the Figure 3 of Ref. [142] and it is reproduced here in
Figure 4. It has some interesting peculiarities consisting
of a narrow intense line C and of ‘wings’ W having sig-
nificantly smaller intensity. Measurements of the temporal

Fig. 3. PL spectra taken at T = 1�8 K, P = 5 W cm−2 and Vdc = 0 V
(a), −0�5 V (b), −2 V (c). The inset shows the indirect regime of the
DQW following the Ref. [142]. Reprinted with permission from [142],
V. V. Krivolapchuk et al., Nanotechnology 11, 246 (2000). © 2000, IOP
Publishing.

evolution of intensities of the C and W components have
shown that the intensity of C, in contrast to that of W,
fluctuated in time (changing threefold) on a characteristic
scale of tens of seconds.
The shape of the IX luminescence line in a DQW was

inhomogeneous and was determined by exciton radiation
from different space regions of the DQWs plane, which
differed from one another by the thickness of the QW
layers, by fluctuations of barrier composition and by the
value of the local electric field of impurities. The emission

Fig. 4. IX line spectral profile of figure (d). Two vertical dotted lines
separate different spectral parts of the IX line profile which shown (C)
and did not show (W) temporal evolution of the PL intensity. The data
were obtained in Ref. [142]. Reprinted with permission from [142],
V. V. Krivolapchuk et al., Nanotechnology 11, 246 (2000). © 2000, IOP
Publishing.
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intensity of each spectral fragment of the IX line was pro-
portional to the exciton occupation of the corresponding
space region in the plane of the QW. However, a spec-
tral region (Vdc� where the situation changes essentially at
T = 1�8 K and P = 5 W cm−2 appeared. In this region,
shown in Figure 3(d) a significant (threefold) increase of
luminescence intensity of a part of the spectral profile of
the IX line and a consequent increase (1.5-fold) of inte-
gral intensity IIX had been observed. Such a behavior was
anomalous in comparison to the monotonic decrease of
IIX (and, most important, to the absence of the intensity
shot) with increasing Vdc under other experimental condi-
tions (at T = 1�8 K and P < 1 W cm−2; 4.2 K≤ T ≤ 30 K
and any P ≤ 5 W cm−2 as well). This anomalous behavior
of the IX line indicated that in the case of Figure 1(d) of
Ref. [142] there are much more particles participating in
radiation (occupying states which can radiate) than in the
cases of Figures 1(b), (c), (e) of Ref. [142].
To explain this the BEC model developed for 2D

systems149 was proposed. It was shown that if in a system
of bosons (excitons) there is a localized state �0 below
the bottom of the exciton band, the chemical potential of
excitons is trapped by the localized level �0 and, as a con-
sequence, the number nc of particles appears to be finite.
Therefore just when the concentration n of excitons in
the system under consideration exceeds nc, a macroscopic
number n−nc of particles comes to the lowest energetic
state of the whole boson system (i.e., free zone and the
localized state) and that leads to the appearance of a con-
densate.
The phenomenon of a giant intensity shot was revealed

in an experiment when the IX line shifted to lower energies
(that means changing Vdc�, this being a consequence of
an increase of the radiative lifetime of excitons due both
to an increase of the exciton concentration (at constant
optical pumping) and to their effective thermalization to
the bath temperature. These two circumstances according
to the authors opinion caused the BEC that leaded to a
huge population of a localized state.
Since, as noted above, all localized excitons take part

in radiative recombination, this resulted in a significant
change of the shape of the IX luminescence line from the
case of figure (c) to that of figure (d).
Thus the totality of the experimental data describing the

evolution of the IX luminescence line (namely, a giant rise
of intensity of a part of the spectral profile of the IX line
followed by long-time oscillations) in the authors opinion
provided evidence that in a system of IXs of high density
a Bose–Einstein condensate at localized states (traps) in
DQWs appeared. Thermal equilibrium of this type of exci-
tons in a trap has been demonstrated experimentally.102�103

As was appreciated in the Refs. [102, 103] up to now
there has not been an universally accepted demonstration
of BEC in this type of systems and is necessary a better
understanding of the many-body effects of the interact-
ing dipole IXs. But the accumulated knowledge permits

to formulate some conclusions. One of them states that
the confinement of the excitons in a trap analogous to the
optical traps for the cold atoms is a great advantage instead
of creating excitons with a laser allowing them to expand
freely out of the excitation region. Recent work117 showed
that the IXs in DQWs reach equilibrium both energetically
and spatially in a stress induced trap. One variant of the
BEC of excitons equivalent to the BEC in a trap was pro-
posed by Jan and Lee149 and was used in Refs. [142, 143].
Another conclusion formulated in Refs. [102, 103] con-
cerns the role of the temperature. If the temperature is
low compared to the energy fluctuation due to the disor-
der then the excitons will become trapped in low energy
minima of the disorder potential and will not act as a
free gas. Such energy minima can localize only one or a
small number of IXs because they are repealing each other
due to the dipole–dipole interaction. In difference on it in
the trap there are localized levels able to accommodate a
macroscopic number of IXs. A strong energy shift due to
interactions may cancel out the trapping potential and may
flatten it.121

Another important conclusion of Refs. [102, 103] is
based on the results by Laikhtman and Rapaport151 who
underlined that the dipole IXs in a coupled quantum wells
(CQWs) no longer act as a gas but rather as a correlated
liquid. This does not mean that BEC is impossible at high
density. But the canonical telltale for condensation in a
weakly interacting Bose gas, namely a peak of occupation
number at k = 0 may not be easily seen in these sys-
tems. It would be better to look for hydrodynamic effects
of condensation of excitons such as quantum vortices or
superfluidity similar to the liquid helium.
As one can see the most eminent achievements dis-

cussed in the review article concern the famous FQHEs
discovered in the frame of the one-component 2DEG. They
suggest to search similar phenomena in the frame of the
two-component, 2D e–h systems, when the CPs will be
formed by electrons and holes with attached point vortices
in different combinations taking into account the inter-
actions inside the CPs from one side and the Coulomb
interaction between the electrons and holes forming the
usual magnetoexcitons from the other side. In spite of
the fact that the supplementary gauge magnetic fields cre-
ated by electrons and holes with opposite charges will be
compensated in the mean field approximation, neverthe-
less the new electron quantum states will appear as ele-
mentary excitations and quantum fluctuations in these new
conditions.

13. CONCLUSIONS

The purpose of the present review is to discuss the phe-
nomena related to the spontaneous breaking due to the
quantum fluctuations of the continuous symmetries exist-
ing in the frame of the two-dimensional e–h systems
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in a strong perpendicular magnetic field with electrons
and holes lying on the lowest Landau levels. The spon-
taneous symmetry breaking leads to the formation of the
new ground states and phase transitions and determines
the energy spectra of the collective elementary excitations
appearing over the new ground states.
The main attention is given to the electron–hole sys-

tems forming the coplanar magnetoexcitons in the Bose–
Einstein condensation ground state with wave vector �k = 0
under the influence of the excited Landau levels when
the exciton-type excitations coexist with the plasmon-type
oscillations. At the same time the properties of the 2DEG
under the conditions of the FQHE as well as of the similar
2DHG spatially separated on the layers of the DQW are
taken into account, so as to foresee their possible influ-
ence on the states of the coplanar magnetoexcitons when
the distance between the DQW layers diminishes. Side by
side with the 2DEG and 2DHG a bilayer electron sys-
tems in the conditions of the FQHE with one half filling
factor of LLLs in each layer and with the total filling fac-
tor of two layers equal to unity are taken into account
because the coherent superposition of the electron states
in two layers happens to be equivalent with the formation
of the QHExs in the coherent macroscopical state, which
can be compared with the BEC of the coplanar magne-
toexcitons. The breaking of the global gauge symmetry as
well as of the continuous rotational symmetries leads to
the formation of the gapless Nambu-Goldstone modes of
the collective excitations above the selected ground state,
corresponding to the macroscopical wave function with a
fixed phase, whereas the breaking of the local gauge sym-
metry gives rise to the Higgs phenomenon characterized
by the gapped branches of the energy spectrum of the col-
lective elementary excitations. The existence of the gapless
and gapped branches of the energy spectrum is equivalent
to the appearance of the massless and massive particles
correspondingly in the relativistic physics.
Application of the Nielsen-Chadha theorem establishing

the relation between the number of the NG modes and the
number of the broken symmetry operators as well as the
elucidation of the conditions when the quasi-NG modes
appear was effectuated on the concrete example of the
spinor atoms in the state of BEC in an optical trap with the
aim to better understand the results concerning the copla-
nar magnetoexcitons. The Higgs phenomenon gives rise to
the formation of the composite particles in the frame of
the 2DEG in conditions of the FQHE, so that the elec-
tron with an odd or even number of the attached point
vortices behaves as an composite boson or fermion corre-
spondingly. Their description in the frame of the Ginzburg-
Landau theory is demonstrated.
Side by side with the 2D coplanar magnetoexcitons the

conditions under which the spontaneous coherence may
appear in the system of indirect excitations in the double
quantum well structures with spatially separated electrons

and holes were discussed. The experimental attempts to
achieve the BEC of IXs in the traps arising due to the
interface width fluctuations or due to the applied stress
were reviewed, the concluding remarks and the recommen-
dations are mentioned. The formation of the high density
2D magnetoexcitons and magnetoexciton-polaritons with
point quantum vortices attached is suggested.
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