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Abstract

The indirect attractive interaction between the electron and holes lying on the lowest Landau
levels on the surface of a two-dimensional structure in the presence of a strong perpendicular
magnetic field appears due to their virtual quantum transitions to excited Landau levels as a result
of the Coulomb scattering. The influence of this indirect interaction on the ground state energy and
on the chemical potential of the Bose-Einstein condensed magnetoexcitons is determined. The
corrections to the energy spectrum and to the wave function of the lowest magnetoexciton band due
to the influence of the first three excited exciton bands were investigated.

I. Introduction

Bose-Einstein Condensation of two-dimensional (2D) magnetoexcitons was studied in the
papers [1-5]. The coherent paring of electron and holes occupying only the lowest Landau levels
(LLL) being situated on the surface of 2D structure in a strong perpendicular magnetic field was
studied using the Keldysh-Kozlov-Kopaev method and the generalized random-phase
approximation [4]. BEC of magnetoexcitons takes place on the single exciton state with wave
vector k #0, supposing that the high density of electrons in the conduction band and of holes in the
valence band were created in a single quantum well (QW) structure with size quantization more
greater than the Landau quantization. In the case k£ #0 a new metastable dielectric liquid phase
formed by BEC-ed magnetoexcitons was revealed [4,5]. It was shown that the ground state energy
per exciton and the chemical potential are nonmonotonic functions on the filling factor v* of the
LLLs, so that the relative minimum with positive compressibility in its vicinity appears. This
dielectric liquid phase is more stable than the electron-hole metallic liquid phase [4]. The
polarizability of the BEC-ed magnetoexcitons was calculated using the Anderson-type wave
functions of the coherent excited states. It is characterized by a coherent factor depending on k and
vanishing in the case k =0, as well as by a resonance frequency equal to ionization potential of a
magnetoexciton with condensate wave vector k. The condensate polarizability was used to
determine the correlation energy of the system and the corrections to the chemical potential beyond
the Hartree-Fock-Bogoliubov approximation (HFBA). Side by side with the correlation energy

conditioned by the coherent excited states the influence of the excited Landau levels on the ground
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state energy and the chemical potential was also investigated. The first estimations were made by
Lerner and Lozovik [2] and a general formula without concrete calculations was proposed by
Paquet, Rice and Ueda [3]. The influence of the first excited Landau levels of electrons and holes
was discussed in details in the paper [5]. The indirect attraction between electron-electron (e-e),
hole-hole (h-h) and electron-hole (e-h) is due to the virtual simultaneous quantum transitions of the
interacting charges from LLLs to the FELLs as a result of their Coulomb scattering. The first step
of the scattering and the return back to the initial states were described in the second order of the
perturbation theory. Following the paper [6] due to the influence of the FELLs the coexistence of
two BEC-es is possible. One of them has a wave vector £ =0, whereas the another one has the
wave vector k& #0 in the range where the metastable dielectric liquid phase was revealed. The
chemical potentials of two different BEC-es lie in the near vicinity on the energy scale at some
definite values of the filling factor. If so the drops formed by dielectric liquid phase are surrounded
by the degenerate Bose gas condensed on the state with k£ =0. The task of the present paper is to
continue these investigations enlarging them, so as to embrace all ELLs and not only their first
level. The influence of the ELLs are many sided, but we will concentrate our attention only on two
sides. One of them is related with the influence on the chemical potential of the BEC-ed
magnetoexcitons. Another one concerns their influence on the wave function and on energy level of
a single magnetoexciton. On this base will be possible to determine the more exact expressions of
the exciton creation and annihilation operators, which in their turn play a key role in the elaboration
of an a dequate theory of the BEC of magnetoexcitons. The paper is organized as follows. In the
second section the simultaneous quantum transitions due to Coulomb scattering from the LLLs to
the ELLs are investigated. Their influence on the chemical potential of the BEC-ed
magnetoexcitons is discussed. In the third section the reciprocal influence on each other in the
frame of first four magnetoexciton bands is studied with the aim to determine more exactly the

wave function of the lowest magnetoexciton band. The conclusions are made in the fourth section.

IL. Simultaneous quantum transitions due to the Coulomb scattering.
Now the simultaneous quantum transitions of two charged particles during their scattering
under the influence of the Coulomb interaction will be considered. We have in mind the case when
two particles being in the initial state on their LLLs, what means n=m =0, after the Coulomb

interaction happen to be on the excited states n' = m’' = n with the same number n and vice versa.
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These processes are described by the Coulomb matrix elements
F_(p,0,4,0; p—s,mq+s,n) e 0
F_;(p,n;q,n; p—s5,0;q+5,0)
They determine the indirect interaction of the particles lying on the LLLs through their
virtual quantum transitions to ELLs. Such indirect interaction is attractive and appears in the second
order of the perturbation theory. As was demonstrated in the paper [5], where only the first excited

Landau levels (FELLs) were taken into account, this indirect interaction gives rise to the shift of the

magnetoexciton levels and influences on their BEC. The aim of this section is to generalize the
results of the paper [5], so as to determine the influence of ELL, with the restriction #»'=m'=n.

The general expressions for i = j =e,h are

: \2n
, . s+ix
F(p0:q,0;p—s,mg+s.m)=(=1)' Y W, . f (K,p—q—S)ﬁ—zﬁ
. . (—S+i7(')2n 2
E (g p=3,0:q +5,0) = (<) LW, . f 66, p =g =) — = @

n=0,1,2,3,4..
These general forms were deduced explicitly for five concrete numbers »=0,1,2,3,4 and

can be continued also for arbitrary n>5, as we believe. The electron-hole matrix elements will be

discussed below.

In the Hamiltonian (7) one can separate the term H:- , where only the LLLs take part and

the term A, which describe the simultaneous transitions (0,0) & (1, 1) described above. The

deduction of the indirect interaction between the charged particles moving in the frame of the LLLs,
but undergoing the virtual transitions (0,0) &2 (n,n), is the end of this section. The importance of
these quantum transitions and the study of the indirect interaction were firstly underlined and
realized in the papers [2,3]. Here this question will be studied in details. Another parts of the
Hamiltonian (7) will be neglected. We will separate two groups of Landau levels. One of them
contains only the LLLs and the corresponding creation and annihilation operators are denoted as

a;,p = a;;ao’p =a,;

i . -} -
b, =blib,, =b,;

0,p p2-0,p

3)

Proc. of SPIE Vol. 6256 62560X-3



The second group contains the all excited Landau levels (ELL) with

corresponding operators, to be different from (3), are denoted as

+

an P Cn W2 an N = Cn,p;

o gt . _ .
bn N4 dn p° bn N dn,p’
nx1

The starting Hamiltonian under consideration is

]_‘1 - H HLL HELL

Coul Coul

Here the zero order Hamiltonian H is

H ZZnh Lecnpcnp +ZZnhw d:p

n=l p n=l p

The Coulomb interaction in the frame of the LLLs has the form

Hﬁfﬁ, —-5 Z F_.(p,0,9,0; p—s5,0;g+s O)apaqaqﬂap o+
Pg.S

+2 > F,(p,0,,0;,p=5,0,q+5,00b,0b, b, ~

Pa.s

=Y F._,(p,0,4,0,p—5,0,q+5,0)a,b)b,,.a,

P
and the virtual quantum transitions (0,0) & (»,n) are

oy
Hew =3 > S F_(p.mq,mp-5,0,q+5,0¢) ¢l a. a, +

g, n
ZZF (p,0;9,0, p—s,n,q +s, n)a q CogesCrpos T
g n

oL > > F (p,0:q,0;p—s,mq+s,mblbld,  d

2

Pg,s n

1
+—2- Z ZFh_h(p,n;q,n;p -s,0;q +s,0)d:1,d:qbqﬂbp -

Pogs n

= > F (p.0;q,0; p—s,mq+s,malbld, ., _ -

Pgs n

"Z ZF;_;,(Pa n,q,n,p—=s, 0;q+S’O)C: pd:qbq+va19 K

DS N

n>1, and the

“4)

®)

(6)

(N

®)

The expressions (7) and (8) are Hermitian conjugate, what can be verified, taking into

account the properties of the Coulomb matrix elements. The condition concerning the full number

of electrons and holes is not needed here, and the chemical potentials 4, and y, are dropped. As

earlier the energies of the spin polarized electrons and holes are accounted from the corresponding

LLLs. The Hamiltonian A" is considered as a first order infinitesimal as compared with H, and
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HM and will be excluded from the expression (5) using the unitary transformation [9]

Coul
U=¢%5=§" (9)
The transformed Hamiltonian

e SHeS =H,+ HEE + HEL & z[HO,S} +

. . (10)
i AEE S |+i[ AEL.S]- [[HO,S] §]+-
contains the unknown operator S, which is determined from the condition
i By, |+ HEL =0 (11)

[t means, that the operator S is also a first order infinitesimal and will be determined below
being proportional to the Coulomb matrix elements from A - .
The transformed Hamiltonian (10), following [9], must be averaged using the ground state

wave function |0> of electrons and holes on the ELLs determined by the equalities

” P I O>ELL = d”vl’
n=1

0>ELL :0’ (12)

The desirable effective Hamiltonian is [9]

Ay = (0l R0, = L L ([ A28 ] 0),, 13)

It means that the virtual transitions (0,0) & (n,n) will appear only in the second order of

the perturbation theory. Their operators concerning the ELLs will not take part in explicit form, but

only by their averaged values. Here we took into account that
ELL(OII:IOl())ELL ~ R <OH:Hé‘£:fI’S]IO>ELL (14)

The condition (11) permits to determine the operatorS as follows
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F,_,(p,0;q,0;p—s,m;q+s, n)ap yCrgesCrps +

=YY o

q\ n
1
+4nha) F;—e(p’n;q’n;p ‘S O q+.§ O)CH pcnqaq+\ap—
1 tpt
_4nha) F, . (p,0,9,0, p—s,mq+s,mbbd, d + s
ch ( )
1 R T gt
+WF/7_I7(P’”’%”:P 5,0;q+s,0)d, d, b, b  +
1
i, rhay) A PEBEP O TGl
ce ch
1

-———F Nnq,n; —S,O; +S’0Cn d;r b+\ s
. + o) e (P515q, 1 p q+s,0)c, d, b, a, }

Substituting the expressions (8) and (15) into (13) one will find
L[5 ])0),, =

~—Z . (p.g;p—s,q+s)aaa,.a, Z $y(P.q:p—5,q+s)b)b)b, b~

I"/ pq\‘

- bo(pg;p-s,9+8)abb, .a,

Pag.s

(16)

where

b (PG p-5:9+5)= Y B (P, q; p—5;q+5) =
1
" 17

Z—ZF (p,0;9,0;p—t,mg+t,mF_(p-t,mq+t,n;p—s,0,9+s,0)

G n=

ha, +hw

The indirect interaction generated by the formulas (16), (17) means the attraction between

the electrons and holes. It appears in additions to the obvious Coulomb interaction described by

H!™ and represents the influence of the ELLs. In such a way we have reobtained the starting

Hamiltonian (12) of the paper [5] in a more general case considering not only the first excited
Landau levels (FELLs) with n=1, by the all of them with arbitrary »n>1. If restoring the chemical

potential 4, and g, , the desirable Hamiltonian is

——Z¢_((p g;p-siq+s)ajaja,.a, -

o (18)
Y Z ¢h ;,(P;‘Ja S;q+5)bTbeq+\bp_ —
17'1 &
_Z ¢f‘—h(p’q;p—S;q+s)a;b‘jbq+\ s
JAUR
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As was shown in [5] the indirect i — j interaction through the FELLs equals to

1

¢ (DG p—S,g+8)=—"—""—"—x
ho,+ho, (19)

x> F_(p,0;q,0; p—1,;,q+1,)F_,(p—t,1;,q+1,1; p=5,0,4 +5,0)
!

Similarly in the case of n-th ELLs we will introduce

1

" (P p—S,qts)=——————X
¢, (p.q;p—5,q9+5) wha, +ha) )

XY F_(p,0;,9,0; p=t,m;q+1,m)F_;(p—t,m;q+1,m p~5,0;q+5,0)
!

Which in the case n=1 coincides with expression (19) and is its generalization for arbitrary

values of n.
Below we will determine firstly the case i = j = e . Using the expressions (2) we will obtain
" 1
4 Pp—S,9+8)= X
PP s =SS = S S e,
D22 W W p=g-0)f(0,p=q—1-5)x e2))
1 K (o4

x(t +iK)" (t - s +io) " I*

It is an complicate expression.

But the needed influence of the indirect interaction on the phenomenon of BEC of
magnetoexcitons as well as on the metallic-type electron-hole liquid (EHL) formation is expressed
by the sum of nondiagonal matrix elements of the type

1 nl ,
2nha,, (2"n!) @)

xZ’: ; Z Z W, W, expli(ck — ot)I*](t +ix)" (~k +ic) " 1*"

>4 (pp-s;p-5,p)=

Now we introduce the two-dimensional vectors O=(f,x) and P=(k,0), where
t = Qcosp;x = Qsing; k = Pcosy ;o = Psiny and the dimensionless variables x=Q/ and y = P/ as

well as the angle € = ¢ —y , what permits to express (22) in the form

]12 ]' 2n2
" D=8, p—S8,p)= A0, 23
Zrﬁe_e(p p—S;p—5,p) e @ (23)
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where

(.r2 +'v2 )

A;;"z" = [dxj. dyx™y*e RN 2, (XY) (24)
0

0

In such a way we have deduced the desirable expression (23).

1 4 1
. yP—8,p—S, = K(x(a ’ 25
Z¢e—e (p p p p) nﬂha}ce (n !)2 dazn l:\/l—-'__‘(; ( ( ))} - ( )
where the modulus x(a) of K(x) equals to
L
a )2 1
k()= — | ;x(x =— 26
(@) (1+a] (@), 7 (26)
and can calculate the contribution of the ELLs with n' = m’' = n by the final formula
1
I & 1 4" 1 [ a j?
; s P—S,p—S, = K 27
;Z ¢—e(p p p p) ﬂ'ha)w;n(n!)z da2n [1+a 1+a ( )

a=1
In the same way we will determine the matrix elements of the electron-hole(e-h) Coulomb

scattering involving the ELLs. These virtual quantum transitions from the LLLs to ELLs being
taken into account in the second order of the perturbation theory will lead to supplementary
attraction between the electrons and holes, increasing the binding energy of the magnetoexcitons.
The virtual quantum transitions are described by the matrix elements

F,(p.0:9.0;p—s,mq+s,n)=F,_,(p.n;q,n,p-5,0,qg+s,0)=

L V.. exp[—szl2 +ix(p+ q)lz] X (28)

C 2"l =
xH, (-i)e ‘H, (—d—je 4
do, do,

Here H, (fQ—J are the Hermitian functions [3], where the variable x is substitutes by the

O =(s+ix)l 1 | T
Qz:(S—iK)l_n!vi,xf(K,p.q.q){ . jt

o d .
derivative 7— . As earlier

(s> +xH)I’ il 2re’
W =V exp) ==, V== (29)
o [ 2 T g SVst+k?
: : e |r
fl, p+q)=explic(p+q)°]; ===
&l V2
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The expressions (28) were verified explicitly up till the number n=1,2,3,4. Taking into
account the matrix elements (28) one can determine in the second order of the perturbation theory
the matrix element

1
—x
n(ho, +ho,)

x> F,_,(p,0;4,0; p—t,m;q +1,n)F,_, (p—t,m;q+1,n, p—5,0,q +5,0)

& (p,q;p—5,9+Ss)=
(30)

The most interest represents the sum of the nondiagonal matrix elements (30), which
determines the correction to the magnetoexciton binding energy and has the form
—ik,. 51

Z Pk, —pip—s;k, —p+s)e 31)
where & ,k, are the components of the two-dimensional wave vector k . They determine the states

of two-dimensional magnetoexciton energy band. After cumbersome but straightforward
calculations we obtained

Z ¢en—h (p7 kx 2% 2 S;kx -p+ S)e‘l'k_‘,sl2 _

217 (A (kD)) (32)
S22 nr(ho,, +hao,,)’
where [8]
A (kl) = Tx e 2J (xkl)dx = 2[ "E)F[n +%)e—71F{—;——n;l; k;) (33)

In the case » =1 this expression coincides exactly with the formula (33) of the paper [5].
The summary contribution of different ELLs is expressed by the sum

21} < (4,(k)))’
S 4ok, —pip—sik,—p+s)= 4 Z( (kD)) (34)

parin ' r(ha, +ho, )= 2" (n!)n
The expressions (27) and (34) will be used to determine the influence of the ELLs on the position
on the energy scale of the magnetoexciton level as well as of the stability of their Bose-Einstein
condensation on the single-particle state with wave vector & .

III. Wave functions and energy spectrum of four magnetoexciton bands.

For the beginning we will determine the magnetoexciton creation operators d fn i
characterized by the number n of the electron Landau level and by the number m of the hole Landau

level, as well as by the two — dimensional wave vector k with two components k, and k, . They are

—ik, ? ‘,' 1-

5
n,m k / Z n, 74—/ m %‘4 (3 )

The state with the pair of numbers (n,m) equals to (0,0) will for simplicity be denoted as the
state 1, the pair of numbers (1,1) gives rise to the magnetoexciton state 2, the pairs (1,0) and (0,1)
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will be mentioned as the states 3 and 4. The exciton wave function (k) are obtained acting by

these operators on the vacuum wave function |0) determined as

a,,|0)=0; b,,|0)=0 (36)
These functions are

v.=d",..[0); i— (n,m) 37)
They obey to the orthogonality and normalization conditions

<Wf; '/’ﬂz'> =00tk (38)
The Hamiltonian consists from two parts H,(6) and H_,(7), where the chemical potentials

u,and y, are dropped, because we will study the energy spectrum of a single magnetoexciton. The

quantum statistical properties of the magnetoexcitons here will be not discussed and the condition
of a given number of magnetoexcitons it is not necessary.

The matrix elements of the Hamiltonian on the wave functions (37) are denoted as

H; (k) :<Wik IHIl//jk> = <’/’ik |H0'ij>+<‘»”ik |Hc'oul '//jk> =

S, <Wik|]:[o|'//ik>+ V., (k)

Firstly the magnetoexciton energy bands are determined in zero order of the perturbation
theory, when only the diagonal matrix elements and two off-diagonal matrix elements V,(k) and
V, (k) are taken into account. All other off-diagonal matrix elements, which are smaller than the
values V, and V,, will be introduced in the higher orders of the perturbation theory.

The four zero order magnetoexciton bands accounted from the LLLs are

E' (k)=E" (k)= H, (k)=V_ (k)=-1"_ (k)

E’, (k)y=E", (ky=H,,(k)=ho,+ho, -1"", (k)

(39)

40
E’ (k)=E", (k)= Hy,(k)=ho, 1", (k) )
E4ex (k) = E(O'l)ex (k) = H4,4 (k) = hwc’h - I(O'I)ex (k)
The ionization potentials of four bands were determined as
1", (k)="F, ,(p,n;k,— p,m;p=s,n; k.~ p+s,m)e™" =
T 41)

e’ e (
=—1|dxe > (1-—)""J,(klx);

o [ e U=k

where n,m=0,1
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The ionization potentials are

N 2 il 272
](00) (k) [e 2 F(l %l__)_.[[e 4 Io(kT[);I‘O‘O)EX(O):]/’

K2 2 272 272
—= 1 kl 3 3 k7 1 kl
I, 0=l | RO L)+ RS 5= - R ;

1™ (0) =—I,, (42)

er i L
[(I,O)Qt(k):[(o,l)ex(k):]/e 2 [F( s kzl ) ] l 1("' kzl )i|,

199 _(0)=1°" (0) =21,

Here  F(a,y,z)are the degenerate hypergeometric functions [8] with the property

Fila,y;—2z)=e7 [ F(r—a;y,2)

(43)
and /,(z) is the modified Bessel function with the limits [8]
(z/2)*
1, ; I, 44
-3 = (44

One can observe that the ionization potential of four types magnetoexciton bands equal
to/,, % I, and % I, correspondingly. They are determined only by the diagonal Coulomb matrix

elements. There are 12 off-diagonal matrix elements V,  with i # j =1,2,3,4, which can be
represented as follows [7]
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Vo) =V, (k)==>"V; 0" exp{—Q; +i[1€xQ] 12}:
. 0 z

2
=1 \/z’fdxi‘ie{/ (klx) =-1I LA TR
- li 72'0 2 0 - 12 141 23 ) D) 5
V13(k):V*31(k):_V41(k):_V*14(k)=
(s +ix)! o - = z}
=) V. exp| — +ilkxQ| " |=
LB, A e K1 kP

=]e% | dxe *xJ (kix)=—=(kl)le * F(=,2; ;

€ [ xe ), (k) == ()e 7RG 270)

V() =V (k) = -V, (k) ==V (k) =
~ (ix-9)I, O O e A L
_ZQ:VQ 75 (l 5 jexp{ 5 +z[k><Q]zl:|

2

e [ dxe'?x(l —f—j J, (kix) =
T 2

v P 1 _k7*. 3 1 K
=S _(kDle ? | F(=2—)-= F(-—,2—)|;
2\/5( e [1 1(2 ) ) 7! 1 ( ) ) )

. (ix —)*1* O > =7
Vo, (kY=V ,(k)=) V.————exp| — +ilkx I“ =
() =V (k) %:Q N I [kx0],
K 1 k212

, 17,2 3 R
=e”1,5;£dxe ZxZJZ(klx)=Ee“’(kl)211e R

(45)

Here the two — dimensional vector Q has the components s and x O =(s,x) and y is the
angle, which determines the components of the wave vector £ = (x, = kK cosy,x, =k siny). But

the final results will not depend on the angle y and it can be dropped.
The more exact expression of the magnetoexciton wave function is the linear combination

4
l//v,k = Z aiv(//ik (46)
i=1

The new functions y/, , are denoted by Greek symbol v =a, 8,7, , whereas the initial zero

order functions y, by Latin letter i=1,2,3,4. They obey to the Schrodinger equation
Hy,, =E, (v, 47)
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The final expression for the magnetoexciton energy bands E'' (k) in dependence of the
dimensionless wave vector kl was obtained in second order of the perturbation theory, when the
quantum number v equals to «, 5

Vo Kl
EJ(k)~Hy(k)  E)(k)~H,, (k)

0 |2

v

E/ (k) {

2

{ &G VGO }I °
+ + a

E)(k)—Hy(k) E{(k)—H,, (k) |"™* , v=a,f (48)

N ARG A A AGEN
BN~ Hy() B0~ Hu(0)

+a§:a10{ AGIAGENRAAC }
EN(k)=Hyy(k)  E)(k)~Hay(k)

Conclusions.
The states of excitons on the surface of an ideal symmetric two-dimensional (2D) layer in a
strong perpendicular magnetic fields are studied taking into account explicitly five levels of Landau
quantization for electrons n, =0,1,2,3,4 and five levels for holes n, =0,1,2,3,4. One their

examples the recurrent formulas for the Coulomb matrix elements for arbitrary », and n, were

deduced. The 2D magnetoexcitons are formed by the electron-hole (e-h) pairs, in which the electron
occupies the Landau levels with number n,, whereas the hole occupies the Landau level with

number #,. Their binding takes place due to Coulomb interaction, which is supposed to be smaller
than the distances 2w, and %@, between the Landau levels. The exciton states in our description
are characterized in Landau gauge by the pair (n,,n,) of quantum numbers, which describe the
Landau quantization in one in-plane direction and by two uni-dimensional wave vectors p,q
describing the motion of electron and hole in another perpendicular in-plane direction. Instead of
them the 2D in-plane wave vector k= (k,,k,) is introduced, which characterizes the motion of the

exciton as a whole and its continuous energy spectrum of the e-h relative motion. Two main topics
concerning the 2D magnetoexcitons are discussed. One of them is the influence of the excited
Landau levels on the collective properties of the high density magnetoexcitons. Starting with the
explicit expressions of their wave functions the matrix elements of the Coulomb interactions in the
e-h system were determined. The recurrent formulas were obtained, which permit to determine in
the second order of the perturbation theory the indirect interaction between the electrons and holes
situated on the lowest Landau levels. This indirect interaction changes the magnetoexciton
ionization potential and the chemical potential of the Bose-Einstein condensed two-dimensional
magnetoexcitons.

The second question discussed in the paper is the energy spectrum of four lowest exciton
bands. Their wave functions were determined in the first order of the perturbation theory, whereas
their energy spectrum in the second order of the perturbation theory. As the perturbations some
nondiagonal matrix elements of the Coulomb interaction are considered. They are much less than
the diagonal matrix elements.
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