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Abstract. The collective elementary excitations of two-dimensional magnetoexcitons in a Bose-Einstein
condensate (BEC) with wave vector k = 0 were investigated in the framework of the Bogoliubov theory of
quasiaverages. The Hamiltonian of the electrons and holes lying in the lowest Landau levels (LLLs) contains
supplementary interactions due to virtual quantum transitions of the particles to the excited Landau levels
(ELLs) and back. As a result, the interaction between the magnetoexcitons with k = 0 does not vanish
and their BEC becomes stable. The equations of motion for the exciton operators d(P ) and d†(P ) are
interconnected with equations of motion for the density operators ρ(P ) and D(P ). Instead of a set of two
equations of motion, as in the case of usual Bose gas, corresponding to normal and abnormal Green’s
functions, we have a set of four equations of motion. This means we have to deal simultaneously with
four branches of the energy spectrum, the two supplementary branches being the optical plasmon branch
represented by the operator ρ(P ) and the acoustical plasmon branch represented by the operator D(P ).
The perturbation theory on the small parameter v2(1 − v2), where v2 is the filling factor and (1 − v2)
is the phase space filling factor was developed. The energy spectrum contains only one gapless, true
Nambu-Goldstone (NG) mode of the second kind with dependence ω(k) ≈ k2 at small values k describing
the optical-plasmon-type oscillations. There are two exciton-type branches corresponding to normal and
abnormal Green’s functions. Both modes are gapped with roton-type segments at intermediary values of
the wave vectors and can be named as quasi-NG modes. The fourth branch is the acoustical plasmon-
type mode with absolute instability in the region of small and intermediary values of the wave vectors. All
branches have a saturation-type dependencies at great values of the wave vectors. The number and the kind
of the true NG modes is in accordance with the number of the broken symmetry operators. The comparison
of the results concerning two Bose-Einstein condensates namely of the coplanar magnetoexcitons and of
the quantum Hall excitons in the bilayer electron systems reveals their similarity.

1 Introduction

A two-dimensional electron system in a strong perpen-
dicular magnetic field reveals fascinating phenomena such
as the integer and fractional quantum Hall effects [1–5].
The discovery of the fractional quantum Hall effect
(FQHE) fundamentally changed the established concepts
about charged single-particle elementary excitations in
solids [6–8]. The gauge transformations from the wave
functions and creation operators of simple particles to
another wave functions and creation operators describe
composite particles (CPs) [9–11]. They are made from the
previous particles and quantum vortices, created under
the influence of the magnetic flux quanta [12–21]. Due to
the contribution of many outstanding investigations [1–28]
as well as many efforts to explain and to represent the
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underlying processes in a more clear way [4,29,30] it is
possible to make a short summary as follows. One can be-
gin with the concept of composite particles proposed by
Wilczek [9,10] in the form of particles with magnetic flux
tubes attached. A posteriori, the flux tubes were substi-
tuted by quantum vortices, as was argued by Read in a
series of papers [12–15]. In many explanations proposed by
Enger [4], it was underlined that in 3D space the particles
may obey only Fermi and Bose statistics, whereas in 2D
space the fractional statistics are also possible. Now under
the interchanging of two particles, the wave function ob-
tains the phase factor eiπα with any fractional values of α.
Such particles were named “anyons” [9,10]. The gauge
transformations [29] of the wave functions and of the cre-
ation and annihilation operators of the initial particles and
the corresponding Hamiltonians was a powerful instru-
ment revealing the fundamental physical processes hidden
at the first sight in the quantum states of the system.
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The gauge transformation revealed the existence of the
vortices in the system created by the magnetic flux quanta.

Girvin et al. [20,21] elaborated the theory of the col-
lective elementary excitation spectrum in the case of the
FQHE, closely analogous to Feynman’s theory of super-
fluid helium. The predicted spectrum has a gap at k = 0
and a deep magneto-roton minimum at finite wavevector,
which is a precursor to the gap collapse associated with
Wigner crystal instability.

In this paper we study a coplanar electron-hole (e-h)
system with electrons in a conduction band and holes
in a valence band, both of which have Landau levels in
a strong perpendicular magnetic field. Earlier, this sys-
tem was studied in a series of papers mostly dedicated
to the theory of 2D magnetoexcitons [31–43]. This sys-
tem bears some resemblance to the case of a bilayer
electron system [44–49]. A short review concerning the
Bose-Einstein condensation (BEC) of the quantum Hall
excitons (QHExs) arising in the bilayer electron systems
in the conditions of the quantum Hall effect (QHE) at one
half filling factor ν = 1/2 for each layer and the total filling
factor for two layer equal to unity νt = 1 is needed. The
aim of the review is to compare this phenomenon with the
case of BEC of two-dimensional (2D) magnetoexcitons.
Such comparison will permit to better understand the un-
derlying physics and to verify the accuracy of the made
approximations. In reference [44] Fertig investigated the
energy spectrum of a bilayer electron systems in a strong
perpendicular magnetic field and introduced the concept
of the interlayer phase coherence of the electron states in
two adjacent layers, which leads to the model of quantum
Hall excitons in condition of their BEC. Unexpectedly a
strong evidence of exciton BEC was ultimately found in
a such surprising place as a double layer 2D electron sys-
tem at high magnetic field [45]. In the QHE regime the
excitons consist from electrons in the lowest Landau level
(LLL) of the conduction band of one layer being bound
to the holes which appear in the LLL of the conduction
band in another layer. The ground state wave function
proposed by Fertig [44] introduces the interlayer phase co-
herence reflecting a new state, in which the electrons are
no-longer confined to one layer or to another, but instead
of it they reside in coherent liniar combinations of the two
layer states as follows

|ψ〉 =
∏

t

(
ua†1t + va†2t

)
|0〉 , u2 + v2 = 1. (1)

The lowest levels of the Landau quantization in the
Landau gauge are characterized by the quantum number
n = 0 and the uni-dimensional wave number t. |0〉 is the
vacuum state. The equality u2 = v2 = 1/2 reflects the
half-filling of the LLL in each layer. Introducing the hole
operator d†t , dt for the first layer instead of the opera-
tors a†1t and a1t the function (1) was transcribed in the
form

|ψ〉 =
∏

t

(
u+ va†td

†
−t

)
|ψ0〉 , |ψ0〉 =

∏

t

a†1t |0〉

a2t = at, a
†
2t = a†t , a1t = d†−t, a

†
1t = d−t. (2)

The operators a†td
†
−t create the electron-hole pairs with to-

tal wave vector equal to zero. The wave function (2) can be
interpreted as describing the BEC of the QHExs [44–49].

The system we are interested in has only one layer,
with electrons in conduction band and holes in the va-
lence band of the same layer created by optical excitation
or by p-n doping injection (both of these methods can
be called “pumping”). In this case there is an intrinsic
metastability, since electrons in the conduction band can
drop down into the valence band and recombine with holes
there. But we assume that the recombination rate of the
electrons with holes has such a slow rate that the num-
ber of electrons and holes is nearly conserved. Unlike the
case of the bilayer electron system with a half-filled lowest
Landau level, in the case of a single excited layer which we
consider, the density of excitons can be quite low, so that
the electron Landau level and the separate hole Landau
level are each only slightly occupied, and Pauli exclusion
and phase space filling do not come in to play.

Our result concerning the BEC at T = 0 are es-
timations able to describe the real situation at finite
temperatures lower than the critical temperature of the
Berezinskii-Kosterlitz-Thouless (BKT) topological phase
transition [50–52] related with the existence of the vortices
and their clasters such as bound vortex-antivortex pairs.
Just the unbinding of these pairs determines the critical
temperature TBKT = πn�

2

2mkB
, where n is the surface density

of the Bose particles and m is their mass. On one side of
the phase transition there is a quasi-ordered fluid and on
the other is a disordered unbounded vortex plasma. Al-
though the formation of an isolated vortex will not occur
at low temperature due its extensive creation energy, there
always can be production of a pair of vortices with equal
and opposite charges since the perturbation produced by
such a pair falls off sufficiently rapidly at large distances
so that their energy is finite [51,52]. Such topological for-
mations can be easily created by the thermal fluctuations.
The presence of the vortex clasters makes the earlier infi-
nite homogeneous 2D e-h system to be nonhomogeneous
as a whole. But the local homogeneity with finite local sur-
face areas can exist leading to the BEC with finite critical
temperature Tc = 2πn�

2

mkB lg(nS) (Ref. [53]). Instead of an off
diagonal long-range order as in the case of 3D Bose-gas
in the 2D systems, there is only a long rang correlations
which decays algebraically with distance. In such a way
the quantum vortices promote the BEC and the forma-
tion of the superfluid component of the 2D Bose-gas at
finite temperatures and at the same time the superfluid
component is necessary for the formation of the quantum
vortices. It is a self-organization-type situation. The BKT
phase transition is a widely studied phenomenon [54–56].

We are interested in the distribution of the flux quanta
in the case of an electron-hole system with equal average
numbers of electrons and holes N̄e = N̄h with filling factor
ν = N̄e/N , where N is the total number of flux quanta. In
the case of fractional integer filling factor there is an inte-
ger number of flux quanta per each e-h pair. The creation
of the vortices in this case is not studied at the present
time.
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Fig. 1. Energy of the indirect exciton photon emission as a
function of magnetic field, for several values of the electric field
(from Ref. [58]).

Another related system is the case of a pumped bi-
layer system [57–67] such as coupled semiconductor quan-
tum wells (CQW). While the geometry of this system with
two adjacent layers is similar to the bilayer electron sys-
tem discussed above, it is actually more similar in its main
properties to the pumped single-layer electron-hole system
which is the topic of this paper. In this system, the main
effect of the bilayer structure is to put a tunneling barrier
between the electrons which are in one layer and the holes
which are in the other layer. This makes it possible to ex-
perimentally realize the condition given above of negligible
electron-hole recombination; experimentally, exciton life-
times of up to 40 microseconds have been observed [65,67],
and the long lifetimes allow diffusion of the excitons over
macroscopic distances [57] and equilibration to the lat-
tice temperature in a harmonic potential [58]. Like the
pumped single-layer system discussed here, the electrons
in the conduction band and the holes in the valence band
can each be at very low density. One drawback of this
system is that it causes the interactions of the excitons
to be enhanced, due to their alignment in the direction
perpendicular to the layers, giving a strong dipole-dipole
interaction [59]. For a comparison of the half-filled bilayer
system and the pumped bilayer system, see reference [67].

In this bilayer system with nearly negligible recombi-
nation, a magnetic field can be applied in the direction
perpendicular to the layers to create magnetoexcitons of
the type considered here. So far, there has been no evi-
dence of Bose-Einstein condensation in this system. The
magnetoexciton regime can be reached, however, as shown
in Figure 1. At high magnetic field, the exciton energy
shifts up to higher energy following the Landau level en-
ergy, as expected. The fast shift to lower energy seen at low
magnetic field has been explained as due to the effect of
the disorder on the tunneling current in the samples [60].

Recently, another group has used magnetic field to
study the Mott transition from insulating exciton gas to
conducting plasma [61]. They were able to show that the
magnetic response of the system changed sharply when
the system had undergone a Mott transition. The Mott
transition of exciton gas to plasma is in general still a
quite difficult problem receiving much study [62,63].

One reason why BEC has not been observed clearly in
either the simple pumped bilayer system or the pumped
magnetoexciton bilayer system may be that the conden-
sate occurs in a “dark” state which does not emit light.
It has been proposed that condensation of excitons will
always occur in a dark state if one exists [68–71]; some
evidence of BEC of dark excitons has been reported in
reference [65]. The existence of two types of excitons, dark
and bright excitons, is related to their spin structure. In
GaAs, the lowest exciton state splits into a J = 2 dou-
blet which does not emit light, by symmetry, and a J = 1
doublet which emits light. In the present paper, we do not
take into account the spin structure of the excitons.

Our paper is organized as follows. In Section 2 we de-
duce the Hamiltonian of the supplementary interactions
between electrons and holes lying in the lowest Landau
levels (LLLs) due to their virtual quantum transition from
the LLLs to excited Landau levels (ELLs) in the pro-
cesses of Coulomb scattering. It is interesting that this
interaction due to the influence of the ELLs is possi-
ble to express in terms of two-particle operators in the
form of density fluctuation operators. In Section 3 the
full Hamiltonian containing the basic Coulomb interac-
tion as well as the supplementary interaction is taken
through the operation of gauge symmetry breaking so as
to study the Bose-Einstein condensation (BEC) of magne-
toexcitons. The traditional way is to follow the Keldysh-
Kozlov-Kopaev method [72] describing the BEC of exci-
tons in the electron-hole representation, which leads to
the subsequent Bogoliubov u-v transformation of the cre-
ation and annihilation operators of the initial and final
Fermi-type quasiparticles. In the present paper, we have
chosen another variant proposed by Bogoliubov in his the-
ory of quasiaverages [73]. Both methods are equivalent,
but for our purposes the second variant is preferable be-
cause we will operate with the integral two-particle oper-
ators rather than with single-particle Fermi-type opera-
tors. In Section 4 we deduce the equations of motion for
the integral two-particle operators and for the correspond-
ing Green’s functions. The truncation of the equations of
motion permit us to obtain a Dyson equation in a 4 × 4
matrix form and to determine the self-energy parts Σij

with i, j = 1, 2, 3, 4. Section 5 is devoted to the analytical
and numerical calculations of the energy spectrum in dif-
ferent approximations. The conclusions are presented in
Section 6.

2 Hamiltonian of the supplementary
interaction

The Hamiltonian of the Coulomb interaction of the elec-
trons and holes lying on their LLLs has the form

Ĥc =
1
2

∑

Q

WQ

[
ρ̂(Q)ρ̂(−Q) − N̂e − N̂h

]
−μeN̂e−μhN̂h.

(3)
Here ρ̂(Q) are the density fluctuation operators ex-
pressed through the electron ρ̂e(Q) and hole ρ̂h(Q) density
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operators as follows

ρ̂e(
−→
Q) =

∑

t

eiQytl2a†

t−
Qx

2

a
t+
Qx

2

,

ρ̂h(
−→
Q) =

∑

t

eiQytl2b†

t+
Qx

2

b
t−
Qx

2

,

ρ̂(Q) = ρ̂e(Q) − ρ̂h(−Q),

D̂(Q) = ρ̂e(Q) + ρ̂h(−Q),

N̂e = ρ̂e(0), N̂h = ρ̂h(0), N̂ = N̂e + N̂h,

WQ =
2πe2

ε0S |Q|e
−Q2l2/2. (4)

The density operators are integral two-particle operators.
They are expressed through the single-particle creation
and annihilation operators a†p, ap for electrons and b†p, bp
for holes. ε0 is the dielectric constant of the background;
μe and μh are chemical potentials for electrons and holes.

The supplementary indirect interactions between elec-
trons and holes appear due to the simultaneous virtual
quantum transitions of two particles from the LLLs to ex-
cited Landau levels (ELLs) and their return back during
the Coulomb scattering processes. This interaction was
deduced in references [42,43]. It has a general attractive
character and has the form

Hsuppl = −1
2

∑

p,q,s

φe−e(p, q; s)a†pa
†
qaq+sap−s

− 1
2

∑

p,q,s

φh−h(p, q; s)b†pb
†
qbq+sbp−s

−
∑

p,q,s

φe−h(p, q; s)a†pb
†
qbq+sap−s. (5)

An important property of this quartic form constructed
from single-particle operators is the possibility to tran-
scribe it through the integral two-particle operators ρ̂(Q)
and D̂(Q) as follows (Ref. [74])

Hsuppl =
1
2
Bi−iN̂ − 1

4N

∑

Q

V (Q)ρ̂(Q)ρ̂(−Q)

− 1
4N

∑

Q

U(Q)D̂(Q)D̂(−Q). (6)

The estimates give the values (Ref. [42,43,74])

U(Q) ∼= U(0)e−Q2l2/2, U(0) = 2Ai−i,

1
N

∑

Q

U(Q) = Bi−i +Δ(0),

V (Q) ≈ V (0) = 0, Ai−i = 0.481
I2
l

π�ωc
,

Bi−i = 0.432
I2
l

π�ωc
, Δ(0) = 0.688

I2
l

π�ωc
. (7)

Here Il is the ionization potential of magnetoexciton, �ωc

is the cyclotron frequency at me = mh.

The full Hamiltonian describing the interaction of elec-
trons and holes lying on the LLLs is

H = HCoul +Hsuppl. (8)

3 Breaking of the gauge symmetry.
Bose-Einstein condensation
of magnetoexcitons

In references [32–41] the Bose-Einstein condensation
(BEC) of magnetoexcitons with wave vector k different
from zero was considered without taking into account the
influence of the excited Landau levels (ELLs). But the case
of BEC with k = 0 was impossible to incorporate in the
previous description because such magnetoexcitons form
an ideal Bose-gas: in that model, the interaction between
two magnetoexcitons with electrons and holes lying on
the LLLs and with k = 0 equals exactly zero. This predic-
tion of ideal behavior is a result of the made assumptions
and approximations neglecting the influence of the excited
Landau levels. To better understand the properties of the
2D magnetoexcitons with k = 0 one can imagine the elec-
tron and hole of the one exciton counter propagating for
example in the x in-plane direction in the perpendicular
magnetic field. They are shifted by the Lorentz force in
the same part of the in-plane y direction and undergo
cyclotron quantization around the same gyration point.
Their radii of the cyclotron motion are exactly the same
because they are determined by the magnetic length l and
not by the masses of the particles. The 2D magnetoexciton
with k = 0 represents two cyclotron orbits of the electron
and of the hole exactly overposed in the same gyration
point. The Coulomb interaction of the e-h pair of the one
such exciton with the e-h pair of another such exciton ex-
actly equals to zero. To consider BEC of magnetoexcitons
with k = 0 it is necessary to take into account the in-
fluence of the ELLs, represented by the Hamiltonian in
equation (6).

As discussed in previous papers [33–43,75], the break-
ing of the gauge symmetry of the Hamiltonian (8) can be
achieved using the Keldysh-Kozlov-Kopaev method [72]
using the unitary transformation

D̂(
√
Nex) = exp[

√
Nex(d†(k) − d(k))], (9)

where d†(k) and d(k) are the creation and annihilation op-
erators of the magnetoexcitons. In the electron-hole rep-
resentation they are (Refs. [33–43]):

d†(P ) =
1√
N

∑

t

e−iPytl2a†

t+
Px

2

b†

−t+
Px

2

,

d(P ) =
1√
N

∑

t

eiPytl2b
−t+

Px

2

a
t+
Px

2

, (10)

BEC of magnetoexcitons leads to the formation of a co-
herent macroscopic state as a ground state of the system
with wave function
∣∣ψg(k̄)

〉
= D̂(

√
Nex) |0〉 , ap |0〉 = bp |0〉 = 0. (11)
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Here |0〉 is the vacuum state for electrons and holes. In
spite of the fact that we kept arbitrary value of k, never-
theless our main goal is the BEC with k = 0 and we will
consider the interval 0.5 > kl ≥ 0. The function (11) will
be used in Section 5 to calculate the averages values of the
type

〈
D(

−→
Q)D(−−→

Q)
〉
. The transformed Hamiltonian (8)

looks like

Ĥ = D
(√

Nex

)
HD†

(√
Nex

)
, (12)

and is succeeded, as usual, by the Bogoliubov u-v trans-
formations of the single-particle Fermi operators

αp = D̂
(√

Nex

)
apD̂

†
(√

Nex

)
= uap − v(p− kx

2
)b†kx−p,

αp

∣∣ψg(k̄)
〉

= 0,

βp = D̂
(√

Nex

)
bpD̂

†
(√

Nex

)
= ubp+v(

kx

2
− p)a†kx−p,

βp

∣∣ψg(k̄)
〉

= 0. (13)

Instead of this traditional way of transforming the ex-
pressions of the starting Hamiltonian (8) and of the in-
tegral two-particle operators (4) and (10), we will use the
method proposed by Bogoliubov in his theory of quasi-
averages [73], remaining in the framework of the original
operators. The new variant is completely equivalent to the
previous one, and both of them can be used in different
stages of the calculations. For example, the average val-
ues can be calculated using the wave function (11) and u-v
transformations (13), whereas the equations of motion for
the integral two-particle operators can be simply written
in the starting representation.

The Hamiltonian (8) with the broken gauge symmetry
in the lowest approximation has the form

Ĥ =
1
2

∑

Q

WQ

[
ρ(Q)ρ(−Q) − N̂e − N̂h

]
− μeN̂e

− μhN̂h +
1
2
Bi−iN̂ − 1

4N

∑

Q

V (Q)ρ̂(Q)ρ̂(−Q)

− 1
4N

∑

Q

U(Q)D̂(Q)D̂(−Q) − η̃
√
N
(
d†(k) + d(k)

)
.

(14)

Another smaller term, proportional to η̃, has been dropped
for simplicity.

Here the parameter η̃, which determines the breaking
of the gauge symmetry, depends, as in the case of weakly
non-ideal Bose-gas considered by Bogoliubov [73], on the
chemical potential μ and on the square root of the density.
In our case the density is proportional to the filling factor
ν = v2. We have:

μ = μe + μh, μ̄ = μ+ Il, Nex = v2N,

Ẽex(k) = −Il −Δ(k) + E(k),

η̃ = (Ẽex(k) − μ)v = (E(k) −Δ(k) − μ̄)v,

E(k) = 2
∑

Q

WQ sin2

(
[K ×Q]zl2

2

)
. (15)

In the special case k = 0 we obtain

η̃ = −(μ̄+Δ(0))v. (16)

4 Equations of motion for the integral
two-particle operators. Green’s functions,
Dyson equation and Self-energy parts
in the case k = 0

The equations of motion for the integral two-particle op-
erators with wave vectors P �= 0 in the special case of
BEC of magnetoexcitons with k = 0 are

i�
d

dt
d(P ) = [d(P ), Ĥ]

= (−μ̄+ E(P ) −Δ(P ))d(P )

− 2i
∑

Q

W̃ (Q) sin
(

[P × Q]zl2

2

)

× ρ̂(Q)d(P − Q) − 1
N

×
∑

Q

U(Q) cos
(

[P × Q]zl2

2

)

×D(Q)d(P − Q) + η̃
D(P )√
N

,

i�
d

dt
d†(−P ) = [d†(−P ), Ĥ]

= (μ̄− E(−P ) +Δ(−P ))d†(−P )

+ 2i
∑

Q

W̃ (Q) sin
(

[P × Q]zl2

2

)

× d†(−P − Q)ρ̂(−Q)

+
1
N

∑

Q

U(Q) cos
(

[P × Q]zl2

2

)

× d†(−P − Q)D(−Q) − η̃
D(P )√
N

, (17)

i�
d

dt
ρ̂(P ) = [ρ̂(P ), Ĥ]

= −i
∑

Q

W̃ (Q) sin
(

[P × Q]zl2

2

)

× [ρ̂(P − Q)ρ̂(Q) + ρ̂(Q)ρ̂(P − Q)]

+
i

2N

∑

Q

U(Q) sin
(

[P × Q]zl2

2

)

× [D(P − Q)D(Q) +D(Q)D(P − Q)] ,
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i�
d

dt
D̂(P ) = [D̂(P ), Ĥ]

= −i
∑

Q

W̃ (Q) sin
(

[P × Q]zl2

2

)

× [ρ̂(Q)D̂(P − Q) + D̂(P − Q)ρ̂(Q)]

+
i

2N

∑

Q

U(Q) sin
(

[P × Q]zl2

2

)

× [D̂(Q)ρ̂(P − Q) + ρ̂(P − Q)D̂(Q)]

+ 2η̃
√
N
[
d(P ) − d†(−P )

]
.

Following the equations of motion (17) we have intro-
duce four interconnected retarded Green’s functions at
T = 0 [76,77]

G11(P , t) =
〈〈
d(P , t); X̂†(P , 0)

〉〉
,

G12(P , t) =
〈〈
d†(−P , t); X̂†(P , 0)

〉〉
,

G13(P , t) =
〈〈

ρ̂(P , t)√
N

; X̂†(P , 0)
〉〉

,

G14(P , t) =

〈〈
D̂(P , t)√

N
; X̂†(P , 0)

〉〉
, (18)

as well as their Fourier transforms Gij(P , ω), for which
the equations of motion of the same type as the equa-
tions of motion (17) were obtained. These Green’s func-
tions can be called one-operator Green’s functions, be-
cause they contain only one two-particle operator of the
type d†, d, ρ, D. But on the right hand side of the corre-
sponding equations of motion there is a second generation
of two-operator Green’s functions, containing the different
products of the two-particle operators mentioned above.
For them, the second generation of the equations of mo-
tion was deduced, containing in their right hand sides the
Green’s function of the third generation. They are three-
operator Green’s functions for which it is necessary to
deduce the third generation of equations of motion. But
we have stopped here the evolution of the infinite chains
of equations of motion for multi-operators Green’s func-
tion following the procedure proposed by Zubarev [77].
The truncation of the chains of the equations of motion
and the decoupling of the one-operator Green’s functions
from the multi-operator Green’s functions was achieved
by substituting the three-operator Green’s functions by
one-operator Green’s functions multiplied by the average
value of the remaining two operators. The average values
were calculated using the ground state wave function (11)
and the u-v transformations (13). The Zubarev procedure
is equivalent to a perturbation theory with a small param-
eter of the type v2(1 − v2), which represent the product
of a filling factor ν = v2 and the phase-space filling factor
(1 − v2) reflecting the Pauli exclusion principle.

The close system of Dyson equations has the form

4∑

j=1

G1j(P , ω)Σjk(P , ω) = C1k, k = 1, 2, 3, 4. (19)

There are 16 different components of the self-energy parts
Σjk(P , ω) forming a 4 × 4 matrix.

5 Energy spectrum of collective elementary
excitations

The self-energy parts entering into the Dyson equa-
tion (19) contain the average values of two-operator prod-
ucts, which appeared after the decoupling of the three-
operator Green’s functions by expressing them through
one-operator Green’s functions. The average values were
calculated using the ground state wave function (11) and
the coefficients of the u-v transformation (13). For opera-
tors D̂(Q), ρ̂(Q), d(Q) and d†(Q) with Q �= 0 we have

〈D(Q)D(−Q)〉 = 4u2v2N,

〈ρ(Q)ρ(−Q)〉 = 0,

〈D(Q)d(−Q)〉 =
〈
d†(Q)D(−Q)

〉
= −2uv

√
N,

〈ρ(Q)d(−Q)〉 =
〈
d†(Q)ρ(−Q)

〉
= 0,

〈d(0)〉 =
〈
d†(0)

〉
= uv

√
N,

u2 + v2 = 1, N =
S

2πl2
. (20)

The averages (20) have extensive values depending on N .
For the condensate with k = 0 they do not depend on the
wave vector Q. In the point Q = 0 their values do not co-
incide with (20), changing by a jump. The expressions (20)
have a small parameter of the perturbation theory in the
forms u2v2 = v2(1−v2), uv3 and uv. The chemical poten-
tial μ̄ and the parameter η̃ of the quasiaverage theory are

μ̄+Δ(0) = 2v2(Bi−i − 2Ai−i +Δ(0)) = 0.1rIlv2,

η̃ = −0.1rIlv3,

0 < r =
Il

�ωc
≤ 1, Il =

2πe2

ε0l

√
π

2
. (21)

Here l is the magnetic length, ε0 is the dielectric constant
of the background and Il is the ionization potential of the
magnetoexciton. The chemical potential μ̄ has an increas-
ing dependence on the concentration of electrons ne or of
magnetoexcitons nex, which are proportional to the filling
factor ν = v2 as follows

ne = nex =
v2

2πl2
. (22)

It means that the system of Bose-Einstein condensed mag-
netoexcitons with wave vector k = 0 is stable against col-
lapse. Its stability is completely due to the influence of
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the ELLs. In spite of the fact that the supplementary in-
teraction has an overall attractive character and its aver-
age values in the Hartree approximation remain attractive,
nevertheless the exchange-type Fock terms as well as other
terms arising due to the Bogoliubov u-v transformation
give rise to a repulsive interaction in the system, which is
necessary to stabilize the BEC of magnetoexcitons with
k = 0. The role of the exchange Fock terms supplying
a repulsion in conditions of overall attraction is similar
to the case of the electron plasma, when the exchange
Fock terms supply an effective attraction and lowering
of the energy per particle in the condition of an overall
Coulomb repulsion between the electrons [78]. The influ-
ence of the exchange Fock terms is the same in the case
of electron-hole liquid (EHL) [79]. Another system with
mixed interactions, the Wannier-Mott excitons with dif-
ferent spin projections, was investigated in reference [80].
It was shown that the coherent pairing of excitons leads to
Bose-Einstein condensation of biexcitons. There the exci-
tons with opposite spin projections and attractive inter-
action formed the biexcitons, whereas other excitons with
parallel spin projections and repulsive interactions stabi-
lized the Bose-Einstein condensate of biexcitons. The situ-
ation with magnetoexcitons also does not coincide exactly
with the Bogoliubov model of a weakly non-ideal Bose-gas
with pure repulsive interaction, because the presence of
the attractive Hartree terms mentioned above.

The influence of the ELLs and their stabilizing role in
the theory of the BEC of magnetoexcitons with nonzero
wave vector k decreases quickly with the increasing of kl.
In the range kl ≥ 0.5 the Bose-Einstein condensate be-
comes unstable in the Hartree-Fock-Bogoliubov approxi-
mation [42,43]. Only in the range of kl ∼ 3−4 the ability
to stabilize the condensate does appear, taking into ac-
count the Anderson-type coherent excited states and the
correlation energy calculated on this base. Under these
conditions a metastable dielectric liquid phase (MDLP)
formed by Bose-Einstein condensed magnetoexcitons with
kl ∼ 3−4 was found [39]. The collective elementary exci-
tations under these conditions were investigated in refer-
ence [75].

In the case k = 0 the self-energy parts entering into
the Dyson equation (19) contain only the coefficients
linear in U(P ), or quadratic dependencies of the types
U(Q)U(−Q) and W̃ (Q)U(−Q− P ) which reflects the in-
fluence of ELLs.

The equations of motion for the exciton operators d(P )
and d†(−P ) are interconnected with equations of motion
for the density operators ρ̂(P ) and D̂(P ). Instead of a set
of two equations of motion as in the case of the usual
Bose-gas corresponding to normal and abnormal Green’s
functions, we have a set of four equations of motion.
Changing the center-of-mass wave vector of the magne-
toexciton, for example, from 0 to P , means changing its
internal structure, because the internal distance between
the Landau orbits of the quantized electron and hole be-
comes equal to |P | l2. The separated electrons and holes
remaining in their Landau orbits can take part in the for-
mation of magnetoexcitons as well as in collective plasma

oscillations. Such possibilities were not considered in the
theory of structureless bosons or in the case of Wannier-
Mott excitons with a rigid relative electron-hole motion
structure without the possibility of the intra-series excita-
tions. In the case of magnetoxcitons, their internal struc-
ture is much less rigid than in the case of Wannier-Mott
excitons and the possibilities for electrons and holes to
take part simultaneously in many processes are much more
diverse. Instead of the branches of the energy spectrum
corresponding to normal and abnormal Green’s functions
we have dealt simultaneously with four branches of the en-
ergy spectrum, the two supplementary branches being the
optical plasmon branch represented by the operator ρ̂(P )
and the acoustical plasmon branch represented by the op-
erator D̂(P ). One can see that the equations of motion
for the operators d(P ) and d†(−P ) reflect the interac-
tion of excitons with optical and acoustical plasmons but
do not contain the direct interaction between themselves.
The interaction with acoustical plasmons also takes place
through the quasiaverage constant η̃.

The equation of motion for the acoustical plasmon op-
erator D̂(P ) contains the interaction with optical plas-
mons and the direct interaction with the magnetoexcitons.
The optical plasmon motion is more separated from the
equations of motion of other partners. It does not contain
the direct interconnection with exciton branches, and the
dispersion equation for the optical plasmon will be sepa-
rated from the dispersion equation of the other three part-
ners. In spite of this, optical plasmon branches are also in-
fluenced by the ground state of the system formed by the
Bose-Einstein condensed magnetoexcitons with k = 0, be-
cause the self-energy part Σ33(P , ω) also depends on the
averages (20). On the contrary, the equation of motion of
the acoustical plasmon operator is closely interconnected
with the equation of motion of the both exciton operators
and its energy spectrum cannot be found out separately.
Unlike the usual theory of a Bose-gas, the interaction be-
tween the magnetoexciton branches is not direct, but in-
direct, being mediated by the direct interaction with the
plasmons. These peculiarities make our case different from
those considered earlier in references [72,73,81].

The cumbersome dispersion equation is expressed in
general form by the determinant equation

det |Σij(P , ω)| = 0, (23)

due to the structure of the self-energy parts. It separates
into two independent equations. One of them concerns
only the optical plasmon branch and has a simple form

Σ33(P , ω) = 0. (24)

It does not include at all the chemical potential μ̄ and the
quasiaverage constant η̃. The second equation contains the
self-energy parts Σ11, Σ22, Σ44, Σ14, Σ41, Σ24 and Σ42,
which include the both parameters μ̄ and η̃. The second
equation has the form

Σ11(P ;ω)Σ22(P ;ω)Σ44(P ;ω)
−Σ41(P ;ω)Σ22(P ;ω)Σ14(P ;ω)
−Σ42(P ;ω)Σ11(P ;ω)Σ24(P ;ω) = 0. (25)
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The solution of the equation (24) is

(�ω(P ))2 =
〈D(P )D(−P )〉

N2

×
∑

Q

U(Q) (U(−Q) − U(Q− P ))

× sin2

(
[P ×Q]zl2

2

)
. (26)

The right hand side of this expression at small values of
P has a dependence |P |4 and tends to saturate at large
values of P . The optical plasmon branch �ωOP (P ) has a
quadratic dispersion law in the long wavelength limit and
saturation dependence in the range of short wavelengths.
Its concentration dependence is of the type

√
v2(1 − v2)

what coincides with the concentration dependencies for

3D plasma ω2
p =

4πe2ne

ε0m
(Ref. [78]) and for 2D plasma

ω2
p(q) =

2πe2nsq

ε0m
(Ref. [82]), where ne and ns are the cor-

responding electron densities. The supplementary factor
(1 − v2) in our case reflects the Pauli exclusion principle
and the vanishing of the plasma oscillations at ν = v2 = 1.
The obtained dispersion law is represented in Figure 2.
The similar dispersion law was obtained in the case of
2D electron-hole liquid (EHL) in a strong perpendicular
magnetic field [83], when the influence of the quantum vor-
tices created by electron and hole subsystems is compen-
sated exactly. But the saturation dependencies in these
two cases are completely different. In the case of Bose-
Einstein condensed magnetoexcitons it is determined by
the ELLs, whereas in the case of EHL [83] it is determined
by the Coulomb interaction in the frame of the LLLs.

The solutions of the dispersion equation (25) describe
the exciton energy branch, the exciton quasienergy branch
and the acoustical plasmon branch. The ideal magnetoex-
citon gas can exist only in the case v2 = 0, with an in-
finitesimal number of excitons, but without plasma at all.
The real parts σij(P , ω) of the self-energy parts Σij(P , ω)
are

σ11(P , ω) = �ω + μ̄− E(P ) +Δ(P ), μ̄+Δ(0) = 0,
σ22(P , ω) = �ω − μ̄+ E(P ) −Δ(−P ), η̃ = 0,
σ33(P , ω) = σ44(P , ω) = �ω, Δ(P ) ≈ Δ(0). (27)

The excitation of magnetoexcitons means to transfer one
of them from the ground state with energy −Il to the ex-
cited state −Il+E(P ). For this reason the magnetoexciton
excitation spectrum equals �ωex(P ) = ±E(P ), whereas
the plasma oscillation frequency vanishes �ω = 0. This
ideal variant is represented in Figure 3. In the case of a
non-ideal Bose-gas with ν �= 0 the self-energy parts con-
tain terms linear in U(P ) and a term quadratic in the
interaction constant with unknown frequency in the de-
nominators under the summation symbols. Such terms in-
crease the number of the solutions, but can also be taken
into account by an iteration method. In this case one can
obtain corrections to the earlier solutions.

Fig. 2. The energy spectrum of the optical plasmon branch in
the system of Bose-Einstein condensed (BEC-ed) magnetoex-
citons with wave vector k = 0, filling factor ν = v2 = 0.1,
under the influence of excited Landau levels with parameter
r = 1/2.

Fig. 3. The energy spectrum of the exciton branches in the
case of an ideal BEC-ed magnetoexcitons gas with k = 0 and
filling factor equal to zero.

The first step in this procedure gives the real parts of
the self-energy parts

σ11(P , ω) = �ω + μ̄− E(P ) +Δ(P ),
σ22(P , ω) = �ω − μ̄+ E(−P ) −Δ(−P ),

σ41(P , ω) = −η̃ + U(P )
〈d(0)〉√
N

,

σ42(P , ω) = η̃ − U(−P )
〈d(0)〉√
N

,

σ14(P , ω) = −2η̃, σ24(P , ω) = 2η̃,
σ44(P , ω) = �ω. (28)

The dispersion laws for two exciton branches and the
acoustical plasmon branch are

�ω = ±
√

(μ̄− E(P ) +Δ(0))2 + 4η̃
(
η̃ − U(P ) 〈d(0)〉√

N

)
,

(29)
�ωAP (P ) = 0.
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In references [42,43] the coefficient (Bi−i−2Ai−i+Δ(0))/Il

was determined to be 0.05r. The rate r is r =
Il
�ω

. The

main parameters (μ̄+Δ(0)), η̃ and
U(0) 〈d(0)〉√

NIl
= 2

Ai−iuv

Il
are

(μ̄+Δ(0)) = 0.1rv2Il, η̃ = −0.1rv3Il,

U(0) 〈d(0)〉√
N

= 0.3ruvIl, u2 + v2 = 1. (30)

The expression (29) was found as follows:

�ω

Il
= ±

⎛

⎜⎝
(

0.1rv2 − E(P )
Il

)2

+0.4rv3

⎛

⎜⎝0.1rv3 + 0.3ruve
−
P 2l2

2

⎞

⎟⎠

⎞

⎟⎠

1
2

. (31)

In the limit P → 0 there is a gap in the energy spectrum

�ωex(0) = 2

√

|η̃|U(0)
〈d(0)〉√
N

= 0.346rv2√uIl. (32)

It depends on the Hartree term of the overall attractive
interaction in the system proportional to −U(P ), with
U(P ) > 0, as well as on the quasiaverage theory parame-
ter η̃ and on the amplitude of the condensate 〈d(0)〉 /√N .

Unlike the case of a simple Bose-gas with repulsive
interactions, the collective excitations of the magnetoex-
citons in a BEC with k = 0 needs a finite amount of
energy. The magnetoexciton subsystem is incompressible
when only the excitons themselves are taken into ac-
count, and compressible when the optical plasmon branch
is excited. In this approximation, the acoustical plasmon
branch vanishes.

The energy spectrum described by the expressions (29)
and (31) begins with a gap in the limit P → 0, and has
a roton-type behavior with a minimum in the point P1,
determined by the equality E(P1) = 0.1rv2Il and the
minimal value �ωex(P1) = Il

√
0.12r2uv4e−P 2

1 l2/2. After
the minimum the dispersion law transforms gradually in
the energy spectrum of a free magnetoexciton. It is repre-
sented in Figure 4 for a specific value of the rate r = 1/2.

The acoustical plasmon branch has a dispersion law
completely different from the optical plasmon oscillations.
It has an absolute instability beginning with small val-
ues of wave vector going on up to the considerable value
pl ≈ 2. In this range of wave vectors, the optical plas-
mons have energies which do not exceed the activation
energy U(0). It means that the optical plasmons contain-
ing the opposite-phase oscillations of the electron and hole
subsystems without displacement as a whole of their cen-
ter of mass are allowed in the context of the attractive
bath. On the other hand, the in-phase oscillations of the
electron and hole subsystems in the composition of the

Fig. 4. The energy spectrum of the exciton branches in the
case of BEC-ed magnetoexcitons with k = 0 under influence
of ELLs with parameter r = 1/2, without activation processes.
Solid line corresponds energy spectrum with filling factor ν =
v2 = 1/5, dashed line corresponds the filling factor ν = v2 =
1/10, and dot-dashed line is ν = v2 = 1/3.

Fig. 5. The dispersion law of the acoustical plasmon branch.
The solid line represents the real part, and the dashed line
corresponds to the imaginary part. The dotted line gives the
value U(P ).

acoustical plasmons are related to the displacements of
their center of mass. Such displacements can take place
only if their energy exceeds the activation energy U(P ).
As a result, the acoustical plasmon branch has an imagi-
nary part represented by the dashed line and is completely
unstable in the region of wave vectors pl ≤ 2. At greater
values pl > 2 the energy spectrum is real and nonzero, ap-
proaching to the energy spectrum of the optical plasmons.
The influence of the attractive bath U(P ) is represented
by the dotted line. It vanishes in the limit p→ ∞. These
properties of the acoustical plasmon branch are reflected
in Figure 5.

The starting Hamiltonian (8) has two continuous sym-
metries. One is the gauge global symmetry U(1) and
another one is the rotational symmetry SO(2). The re-
sultant symmetry is U(1) × SO(2). The gauge symme-
try is generated by the operator N̂ of the full parti-
cle number, when it commutes with the Hamiltonian. It
means that the Hamiltonian is invariant under the unitary
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transformation Û(ϕ) as follows

Û(ϕ)ĤÛ−1(ϕ) = Ĥ, Û(ϕ) = eiN̂ϕ, [Ĥ, N̂ ] = 0. (33)

The operator N̂ is named as symmetry generator. The
rotational symmetry SO(2) is generated by the rotation
operator Ĉz(ϕ) which rotates the in-plane wave vectors

−→
Q

on the arbitrary angle ϕ around z axis, which is perpen-
dicular to the layer plane and is parallel to the external
magnetic field. Coefficients W−→

Q
, U(

−→
Q), V (

−→
Q) in the for-

mulas (4) and (7) depend on the square wave vector
−→
Q

which is invariant under the rotations Ĉz(ϕ). This fact de-
termines the symmetry SO(2) of the Hamiltonian (8). The
gauge symmetry of the Hamiltonian (8) after the phase
transition to the Bose-Einstein condensation (BEC) state
is broken as it follows from expression (14). In the frame of
the Bogoliubov theory of quasiaverages it contains a sup-
plementary term proportional to η̃. The gauge symmetry
is broken because this term does not commute with the
operator N̂ . More so, this term is not invariant under the
rotations Ĉz(ϕ), because the in-plane wave vector

−→
k of

the BEC is transformed into another wave vector rotated
by the angle ϕ in comparison with the initial position.
The second continuous symmetry is also broken. In such
a way the installation of the Bose-Einstein condensation
state with arbitrary in-plane wave vector

−→
k leads to the

spontaneous breaking of the both continuous symmetries.
We will discuss the more general case

−→
k �= 0 consider-

ing the case
−→
k = 0 as a limit

−→
k → 0 of the cases with

small values kl � 1. One can remember, that the sup-
plementary terms in the Hamiltonian (8) describing the
influence of the ELLs are actual in the range of small val-
ues kl < 0.5. Above we established that the number of the
broken generators (BGs) denoted as NBG equals to two
(NBG = 2).

The Goldstone theorem [84] states that the breaking
of the continuous symmetry of the system leads to the
appearance in the energy spectrum of the collective ele-
mentary excitations of the gapless branch equivalent to the
massless particle in the relativistic physics. It happens be-
cause the system with continuous symmetry has initially
a set of the degenerate minimal values of the potential
energy leading to a set of degenerate vacuum states. For
example, the dependence of the potential energy on the
order parameter may be Mexican hatlike. The selection of
one single vacuum state among the manifold of vacua and
the fixing of the order parameter phase takes place due to
quantum fluctuations and breaks spontaneously the con-
tinuous symmetry. The excitations over the selected vac-
uum transferring the system to the adjacent vacua and
changing only the phase of the order parameter without
change of its absolute value does not need any energy
in the long wavelengths limit. Just these circumstances
lead to the appearance of the gapless dispersion laws.
These branches of the collective elementary excitations
are named as the Nambu-Goldstone (NG) modes [84–86].
They are of two types. One of them, of the first-type has
a linear (or odd) dispersion law in the range of the small

wave vectors, whereas the second-type has a quadratic
(or even) dependence on the wave vector in the same re-
gion. The number of the NG modes in the system with
many broken continuous symmetries was determined by
the Nielsen and Chadha theorem [87]. It states that the
number of the first-type NG modes NI being accounted
once and the number of the second type NG modesNII be-
ing accounted twice equals or prevails the number of bro-
ken generatorsNBG. It looks as followsNI +2NII 
 NBG.
In our case the optical plasmon branch has the properties
of the second-type NG modes. We have NI = 0, NII = 1
and NBG = 2. It leads to the equality 2NII = NBG. The
Goldstone theorem guarantees that the NG modes do not
acquire mass at any order of quantum corrections. Never-
theless, sometimes soft modes appear, which are massless
in the zeroth order, but become massive due to quantum
corrections. They were introduced by Weinberg [88], who
shown that such modes emerge if the symmetry of an ef-
fective potential of zeroth order is higher than that of the
gauge symmetry. Following reference [89] now these modes
are named as the quasi-Nambu-Goldstone modes, in spite
of the fact that their initial name proposed by Weinberg
was pseudo-NG modes. Georgi and Pais [90] demonstrated
that the quasi-NG modes also occur in the cases in which
the symmetry of the ground state is higher than that of
the Hamiltonian.

The authors of reference [89] underlined that the spinor
BEC are ideal systems to study the physics of the quasi-
Nambu-Goldstone (NG) modes, because these systems
have a great experimental manipulability and well es-
tablished microscopic Hamiltonian. In reference [89] was
shown that the quasi-NG modes appears in a spin-2 ne-
matic phase. The ground state symmetry of the nematic
phase at zeroth order approximation is broken by quatum
corrections, thereby making the quasi-NG modes massive.
Returning to the case of 2D magnetoexcitons in the BEC
state with small wave vector kl < 0.5 described by the
Hamiltonian (14), one can remember that the both con-
tinuous symmetries usual for the initial form (8) are lost.
It happened due to the presence of the term η̃(d†−→

k
+ d−→

k
)

in the frame of the Bogoliubov theory of the quasiaver-
ages. Nevertheless the energy of the ground state as well
as the self-energy parts Σij(P, ω) were calculated only in
the simplest case of the condensate wave vector

−→
k = 0.

These expressions can be relevant also for infinitesimal val-
ues of the modulus |k| but with a well defined direction. In
this case the symmetry of the ground state will be higher
than that of the Hamiltonian (14), what coincides with
the situation described by Georgi and Pais [90]. It is one
possible explanation of the quasi-NG modes appearance
in the case of exciton branches of the spectrum.

Another possible mechanism of the gapped modes ap-
pearance is the existence of the local gauge symmetry, the
breaking of which leads to the Higgs effect [91]. Such gauge
transformation is a powerfull instrument revealing the fun-
damental physical processes. In the case of the fractional
quantum Hall effects (FQHE) in the two-dimensional elec-
tron gas (2DEG) with fractional integer filling factor
ν = 1/m,m > 1 the breaking of the local gauge symmetry
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Fig. 6. Three branches of the collective elementary excitations:
the exciton-type quasi-NG mode with a gap in the point pl = 0;
the second-type NG mode describing the optical plasmons and
the first-type NG mode with absolute instability (dotted line)
describing the acoustical plasmons.

reveals the existence of the quantum vortices created un-
der the influence of the magnetic flux quanta. In these
condition each electron is attached by m quantum vortices
forming together the composite fermion or boson. The in-
teraction of the electrons with the attached vortices gives
rise to a gapped energy spectrum of the collective elemen-
tary excitations as was established in references [19–21].
The applicability of these considerations to the case of the
magnetoexcitons with arbitrary small filling factor ν < 1
is not clear yet. The three branches of the energy spec-
trum are represented together in Figure 6. One of then
is a second-type Nambu-Goldstone(NG) mode describing
the optical plasmon-type excitations, the second branch is
the first-type NG mode with absolute instability describ-
ing the acoustical-type excitations and the third branch
is the quasi-NG mode describing the exciton-type collec-
tive elementary excitations of the system. The comparison
of our result concerning the BEC of the coplanar magne-
toexcitons with the ones obtained by Fertig [44] in the
case of BEC of the quantum Hall excitons is instructive.
In both models there is only one gapless Nambu-Goldstone
mode between four branches of the energy spectrum. In
our model it is related with the optical plasmon branch,
whereas in the case of QHExs this mode is represented
by the superposition of the operators describing the op-
tical plasmon and exciton modes. In both models the ex-
citon branches of the spectrum are not gapless and differ
from the NG modes. In our case the exciton energy and
quasienergy branches corresponding to normal and abnor-
mal Green’s functions have a gaps in the point k = 0, a
roton-type segments in the region of intermediary wave
vectors kl ∼ 1 and saturation-type behaviors at great val-
ues of kl. In the case of reference [44] the exciton-type re-
sponse function χz(q, ω) and the acoustical-type response
function χF (q, ω) have no poles in the region of small en-
ergies in the frame of the LLLs. It was concluded that the
energies of these excitations may be situated at greater
values. In our case the acoustical plasmon branch reveals

Fig. 7. The damping rates Γ11(P , ω) and Γ22(P , ω) of the
diagonal self-energy parts.

an absolute instability in the range of small and intermedi-
ary values of k. It means that a real values of the pole does
not exist in the range of small energies, which is similar
with the results of reference [44]. One can conclude that
the qualitative properties of the energy spectrum in both
models are similar in spite of the mentioned differences.
It is an additional argument supporting the accuracy of
our calculations. We now discuss the damping rates of the
obtained solutions. The damping rates of the obtained en-
ergy branches are determined by the imaginary parts of
the self-energy parts

Σij(P , ω) = σij(P , ω) + iΓij(P , ω). (34)

In the case of diagonal self-energy parts they are

Γ11(P , ω) = Γ22(−P ,−ω)

=
〈D(P )D(−P )〉

N2
π
∑

Q

U2(Q) cos2
(

[P ×Q]zl2

2

)

×δ (�ω + μ̄− E(P −Q) +Δ(P −Q)) ,

Γ33(P , ω) = Γ44(P , ω) = 0. (35)

The damping rates Γ11(P , ω) and Γ 22(P , ω) are nonzero
in complementary regions of the frequencies and wave vec-
tors and can be calculated using the zero order dependen-
cies ωex(P ) represented in Figure 3 without taking into
account the fine details revealed in Figure 4.

The absolute values of the damping rates are drown
in Figure 7. They are smaller than the corresponding real
parts represented in Figure 4, which means that the ob-
tained results have a physical sense. The damping rate of
the optical plasmon branch in our description equals zero.

6 Conclusions

The energy spectrum of the collective elementary exci-
tations of a 2D electron-hole (e-h) system in a strong
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perpendicular magnetic field in a state of Bose-Einstein
condensation (BEC) with wave vector k = 0 has been in-
vestigated in the framework of Bogoliubov theory of quasi-
averages. The starting Hamiltonian describing the e-h sys-
tem contains not only the Coulomb interaction between
the particles lying on the lowest Landau levels, but also
a supplementary interaction due to their virtual quantum
transitions from the LLLs to the excited Landau levels
and back. This supplementary interaction generates, after
the averaging on the ground state BCS-type wave func-
tion, direct Hartree-type terms with an attractive char-
acter, exchange Fock-type terms giving rise to repulsion,
and similar terms arising after the Bogoliubov u-v trans-
formation. The interplay of these three parameters gives
rise to the resulting nonzero interaction between the mag-
netoexcitons with wave vector k = 0 and to stability of
their BEC.

The equations of motion for the exciton operators d(P )
and d†(P ) are interconnected with equations of motion for
the density operators ρ(P ) and D(P ). Instead of a set of
two equations of motion as in the case of usual Bose-gas,
corresponding to normal and abnormal Green’s functions,
we have a set of four equations of motion. The change
of the center-of-mass wave vector of the magnetoexciton,
for example from 0 to

−→
P , means the change of its inter-

nal structure because the internal distance between the
Landau orbits of the quantized electron and hole becomes
equal to

∣∣∣
−→
P
∣∣∣ l2.

The separated electrons and holes remaining on their
Landau orbits can take part in the formation of magne-
toexcitons as well as in collective plasma oscillations. Such
possibilities were not taken into consideration in the the-
ory of structureless bosons or in the case of Wannier-Mott
excitons with a rigid relative electron-hole motion struc-
ture without the possibility of the intra-series excitations.
Magnetoexcitons have an internal structure that is much
less rigid than standard Wannier-Mott excitons and the
possibilities for electrons and holes to take part simulta-
neously in many processes are much more diverse. Instead
of the branches of the energy spectrum corresponding to
normal and abnormal Green’s functions, we have to deal
simultaneously with four branches of the energy spectrum,
the two supplementary branches being the optical plasmon
branch represented by the operator ρ(P ) and the acousti-
cal plasmon branch represented by the operator D(P ).

The energy spectrum of the collective elementary ex-
citations consists of four branches. Two of them are
excitonic-type branches, one of them being the usual en-
ergy branch whereas the second one is the quasienergy
branch representing the mirror reflection of the energy
branch. The other two branches are the optical and acous-
tical plasmon branches. The exciton energy branch has an
energy gap due to the attractive interaction terms, which
needs to be overcome for excitation, as well as a roton-
type region in the range of intermediary values of the wave
vectors. At higher values of wave vector its dispersion law
tends to saturation. The optical plasmon dispersion law is
gapless with quadratic dependence in the range of small
wave vectors and with saturation-type dependence in the

remaining part of the spectrum. The acoustical plasmon
branch reveals an absolute instability of the spectrum in
the range of small and intermediary values of the wave
vectors. In the remaining range of the wave vectors the
acoustical plasmon branch has a real value of the energy
spectrum approaching the energy spectrum of the optical
plasmon branch in the limiting case of great wave vectors.

In both models discussed above related with coplanar
magnetoexcitons and with QHExs, there is only one gap-
less Nambu-Goldstone mode between four branches of the
energy spectrum. In our model it is related with the op-
tical plasmon branch, whereas in the case of QHExs this
mode is represented by the superposition of the operators
describing the optical plasmon and exciton modes. In both
models the exciton branches of the spectrum are not gap-
less and differ from the NG modes. In our case the exciton
energy and quasienergy branches corresponding to normal
and abnormal Green’s functions have a gaps in the point
k = 0, a roton-type segments in the region of intermedi-
ary wave vectors kl ∼ 1 and saturation-type behaviors at
great values of kl. In the case of reference [44] the exciton-
type response function χz(q, ω) and the acoustical-type
response function χF (q, ω) have no poles in the region of
small energies in the frame of the LLLs. It was concluded
that the energies of these excitations may be situated at
greater values. In our case the acoustical plasmon branch
reveals an absolute instability in the range of small and
intermediary values of k. It means that a real values of the
pole does not exist in the range of small energies, which
is similar with the results of reference [44]. One can con-
clude that the qualitative properties of the energy spec-
tra in both models are similar in spite of the mentioned
differences. It is an additional argument supporting the
accuracy of our calculations, which satisfy to the Nielsen
and Chadha theorem [87].
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