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The plasma oscillations of the two-dimensional electron-hole system in the presence of a strong
perpendicular magnetic field are studied. Only the intra-Landau level excitations are taken into
account when the electrons and holes are situated on their lowest Landau levels, the filling factor
v? being less than 1. The ground state of the two-dimensional e-h system is supposed to be the
electron-hole liquid. The dispersion relations for the optical and acoustical plasmon modes were
obtained. The influence of the supplementary in-plane electric field acting side by side with the

strong perpendicular magnetic field is discussed.
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INTRODUCTION

The plasma oscillations in the three-dimensional (3D)
bulk crystals as well as in the two-dimensional (2D) lay-
ers in the system created by one-component electron gas
are characterized by the squared frequencies, which obey
a common formula

wyq) = 2N.T,V, (1)

where IV, is the total number of electrons, Ty is their ki-

netic energy T, = %, and V; is the Fourier transform

of the electron—electron Coulomb interaction.
In the case of 3D systems we have V, = E‘z’{fqg, where

V is the volume of the crystal and is the dielectric con-

stant of the medium. It leads to the well known results

(1]
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For the 2D structures we have [2—4]

2me’ngq 2me? N,

%2;((1):5077717 qzma ”SZF- (3)
Here S is the surface area of the 2D-layer. Das Sarma
and Madhukar [2] considered the two-component two-
dimensional electron gas (2DEG). Two oscillations with
density fluctuation operators p1(¢q) and pa(g) combine
each other forming the optical and acoustical plasmon os-
cillations with the frequencies wop(q) ~ /@; war(q) ~ ¢;
The plasmon oscillations in one-component system on
the monolayer in a strong perpendicular magnetic field
were studied by Girvin, MacDonald and Platzman [5],
who proposed the magnetoroton theory of collective ex-
citations in the conditions of the fractional quantum
Hall effect. Some properties of electron—hole system in

a strong perpendicular magnetic field were discussed in
[6-9].

Below we will study similar questions in the case of
a 2D e-h system when the filling factor v? of the low-
est Landau levels(LLLs) is smaller than 1 (v? < 1) and
the ground state of the system is supposed to be the
electron-hole liquid (EHL).

The paper is organized as follows. In the first chapter
we will study the optical and acoustical plasma oscilla-
tions due to intra-LLLs excitations. In the second chapter
the influence of a supplementary lateral electric field on
the plasma frequencies will be discussed.

I. OPTICAL AND ACOUSTICAL PLASMA
MODES

The Hamiltonian of the Coulomb interaction of elec-
trons and holes in the frame of the lowest Landau levels
is [10]

H= 3 Wa [pl@p(-Q) - N~ K] @
Q

Here Wq is the Fourier transform of the Coulomb in-

teraction. Ne and ]\Afh are the operators of the full num-
bers of electrons and holes.

The density fluctuation operators for electrons p.(Q)
and for holes p,(Q) as well as their linear combinations
H(Q) and D(Q) are represented:

~ Q. tl?

polQ) = D e al_g 0 g
t

~ 3 2

Q) =D bl o a, g (5)
t

A(Q) = pe(Q) — pn(—Q);
D(Q) = 5.(Q) + pn(—Q);

4702-1



S. A. MOSKALENKO, M. A. LIBERMAN, E. V. DUMANOV, A. G. STEFAN, M. I. SHMIGLYUK

where [ = y/hc/eH is the magnetic length. mdﬁ(P) — E(P)j(P) — %ZWQ sin ([P x QJ, ZQ)
These operators obey the following commutation rela- d Q 2
tions: x p(Q)P(P — Q). (7)
P x Q] 12 Following the Zubarev method [11] Green’s function
[p(Q), p(P)] = —2isin ( ) p(P+Q); G1(P,w) = ((p(P)|p!(P)))  was introduced. Its motion
2 equation looks as follows
(@), D(P)]| = ~2is < >AP+Q
{ } o ) ’ (hw +i6)G1(P,w) = C — 2iy _Wqsin <[P . f]z 12>
5(Q), D(P)| = ~2isin ( D) pe+q). © ) S )
<([p(P — Q)p(Q) + H(QA(P — Q)5 (P))).,. (8

Writing new motion equation for the two operators
Green’s function ((5(Q)p(P — Q)|p!(P)))_the following
equations were obtained:

The motion equation for the operator is obtained using
the commutation relations (6). It is [10]:

|

[Px QLI . ([QxRLIP
G(P,w)(hw + i6)* %:; () (2 )
x[((pR)H(Q = R)p(P — Q)| (P))). + ((H(Q — R)H(R)A(P — Q)[4 (P))),
(6P — Q)AR)H(Q — R[5 (P))), + ((p(P — Q)A(Q — R)A(R)[p"(P))). ] (9)

=50 s (P (PR i ppmopee - @ - mola! ).
Q R

+H(p(Q)AP — Q — R)AR)|'(P))., + ((5(R)H(P — Q ~R)H(Q)|5'(P))),, + ((A(P — Q — R)A(R)H(Q) |5 (P))). ].

Acting in the same way we could receive the infinite chain of motion equations. This chain of motion equations
can be truncated expressing the three operator Green’s functions through the starting one operator Green’s function
multiplied by the average value of the type (p(Q)p(—Q)). as follows:

{(p(P - Q-R)HR)H(Q)|d'(P)))_ ~ G(P,w)[6rr(Q,P) (3(R)p(—R)) + 5k (R, —Q) + 61 (R, P)) (5(Q)p(—Q))];

{(p(P — Q)p(R)H(Q — R)|d'(P)))_ ~ G(P,w)[5r(Q,0) (5(R)H(—R)) + (6r(R, Q — P) + 0, (R, P))

x (p(P —Q)p(Q — P))].
The average value was calculated for the case of electron-hole liquid (EHL) with the filling factor v? of the lowest

Landau levels (LLLs) for electrons and holes. In this approximation the dispersion relations wap(P) for acoustical
plasmons and wop (P) for optical plasmons were obtained. They are

_ 2 .o ([P X Q]zlz
= EQ:WQ X sin (2

— S Wa (Wq ~ We-q) xsin? (- ) (5Q)o(- Q).
Q

(10)

(heoap (P ) (HQH-Q):

(hwop (P))

(

In the case of EHL the average value equals to wavelength and tends to constant value at great values
of P. The dispersion relation for optical plasmons has a
quadratic dependence at small values of P and a similar

behavior at great values of P as in the case of acoustical

(p(Q)A(-Q)) = 2Nv*(1 — v?). (12)

The dispersion law for the acoustical plasmon has a lin-
ear dependence on the wave vector in the range of long
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plasmons. The difference between them is essential only
in the range of intermediary values of P.
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II. 2D ELECTRON-HOLE SYSTEM IN A
STRONG PERPENDICULAR MAGNETIC FIELD
AND A LATERAL ELECTRIC FIELD

The wave functions of 2D electrons and holes in a
crossed magnetic and electric fields in Landau gauge have
the forms [12]

. ez
;),n(y) = ﬁ%,p(y); (13>
: 1 (v —v,)
@Z:o,p(y) = liﬁexp [— VP ;
where
. ) Vv
Yp = %lQ (—p+ m;i d) ;oi=eh; g =7Fe
- V2 1
E:L,p = _mé d + ﬁVdP—F hwci <TL—|— 2> 5 (14)
E
Vd = Cﬁ.

The operators of the density fluctuations p;(Q) in the
presence of lateral electric field are denoted as pF(Q)
and are determined by the formulas

pE(Q) = e "% p(Q);

P (Q) = e o (Q);

-t (15)
PE(Q) =pf(Q) — o1 (—Q);

DF(Q) = pF(Q) + i1 (—Q).

U; =

They obey commutation relations

[/7(Q), p”(P)] = —2isin ([PXQQ]ZZQ)
x PP+ Q)
[DF(Q), D(P)] = ~2isin ([PQQH) 1)
x p" (P +Q);
(@ 7] = —aisin (P2 L)
x DP(P+ Q).

The Hamiltonian describing the 2D electrons and holes
in the crossed magnetic and electric fields being situated
in their lowest Landau levels has the from

HE = HO + HCE)Joul;
Ho = hVap (ahap + bby) ; (17)

B = 5 3 Wa [P(Q57(-Q) - K. — N3]
Q

Considering the plasma excitations in their conditions
can observe that the Hamiltonian leads to the previous
self-energy parts, in which the frequency hw(P) is sub-
stituted by hw(P) — AV, P,.
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IIJIABMOBI KOJIMBAHHS YV IBOBUMIPHIN EJIEKTPOHHO-AIIPKOBIN PIOMHI

C. A. Mockanerko!, M. A. Jliepman?, E. B. JTymanos', A. I'. IIIredan’, M. I. IITmurmox’
L Inemumym npukaadnot disurku Axademii nayx Moadosu,
eys. Axademiuna, 5, Kuwuney, 2028, Pecnybaixa Monadosa,
2 Qizuunudi garyasvmem, Yuieepcumem Ynncaau, Ynncana, Ilseuisn

BuBueno miazmoBi KoJIMBaHHS JTBOBUMIPHOI €JIEKTPOHHO-JIIPKOBOI CUCTEMHU y MPUCYTHOCTI CHJIBHOTO MAarHiT-
HOro 1noJjst. BpaxoBano juire 30y/>keHHs1 B Mexkax piBHs JlaHay, Kom ejleKTpOHHU 1 JipKu 1epebyBaioTh Ha Bij-
MOBiTHUX HAHMXKIMX PiBHAX JlaHmay, a KoedilieHT 3an0BHEHHST v? < 1. IIpunyckaeTnbcest, M0 OCHOBHUM CTaH Ii€l
JBOBUMIPHOI CUCTEMH € €JIEKTPOHHO-IIPKOBOIO pijmuo0. OTpuMaHO Jucepciiiii CIiBBiIHOIIEHHS /Il OITUIHUX
Ta aKyCTUYHUAX IJIa3MOHHUX Moj. [IpoaHasizoBaHO BIUIMB JOJATKOBOI'O BHYTPIIIHBOIJIONIMHHOIO €JIEKTPUYIHOIO
TOJIsA, SIKE JIi€ MOPYY i3 CUJIbHUM MEPHEHINKY/IIPHUM MAarHiTHHUM ITOJIEM.
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