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1 Introduction

Estimation of rodent acute toxicity is an important task in
drug design and risk assessment of chemicals. Experimental
testing of compounds on rodent acute toxicity being costly
is also criticized on ethical reasons. The European Commun-
ity Regulation on chemicals and their safety use (REACH),
which has been started at 2007, anticipates the develop-
ment of computer-aided methods for the analysis of “struc-
ture-activity” relationships (e.g. IUCLID) and the study of
toxic effects for several dozen thousands of chemical sub-
stances. Following this trend, we have developed a new
method for rodent acute toxicity QSAR modelling realized
in GUSAR software [1] . This method is based on the combi-
nation of QNA (Quantitative Neighbourhoods of Atoms) de-
scriptors [1] , PASS (Prediction of Activity Spectra for Sub-
stances) predicted biological activity profiles [2–4], and self-
consistent regression [1, 5].

Acute toxicity is considered as the adverse effects occur-
ring within a given time, following a single exposure to a
substance [6] . LD50 value is one of important characteristics
of acute toxicity that corresponds to the dose causing 50 %
mortality within 24 hours of administration. Acute oral,
dermal and inhalation rodent toxicity are important param-
eters for general toxicological risk assessments, whereas
oral, intraperitoneal and intravenous acute rodent toxicity
are important in drug design. Mice and rats are the main
species used in these studies. There is a lot of LD50 data for

mice and rats available in literature and databases [7–9].
The necessity of in silico estimation of LD50 values led to
creation and application of different SAR and QSAR meth-
ods. These methods were recently reviewed [10, 11].

Acute toxicity is a complex phenomenon which includes
action of chemicals through different biochemical mecha-
nisms. Such complexity hampers the process of QSAR mod-
elling and leads to moderate accuracy of prediction for
noncongeneric sets. Nevertheless, several works with rea-
sonable results appeared in the past two years [10–12]. The
advantages of consensus prediction have been demonstrat-
ed before [13, 14] . It is considered that the consensus
models decrease the variance of individual models. All indi-
vidual models contain varying amounts of predictions with
uncertainty and their averaging leads to more reliable re-
sults [15]. In these works a combination of different QSAR
methods were used for the achievement of reasonable re-
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Abstract : The method for QSAR modelling of rat acute tox-
icity based on the combination of QNA (Quantitative
Neighbourhoods of Atoms) descriptors, PASS (Prediction of
Activity Spectra for Substances) predictions and self-consis-
tent regression (SCR) is presented. PASS predicted biologi-
cal activity profiles are used as independent input variables
for QSAR modelling with SCR. QSAR models were devel-
oped using LD50 values for compounds tested on rats with
four types of administration (oral, intravenous, intraperito-
neal, subcutaneous). The proposed method was evaluated
on the set of compounds tested for acute rat toxicity with
oral administration (7286 compounds) used for testing the
known QSAR methods in T.E.S.T. 3.0 program (U.S. EPA). The

several other sets of compounds tested for acute rat toxici-
ty by different routes of administration selected from
SYMYX MDL Toxicity Database were used too. The method
was compared with the results of prediction of acute
rodent toxicity for noncongeneric sets obtained by ACD/
Labs Inc. The test sets were predicted with regards to the
applicability domain. Comparison of accuracy for QSAR
models obtained separately using QNA descriptors, PASS
predictions, nearest neighbours’ assessment with consen-
sus models clearly demonstrated the benefits of consensus
prediction. Free available web-service for prediction of LD50

values of rat acute toxicity was developed: http://
www.pharmaexpert.ru/GUSAR/AcuToxPredict/
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sults. In this study the accuracy and predictability of novel
QSAR approach for consensus prediction of rat acute toxici-
ty in comparison with other methods were analyzed. Uti-
lization of PASS predicted biological activity profiles as the
basis for QSAR modelling, provides the possibility for bio-
logical interpretation of the models, that corresponds to
the OECD recommendations for QSAR models.

2 Materials and Methods

2.1 QSAR Modelling on the Basis of QNA Descriptors

QSAR modelling on the basis of QNA descriptors has been
previously implemented in the GUSAR software [1] . Reason-
able results obtained by GUSAR modelling for different bio-
logical endpoints [1] suggest the possibility of using this
method to the modelling of acute rodent toxicity. More de-
tailed explanation of the approach is represented in Sup-
porting Information. It is briefly described below.

QNA descriptors are calculated based on the connectivity
matrix (C), standard values of ionization potential (IP) and
electron affinity (EA) of atoms in a molecule [1] . QNA de-
scribes each atom in a molecule, and, at the same time,
each P and Q values depend on the whole composition
and structure of a molecule. The estimation of target prop-
erty of chemical compound is calculated as the mean value
of the function of P and Q in the points of the atoms of a
molecule in QNA descriptors’ space. We have proposed to
use two-dimensional Chebyshev polynomials for approxi-
mation of this function of P and Q, so, the independent re-
gression variables are calculated as average values of par-
ticular two-dimensional Chebyshev polynomials of P and Q
for molecule atoms.

QNA descriptors and their polynomial transformations do
not provide information on the shape and volume of a
molecule although this information may be important for
determination of the structure-activity relationships. There-
fore, these parameters were added to the obtained from
Chebyshev polynomials variables. Topological length of a
molecule is the maximal distance calculated in the number
of bonds between any two atoms (including hydrogen),
and the volume of a molecule as the sum of each atom’s
volume.

The number of initial variables for rodent acute toxicity
QSAR modelling depends on the number of compounds in
the training set and corresponds to the number of Cheby-
shev polynomials plus the number of the first, second and
third power of topological length and the volume of a mol-
ecule. If the number of compounds in the training set
varied from 100 to 2000, then the number of initial varia-
bles was one-half of the number of compounds in the
training set. If the number of compounds in the training
set exceeds 2000, then the number of initial variables is
1000.

GUSAR algorithm generates three types of QSAR models
based on QNA descriptors: QNA descriptors are calculated

for all atoms or for only those atoms in a molecule, which
have two or more immediate neighbours; the coefficient
before the connectivity matrix and the parameters of Che-
byshev polynomials are changed. The detailed algorithm is
described in the Supporting Information, Part 1. The final
QSAR model is the consensus of built in this way different
QNA based models.

2.2 QSAR Modelling on the Basis of PASS Predicted
Biological Activity Profiles

The current version of PASS (10.1) predicts 4130 types of
biological activity with the mean prediction accuracy of
about 95 %. Currently, the list of predictable biological ac-
tivities includes 501 pharmacotherapeutic effects, (e.g. , An-
tihypertensive, Hepatoprotectant, Nootropic, etc.), 3295
mechanisms of action, (e.g. , 5 Hydroxytryptamine antago-
nist, Acetylcholine M1 receptor agonist, Cyclooxygenase in-
hibitor, etc.), 57 adverse & toxic effects (e.g. , carcinogenic,
Mutagenic, Hematotoxic, etc.), 199 metabolic terms (e.g. ,
CYP1A inducer, CYP1A1 inhibitor, CYP3A4 substrate, etc.)
49 transporter proteins (e.g. , P-glycoprotein 3 inhibitor, Nu-
cleoside transporters inhibitors) and 29 activities related to
gene expression (e.g. , TH expression enhancer, TNF expres-
sion inhibitor, VEGF expression inhibitor). The detailed de-
scription of PASS algorithm, including the list of predictable
activities, is represented in [2–4] and in Supporting Infor-
mation (Part 2 and 4). The results of PASS prediction are
given as a list of biological activities, for which the differ-
ence between probabilities to be active (Pa) and to be inac-
tive (Pi) was calculated.

The Pa-Pi values for activities randomly selected from the
total list of predicted biological activities were used as
input independent variables for regression analysis, to
obtain different QSAR models. Similar to the QSAR analysis
with QNA descriptors (Section 2.1), topological length and
volume of molecules were added as variables to the pro-
files of biological activity; the number of initial variables for
creating regression models was also selected depending on
the number of compounds in the training set.

2.3 Self-Consistent Regression

GUSAR uses self-consistent regression for models building.
Self-consistent regression (SCR) is based on the regularized
least-squares method [1, 5] .

Unlike the stepwise regression and other methods of
combinatorial search, the initial SCR model includes all re-
gressors. The basic result of SCR method is the removal of
variables, which are worse for the description of appropri-
ate value [1, 5]. The number of the final variables in QSAR
equation selected after the self-consistent regression proce-
dure is significantly less compared to the number of the ini-
tial variables. Nevertheless, the final model contains the set
of variables, correctly representing the existing relationship.
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2.4 Nearest Neighbour’s Correction

It is well known that the joint use of global and local
models for noncongeneric sets improves the quality of
QSAR models [16]. We used the experimental data of three
nearest neighbours (NN) for correction of prediction value
obtained from the regression model. Similarity of any
chemical compounds’ pairs is estimated as Pearson’s coeffi-
cient calculated in the space of independent variables ob-
tained after SCR. The mean experimental LD50 value ob-
tained for three nearest neighbour compounds from the
training set was averaged with the predicted LD50 value of
the test compound.

2.5 Applicability Domain

Pearson’s coefficient as a measure of pairwise similarity of
chemical compounds was calculated in the space of inde-
pendent variables obtained after SCR. Using these esti-
mates, three nearest neighbouring compounds in the train-
ing set similar to the analyzed structure were found. The
average similarity with these three compounds was used
for the assessment of applicability domain (AD) of the
model. If the average similarity exceeds the threshold then
the chemical compound under prediction falls in AD of the
model and vice-versa. The higher value of the threshold
was selected the more similar compounds fell in AD of the
model. In this study we investigated several thresholds for
AD: 0.7, 0.8 and 0.9.

2.6 Consensus Modelling

The final predicted value is estimated including a weighted
average of predicted values from each obtained QSAR
model (QSAR models provide the predictions that are
within the respective applicability domains). Predicted
value obtained from each developed model is weighted on
similarity value calculated in estimating the applicability
domain. The algorithm combining the results of QSAR
modelling on the basis of QNA descriptors and PASS pre-
dicted biological activity profiles, is represented in
Scheme 1.

2.7 Data on Acute Rat Toxicity

2.7.1 Data from SYMYX MDL Toxicity Database

We used in-house database created on the basis of data
from SYMYX MDL Toxicity Database [7] . It included the in-
formation about ~10000 chemical structures with the data
on acute rat toxicity. The toxicity end-points are based on
the log10 representation of LD50 values (mmol/kg) for the
rats with four types of administration: oral, intraperitoneal,
intravenous and subcutaneous. In the preparation of stud-
ied sets, all data were reviewed to remove any salts, mix-
tures, inorganic compounds and polymers. The quality of

data is important for creation of accurate QSAR models. We
made special selection of the data before creation of QSAR
models. Some compounds had more than one LD50 value
for an appropriate type of administration. For such com-
pounds we used an average value, but if the deviation of
LD50 values was higher 0.5 log10 then such compounds are
excluded from the further analysis. The deviations between
the data for different types of administration were also re-
viewed. All compounds with deviations of LD50 values be-
tween any pairs of routes of administration exceeded 2 �
RMSD (Root Mean Square Deviation) were excluded. The
compounds with LD50 values that were out the interval
[mean LD50 value �5 � SD] were also excluded for each
type of administration (SD – Standard Deviation). Thus,
about 400 compounds were excluded. Table 1 displays the
numbers of compounds, mean values, intervals and SD for
the studied sets.

2.7.2 Data from EPA Dataset

We have compared our approach with well-known meth-
ods realized in T.E.S.T. 3.0 program (Toxicity Estimation Soft-
ware Tool) provided by U.S. EPA (Environmental Protection

Scheme 1. Creation of consensus model.
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Agency) [17] . This program includes models obtained using
several QSAR methods:

1. Hierarchical method: The toxicity for a given query
compound is estimated using the weighted average of the
predictions from several different models. The different
models are obtained by Ward’s method to divide the train-
ing set into a series of structurally similar clusters. A genetic
algorithm based technique is used to generate models for
each cluster.

2. FDA method: The prediction for each test chemical is
made using a new model that fits to the chemicals, which
are most similar to the test compound.

3. Nearest neighbour method: The predicted toxicity is es-
timated by calculating an average value for three chemicals
in the training set that are most similar to the test chemi-
cal.

4. Consensus method: The predicted toxicity is estimated
by the average of the predicted toxicities from the above
QSAR methods (provided the predictions are within the re-
spective applicability domains).

Oral rat LD50 data set was used for comparing the pro-
posed method with those realized in T.E.S.T. 3.0 program.
This data set contained 7286 chemicals, which were ran-
domly divided to the training and test set by the authors
of T.E.S.T. 3.0 program. The modelled endpoint was
�Log10(LD50 mol/kg). The training set includes 5828 chemi-
cal compounds. The test set includes 1458 chemical com-
pounds. The same training and test sets were used in this
comparative study.

3 Results and Discussion

To evaluate the accuracy of prediction of the proposed
method and reveal the impact of each algorithm, we per-
formed the following experiment using four sets with LD50

values studied on rats (oral, intravenous, intraperitoneal
and subcutaneous routes of administrations) in mmol/kg.
The sets were randomly divided onto the training and test
sets in proportion of 70 % and 30 %, respectively, to com-
pare our models with the results given by Sazonovas et al.
[11]. Leave-twenty%-out cross-validation procedure was
carried out twenty times dividing of the initial training sets
on the training and test sets into the proportion of 80 %
and 20 %, respectively (R2

L20 %Out). Forty QSAR models on the
basis of PASS predictions and forty QSAR models on the

basis of QNA descriptors were created with the training set
prepared in accordance with the route of administration.
Three types of consensus prediction were obtained for the
appropriate test sets:

1. Consensus from all models (both QNA and PASS pre-
diction results) created for the appropriate route of admin-
istration (PASS&QNA);

2. Consensus from the models on the basis of PASS pre-
diction results created for the appropriate route of adminis-
tration (PASS);

3. Consensus from the models on the basis of QNA de-
scriptors created for the appropriate route of administra-
tion (QNA).

The mean values of characteristics of the created QSAR
models and their validation are represented in Table 2. The
plots with the observed versus predicted values for the test
sets according to the route of administration are given in
Figures 1–4.

From these data one may conclude that QSAR models
have a reasonable quality. Some points in the Figures 1–4
can be considered as outliers, but their number is negligi-

Table 1. Characteristics of the sets selected on the basis of SYMYX MDL Toxicity Database.

Administration N[a] Mean value[b] Intervals[c] SD[d]

Oral 8972 0.481 [�3.9 : 2.7] 0.913
Intraperitoneal 3549 0.023 [�4.1 : 3.5] 0.893
Intravenous 1314 �0.524 [�4.6 : 2.5] 0.981
Subcutaneous 1084 0.177 [�4.9 : 2.3] 1.042

[a] Number of compounds; [b] Mean value of Log10(LD50) values in the set (mmol/kg); [c] Intervals between the minimal and maximal
Log10(LD50) values in the set, mmol/kg; [d] Standard deviation of Log10(LD50) values in the set (mmol/kg).

Figure 1. Observed versus predicted LD50 values for test set at oral
administration.
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ble compared with the total number of all points (~4,500).
In general, Figures 1–4 show that there are no any visible
artefacts in the predicted values.

The table shows that in most cases QSAR models created
on the basis of PASS predicted biological activity profiles
reveal the highest accuracy of prediction in comparison
with the models created on the basis of QNA descriptors. It

is also clear that the use of consensus between QSAR
models created on PASS prediction results and QNA de-
scriptors leads to the increase of both the accuracy of pre-
diction (Rtest

2 and/or RMSEtest) and the coverage of test sets
(in all cases). Coverage means the percent of compounds
from the test set in Applicability Domain. The mean in-
crease of the coverage was 10.3 %. Correction by the data
of the nearest neighbours is also very important for ach-
ievement of high accuracy. The use of the nearest neigh-
bours’ correction increased Rtest

2 value in average on 0.06
and decreased RMSEtest value in average on 0.035. Though
the speed of prediction for consensus models decreases, it
remains sufficiently high for the practical use. Even in the
worst case (prediction of LD50 value for oral type of admin-
istration) the speed of prediction was 0.78 compounds per
second, which means that prediction for about 2850 com-
pounds is calculated within an hour. The speed of predic-
tion was obtained on PC with Core-i7 920 CPU, 6 GB RAM
DDR3 1033 and Windows 7.

Table 2 shows that the ratio of the mean number of vari-
ables to the number of compounds in the training sets is
less than 1 : 5. Q2 and Rtest

2 have comparable values in all
cases; their difference between R2 and Q2 values is less
than 0.1. It means that 1) the created models are not over-
fitted; 2) the created QSAR models are robust.

It was shown that leave-20 %-out (L20 %Out) cross-valida-
tion procedure can successfully be applied for assessment
of predictivity and robustness of models [1] . For example,
in case of intravenous type of administration eighty QSAR

Figure 2. Observed versus predicted LD50 values for test set at in-
traperitoneal administration.

Figure 3. Observed versus predicted LD50 values for test set at in-
travenous administration.

Figure 4. Observed versus predicted LD50 values for test set at
subcutaneous administration.
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models were generated. Leave-20 %-out cross-validation
procedure was performed 20 times for each model. The
average value of R2

L20 %Out obtained for eighty QSAR models
is 0.428 and standard deviation is 0.026 (Supporting Infor-
mation, Part 3). These results show that despite random se-
lection of initial variables, the developed QSAR method is
robust and reproducible, because all obtained models have
a comparable predictivity. The same results (not shown)
were obtained for the sets with the other type of adminis-
tration.

We also compared the results of the proposed approach
with those of Sazonovas et al. [11] based on the combina-
tion of general and local QSAR models and calculated relia-
bility index for prediction of rodent acute toxicity. It is obvi-
ous that direct comparison is not possible because of dif-
ferent training and test sets used [11]. Nevertheless, the

overall depiction can obtained due to the similar of data
sources (SYMYX MDL Toxicity Database includes RTECS
data) and comparable sizes of the training and test sets.
Thus, one can expect similar chemical space and activity
distribution. Table 2 shows close accuracy of prediction ob-
tained by both methods. In all cases the proposed ap-
proach has higher value of the coverage. The results of
consensus modelling demonstrate that the values of Rtest

2

are equal or exceed 0.5 and RMSEtest are less 0.7.
We also studied how the increase of threshold for applic-

ability domain influences the accuracy of prediction and
coverage of the sets. For this purpose, the test sets for
each type of administration were predicted by the appro-
priate best consensus models with different values of AD
(0.7, 0.8, and 0.9). Table 3 shows the results of this study.

Table 2. Characteristics of QSAR models for the sets from SYMYX MDL Toxicity Database (the number in brackets is the number of models
based on the appropriate descriptors).

Models R2[c] Q2[d] F[e] SD[f] V[g] R2
L20 %O

[h] Rtest
2 RMSEtest Coverage (%)[i] Compds/s[j]

Oral SYMYX MDL Toxicity Database (Ntraining
[a] = 6280; Ntest

[b] = 2692)
PASS(35) 0.61 0.57 16.654 0.576 420 0.44 0.53 0.59 92.4 0.85
PASS(35)&NN 0.61 0.57 16.654 0.576 420 0.44 0.59 0.56 92.4 0.85
QNA(5) 0.54 0.50 16.852 0.622 328 0.36 0.48 0.62 88.8 6.97
QNA(5)&NN 0.54 0.50 16.852 0.622 328 0.36 0.54 0.58 88.8 6.97
PASS(35)&QNA(5) 0.61 0.57 16.685 0.573 408 0.40 0.53 0.60 97.5 0.79
PASS(35)&QNA(5)&NN 0.61 0.57 16.685 0.573 408 0.40 0.59 0.57 97.5 0.79
Best results of Sazonovas et al. (Ntraining

[a] = 6464; Ntest
[b] = 2167)

ACD/Labs n/a[k] n/a n/a n/a n/a n/a 0.56 0.59 91.0 n/a
Intraperitoneal (Ntraining

[a] = 2480; Ntest
[b] = 1065)

PASS(40) 0.61 0.52 6.144 0.534 332 0.325 0.39 0.60 92.7 2
PASS(40)&NN 0.61 0.52 6.144 0.534 332 0.325 0.48 0.55 93.0 2
QNA(28) 0.60 0.50 4.965 0.544 320 0.266 0.36 0.61 92.0 2.6
QNA(28)&NN 0.60 0.50 4.965 0.544 320 0.266 0.400 0.60 92.0 2.6
PASS(40)&QNA(28) 0.66 0.56 6.029 0.518 327 0.301 0.42 0.60 98.3 2.2
PASS(40)&QNA(28)&NN 0.66 0.56 6.029 0.518 327 0.301 0.48 0.57 98.3 2.2
Best results of Sazonovas et al. (Ntraining

[a] = 3751; Ntest
[b] = 1251)

ACD/Labs n/a n/a n/a n/a n/a n/a 0.42 0.58 90.0 n/a
Intravenous (Ntraining

[a] = 920; Ntest
[b] = 394)

PASS(40) 0.72 0.64 9.848 0.529 142 0.45 0.57 0.65 95.4 7.4
PASS(40)&kNN 0.72 0.64 9.848 0.529 142 0.45 0.60 0.63 95.4 7.4
QNA(10) 0.66 0.58 9.457 0.577 123 0.42 0.55 0.65 93.4 28.1
QNA(10)&kNN 0.66 0.58 9.457 0.577 123 0.42 0.59 0.62 93.4 28.1
PASS(40)&QNA(10) 0.73 0.66 9.964 0.524 138 0.44 0.59 0.65 99.2 5.9
PASS(40)&QNA(10)&kNN 0.73 0.66 9.964 0.524 138 0.44 0.63 0.62 99.2 5.9
Subcutaneous (Ntraining

[a] = 759; Ntest
[b] = 325)

PASS(5) 0.66 0.55 5.432 0.612 130 0.32 0.40 0.73 88.6 54.2
PASS(5)&NN 0.66 0.55 5.432 0.612 130 0.32 0.49 0.67 88.9 54.2
QNA(2) 0.60 0.50 5.432 0.612 130 0.27 0.42 0.72 47.7 325.0
QNA(2)&NN 0.60 0.50 5.483 0.645 122 0.27 0.50 0.67 48.3 325.0
PASS(5)&QNA(2) 0.69 0.59 5.484 0.596 128 0.30 0.41 0.75 91.7 40.6
PASS(5)&QNA(2)&NN 0.69 0.59 5.484 0.596 128 0.30 0.50 0.69 92.0 40.6

[a] Number of compounds in the training set; [b] Number of compounds in the test set; [c] Average R2 of the models calculated for the ap-
propriate training set; [d] Average Q2 of the models calculated for the appropriate training set; [e] Fisher coefficient; [f] Standard deviation;
[g] Number of independent variables in the model; [h] Results of 20 % out cross-validation procedure calculated for the appropriate train-
ing set; [i] % compounds from the test set in Applicability Domain; [j] Number of compounds for that prediction was assisted per second
(speed of prediction). It was calculated on PC with Core-i7 920 CPU, 6Gb RAM DDR3 1033 and Windows 7; [k] not available.
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The values of Rtest
2 depend on the data spread of those

compounds which fail in AD and may change with the
change of the coverage. Thus, RMSEtest values represent
more reliable estimation of accuracy prediction than the
values of Rtest

2. Table 3 shows that the increase of AD
threshold leads to the decrease of RMSEtest values and cov-
erage. In this case more accurate prediction may be ob-
tained by the reasonable decrease of coverage.

The proposed approach was also compared with the
T.E.S.T. program (Toxicity Estimation Software Tool) Version
3.0, developed by U.S. Environmental Protection Agency,
2008 evaluated on the available training and test sets with
the data on oral acute toxicity measured in LD50 (mmol/kg)
values. The modelling results are represented in Table 4.

Table 4 demonstrates that the proposed method has the
highest accuracy in comparison with the above mentioned
methods and provides the highest speed of the prediction
(18 times faster). As the training set contains compounds
belonging to different chemical classes, we assume that
the proposed algorithm provides accurate prediction even
for heterogenic set of compounds.

Combination of the prediction results of both the pro-
posed method and EPA consensus increased the accuracy
of prediction and coverage of the test set (the last line in
the table). Rtest

2 has increased from 0.639 to 0.670. RMSEtest

has decreased from 0.581 to 0.558. The coverage has ach-
ieved 100 %.

One of the features of the proposed method is creation
of equation on the basis of PASS prediction results. The use
of PASS predicted biological activity profile in the search of
the possible mechanisms of toxicity was proposed by Po-
roikov et al. in 2007 [18]. The application of PASS-predicted
biological activity for creation of QSAR models of rat acute
toxicity provides the revelation of probable mechanisms of
action that might be the putative cause of acute toxicity.

The example of QSAR equation for the best model of LD50

values for acute rat toxicity at subcutaneous route of ad-
ministration is represented in Scheme 2.

The activities from the equations of the models for each
type of administration have been analysed. The top 30 ac-
tivities with the highest absolute frequency of occurrence
in equations (40 equations were for each type of adminis-
tration) are shown in Table 5.

The list of activity includes both the general biological
activity directly related with toxicity of compounds (e.g.
nephrotoxic; carcinogenic, mouse, female) and the actions
on molecular targets that may also be related with toxicity.
For example, inhibition of glucose-6-phosphate isomerase
leads to hemolytic anemia and hematotoxic effect. Several
activities related with regulation of inflammatory process
(Leukotriene C4 antagonist; Leukotriene E4 antagonist ;
Prostaglandin EP2 agonist ; Prostaglandin EP2 agonist; 12
Lipoxygenase inhibitor and Transforming growth factor an-
tagonist). Stimulation of complement C5a convertase re-
lates with blood coagulability. Inhibition of acetyl-CoA
transferase influences the lipid regulation. Stimulation of
a1a-adrenoreceptor may cause hepatotoxicity [19]. Stimula-
tion of adenosine A2b receptor causes vasodilatation. Inter-
action with 5 Hydroxytryptamine receptors may cause
system neurological and cardiovascular effects. The most of
pharmacological activities and chronic toxicities from the
equation are not directly related to acute toxicity. It may be
associative relationship between the prediction values of
these activities and the acute toxicity values.

The selected activities may be used together with the
data on the known biological pathways for the analysis of
possible mechanisms of acute toxicity. An example of such
analysis is represented in Figure 5. The list of activities relat-
ed with the action on molecular targets was superposed
on the known pathways by X-Platform software (Gene-

Table 3. Accuracy of prediction for the test sets at different threshold of applicability domain.

Rtest
2[a] RMSEtest

[b] Coverage (%)[c]

Oral
AD>0.7 0.585 0.567 97.4
AD>0.8 0.587 0.567 95.6
AD>0.9 0.611 0.550 84.7
Intraperitoneal
AD>0.7 0.479 0.573 98.3
AD>0.8 0.585 0.567 96.1
AD>0.9 0.510 0.543 78.6
Intravenous
AD>0.7 0.625 0.620 99.2
AD>0.8 0.622 0.620 99.0
AD>0.9 0.644 0.587 92.6
Subcutaneous
AD>0.7 0.500 0.689 92.0
AD>0.8 0.503 0.711 81.2
AD>0.9 0.628 0.598 52.9

[a] Average R2 of the models calculated for the appropriate test set; [b] Average RMSE (Root Mean Square Error) of the models calculated
for the appropriate test set; [c] % compounds from the test set in Applicability Domain.
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Figure 5. Relationships between the molecular targets related with activities in Table 5 (Selected targets are painted by blue).

Table 4. Comparison of the proposed approach with the results of T.E.S.T. 3.0 program (Toxicity Estimation Software Tool) (U.S. EPA, 2008).

Method Rtest
2 RMSEtest Coverage (%)[b] Compounds/s[c]

Hierarchical[a] 0.573 0.654 84.7 0.17
Nearest neighbour[a] 0.546 0.662 99.5 0.08
FDA[a] 0.555 0.658 98.7 0.33
Consensus (Hierarchical, Nearest neighbour, FDA)[a] 0.620 0.596 100 0.05
Consensus (PASS&QNA&NN) 0.639 0.581 95.2 0.90
Consensus (Hierarchical, Nearest neighbour, FDA)[a] + PASS&QNA&NN 0.670 0.558 100 0.04

[a] Given from User’s Guide for T.E.S.T. (Toxicity Estimation Software Tool), a program to estimate toxicity from molecular structure, Version
3.0, U.S. Environmental Protection Agency, 2008; [b] % compounds from the test set in Applicability Domain; [c] Number of compounds
predicted per second (velocity of prediction) calculated on PC with Core-i7 920 CPU, 6Gb RAM DDR3 1033 and Windows 7.
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Xplain GmbH) [20] . The X-Platform provides an integrated
and comprehensive workflow management of a large
number of “bricks”, each providing specific function in the
analysis of biological data. Figure 5 shows the relations be-
tween the selected targets. The analysis of the figure has
revealed that the key elements of relationships of the se-
lected targets are two proteins complexes GTP-binding pro-
teins (G-alpha-s, G-beta, G-gamma and G-alpha-i, G-beta, G-
gamma). These complexes are associated with the mem-
bers of seven transmembrane domain superfamily of G-pro-
tein-coupled receptors that play the important role in the
regulation of vital biological process in the organism.

3 Conclusions

In this study we found that our consensus approach has
some benefits against single QSAR predictive models for
acute rat toxicity with different routes of administrations.
The proposed approach reveals comparable or higher accu-

racy of prediction, good coverage of the test sets and high
performance. The validation on known set used for evalua-
tion of T.E.S.T. 3.0 program is shown that the accuracy of
the proposed approach considerably faster of them and
has exceed the accuracy of both single and consensus
methods represented by EPA. Moreover, this approach pro-
vides the proposals for biochemical and physiological
mechanisms of acute toxicity, presenting a real example of
system chemical toxicology.

Freely available on-line service for prediction of acute rat
toxicity with four type of administration has been created
based on the developed QSAR models:
http://www.pharmaexpert.ru/GUSAR/AcuToxPredict/
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LD50 Log10(mmol/kg) = 0.212 � (Liver X receptor b-agonist) + 0.262 � (Hepatotoxic) + 0.352 � (Fibroblast growth factor 2 antagonist)�0.177 �
(CYP2C8 inducer)�0.325 � (Actin polymerization inhibitor)�1.21 � (Amidase inhibitor) + 0.411 � (Fucosterol-epoxide lyase inhibitor) + 0.957 �
(Prokineticin receptor 1 antagonist) + 0.386 � (Muscular dystrophy treatment)�3.98 � (Volume2) + 0.0171 � (CYP2D6 inhibitor)�0.228 � (For-
mate dehydrogenase inhibitor) + 0.859 � (Acetylcholine M3 receptor agonist) + 0.482 � (GP IIb/IIIa receptor antagonist)�0.89 � (Arylformami-
dase inhibitor)�1.1 � (Selectin L antagonist)�0.741 � (Complement C5a convertase stimulant) + 0.864 � (Choleretic)�1.12 � (Imidazoline I2 re-
ceptor antagonist)�0.516 � (Proto-oncogene tyrosine-protein kinase Kit inhibitor)�0.743 � (Cyclamate sulfohydrolase inhibitor) + 0.624 �
(Catechol 1,2-dioxygenase inhibitor) + 0.26 � (ErbB-2 antagonist) + 1.25 � (Sphingosine 1-phosphate receptor 4 agonist) + 1.03 � (d-Lactate-2-
sulfatase inhibitor)�0.658 � (Glycerol-3-phosphate dehydrogenase inhibitor)�2.62 � (Ribose-5-phosphate isomerase inhibitor)�0.345 �
(Sterol 24-C-methyltransferase inhibitor) + 0.593 � (Transforming growth factor b-antagonist)�0.655 � (Interferon a-antagonist) + 0.945 � (Lac-
tosylceramide a-2,3-sialyltransferase inhibitor) + 0.22 � (DNA directed RNA polymerase inhibitor)�0.329 � (HIV-1 integrase � (3’-Processing) in-
hibitor) + 0.137 � (Anti-Helicobacter pylori) + 0.296 � (Antimycoplasmal) + 0.195 � (Carcinogenic, rat, female)�1.56 � (UDP-N-acetylglucosa-
mine-lysosomal-enzyme N-acetylglucosaminephosphotransferase inhibitor) + 1.36 � (Pyruvate, phosphate dikinase inhibitor) + 0.871 �
(Queuine tRNA-ribosyltransferase inhibitor) + 0.24 � (Thrombopoietin agonist)�0.127 � (Neuroprotector)�0.433 � (Tyrosine kinase inhibi-
tor)�0.223 � (b2-Adrenoreceptor agonist)�1.09 � (CYP4A1 substrate)�0.69 � (CYP4F8 substrate) + 0.205 � (Antipsoriatic) + 0.225 � (Interleukin
6 antagonist) + 1.09 � (Deoxycytidine deaminase inhibitor) + 4.01 � (Volume2)�2.86 � (Volume2) + 0.294 � (Prostaglandin D2 agonist)�0.339 �
(Serine O-acetyltransferase inhibitor) + 0.519 � (Benzodiazepine receptor peripheral-type antagonist) + 0.795 � (Cortisone a-reductase inhibi-
tor) + 0.15 � (Growth hormone releasing factor agonist)�0.349 � (Antileukemic) + 0.271 � (Uric acid excretion stimulant) + 0.451 � (Collage-
nase 3 inhibitor)�0.624 � (Lathosterol oxidase inhibitor) + 0.531 � (Mandelate 4-monooxygenase inhibitor) + 0.388 � (Acetate-CoA ligase in-
hibitor)�0.233 � (5 Hydroxytryptamine 1 antagonist)�0.303 � (Kidney function stimulant)�0.172 � (Fibrinolytic)�1.23� (Ketosteroid monooxy-
genase inhibitor) + 0.673 � (Aldose 1-epimerase inhibitor) + 0.267 � (Homocitrate synthase inhibitor) + 0.271 � (Nitric oxide synthase inhibi-
tor) + 0.274 � (Glycerol-1,2-cyclic-phosphate 2-phosphodiesterase inhibitor)�0.373 � (Nitrate reductase � (cytochrome) inhibitor)�0.5 � (Neu-
ronal nitric oxide synthase inhibitor) + 0.139 � (Antiviral � (Hepatitis B)) + 0.37 � (Aspartate ammonia-lyase inhibitor)�0.112 � (Antineoplastic
� (head/neck cancer)) + 0.16 � (Cancer associated disorders treatment)�0.416 � (CYP19 inhibitor) + 0.421 � (Folate antagonist) + 0.268 �
(CYP2B5 substrate) + 0.156 � (Endocrine disorders treatment)�0.283 � (Potassium channel � (ATP-sensitive) activator)�0.171 � (Calpain inhibi-
tor)�0.194 � (Multiple inositol-polyphosphate phosphatase inhibitor)�0.298 � (AMPA receptor agonist) + 0.363 � (Methylaspartate ammonia-
lyase inhibitor) + 0.539 � (Plus-end-directed kinesin ATPase inhibitor) + 0.203 � (Signal transduction pathways inhibitor) + 0.265 � (O-amino-
phenol oxidase inhibitor) + 0.107 � (Gynecological disorders treatment) + 0.11 � (CYP1A inhibitor) + 0.0907 � (Age-related macular degenera-
tion treatment)�0.123 � (Postmenopausal disorders treatment) + 0.139 � (Antibiotic Glycopeptide-like) + 0.0764 � (Antiviral � (Hepati-
tis))�0.0792 � (Antioxidant) + 0.276 � (Hydroxymethylglutaryl-CoA lyase inhibitor)�0.207 � (CYP1A1 inducer) + 0.0895 � (Sensitization) +
0.0834 � (Antibiotic Oxazolidinone-like) + 0.107 � (CYP1A2 inducer) + 0.0731 � (Antibiotic Trimethoprim-like)�0.175 � (MAO-B substrate) +
0.145 � (Thyroid hormone b-agonist)�0.0937 � (Thyroid hormone b1-agonist) + 0.0975 � (Motilin receptor antagonist) + 0.149 � (Calcitonin
gene-related peptide 1 receptor antagonist) + 0.111 � (Peptide a-N-acetyltransferase inhibitor)�0.0454 � (Epoxide hydrolase 2 inhibi-
tor)�0.0727 � (Oxytocin agonist)�0.0392 � (Carboxycyclohexadienyl dehydratase inhibitor)�0.088 � (17-b-hydroxysteroid dehydrogenase 5
inhibitor)�0.0526 � (Delayed rectifier potassium channel activator)�0.0731 � (Cellulase inhibitor) + 0.0325 � (Insulin like growth factor 3 an-
tagonist) + 0.0292 � (Leukotriene C antagonist)�0.48 � (Volume2) + 0.0212 � (Estrone sulfotransferase stimulant) + 0.0183 � (Skin irritation,
high)�0.0367 � (l-Threonine 3-dehydrogenase inhibitor) + 0.0312 � (4-Hydroxy-2-oxoglutarate aldolase inhibitor) + 0.0278 � (Toll-like receptor
4 agonist) + 0.00771 � (ATP-dependent RNA helicase inhibitor) + 0.0141 � (Tyrosine phenol-lyase inhibitor)�0.0069 � (2-Amino-4-hydroxy-6-
hydroxymethyldihydropteridine diphosphokinase inhibitor) + 0.00643 � (Magnesium-protoporphyrin IX methyltransferase inhibi-
tor)�0.000826 � (Adenomatous polyposis treatment)�0.000409 � (4-Hydroxymandelate oxidase inhibitor) + 0.729

Scheme 2.
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Table 5. The most frequent activities from QSAR models on rat acute toxicity models for all type of administration.

Activity Oral IP[a] IV[b] SC[c]

3-Mercaptopyruvate sulfurtransferase inhibitor 4 8 6 5
Antibiotic Cephalosporin-like 8 7 7 5
Antineoplastic alkaloid 4 6 5 5
Antiosteoporotic 9 9 6 4
Aryldialkylphosphatase inhibitor 10 6 5 5
Carcinogenic, mouse, female 12 7 7 4
Carnitine dehydratase inhibitor 4 9 4 4
Complement C5a convertase stimulant 6 10 6 5
Glucose-6-phosphate isomerase inhibitor 9 14 4 4
Glyceryl-ether monooxygenase inhibitor 6 11 5 4
Hepatic disorders treatment 9 10 5 6
Leukotriene C4 antagonist 5 10 4 4
Leukotriene E4 antagonist 11 9 6 7
Nephrotoxic 8 11 4 8
Oxidizing agent 11 4 4 4
Prostaglandin EP2 agonist 8 5 5 5
Rotamase (FKBP12) inhibitor 4 7 5 5
Transforming growth factor antagonist 5 13 5 4
Acylglycerol lipase inhibitor 7 10 4 –
Adenosine A2b receptor agonist 1 5 6 6
12 Lipoxygenase inhibitor 8 10 5 –
Adenylate cyclase I inhibitor 9 9 – 5
2-Enoate reductase inhibitor 8 6 – 4
a1a-Adrenoreceptor agonist 6 5 5 –
5 Hydroxytryptamine 1 antagonist 5 1 5 4
5 Hydroxytryptamine 1F agonist 5 4 6 3
5 Hydroxytryptamine 4A antagonist 8 4 9 1
5 Hydroxytryptamine 5 antagonist – 7 6 7
Acetyl-CoA transferase inhibitor 8 11 4 –
Acetylglutamate kinase inhibitor 8 6 1 4

[a] Intraperitoneal route of administration; [b] Intravenous route of administration; [c] Subcutaneous route of administration.

250 www.molinf.com � 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Mol. Inf. 2011, 30, 241 – 250

Full Paper A. Lagunin et al.

www.molinf.com

