
Russian Chemical Bulletin, International Edition, Vol. 58, No. 4, pp. 657—662, April, 2009 657

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya,  No. 4, pp. 641—647, April, 2009.

Full Articles

1066�5285/09/5804�0657 © 2009 Springer Science+Business Media, Inc.

Fragmental descriptors in (Q)SAR:
prediction of the assignment of organic compounds

to pharmacological groups using the support vector machine approach

E. P. Kondratovich, N. I. Zhokhova, I. I. Baskin, V. A. Palyulin, and N. S. Zefirov

Department of Chemistry, M. V. Lomonosov Moscow State University,
1/3 Leninskie Gory, 119991 Moscow, Russian Federation.

Fax: +7 (495) 939 0290. E�mail zhokhova@org.chem.msu.ru; zefirov@org.chem.msu.ru

The structure—activity classification models for prediction of the assignment of organic
compounds to 40 pharmacological groups were constructed in the framework of the fragmental
approach using the support vector machine technique, the Platt—Wu probabilistic model, and
resampling procedure. The models constructed allow one to predict possible types of the side
pharmacological effects of drugs.
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At present, theoretical prediction of the spectrum of
biological activity of organic compounds using the (quan�
titative) structure—activity relationships ((Q)SAR) meth�
odology is an intrinsic component of novel drug design.1

This allows one to assess in advance both the main and
side pharmacological effects of compounds synthesized
and to optimize the expenses for experimental assays. Re�
cently, not only traditional (Q)SAR procedures, but also
the machine learning classification methods based on the
search for correlations between the molecular structure
(represented by a set of descriptors) and activity (1 stands
for active, 0 otherwise) of a compound have widely been
used to this end. Among these methods,2—4 the Support
Vector Machine (SVM) technique becomes increasingly
more popular. Its distinctive features include high flexibil�

ity and accuracy of the results of prediction.5—7 A com�
parative assessment of modern methods of machine learn�
ing and their combinations by solving various classifica�
tion tasks8 suggested that the SVM approach often gives
better results than artificial neural networks, the random
forest and decision tree methods, the nearest neighbors
method, and the naive Bayesian classifier (NBC). Various
modifications of the last�mentioned technique serve as a
basis for some modern software for qualitative prediction
of biological activity, e.g., PASS, developed to predict the
spectrum of biological activities of organic compounds
using the multilevel neighborhoods of atoms (MNA) de�
scriptors.9,10

Recently, the SVM technique has efficiently been used
for prediction of some types of biological activity of com�
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pounds belonging to particular chemical classes11—13 and
for assignment of these compounds to potential pharma�
cological groups.14 For instance, in a study15 published in
the course of preparation of this manuscript the SVM
method and multiclass classification were used to investi�
gate the spectrum of biological activity (up to 100 hierar�
chical subtypes) of a set of compounds from the MDDR
database. Nevertheless, the authors of that study failed to
estimate the probability of assignment of particular types
of activity to organic compounds and to construct bal�
anced models.

A universal method of the description of the structures
of organic compounds in the framework of the (Q)SAR
methodology is the fragmental approach. The advantages
of fragmental descriptors (FD) include a clear meaning of
each of them and the possibility of fast automated genera�
tion based on only the structural formula of a given com�
pound. FD calculations do not require knowledge of the
molecular geometry or electronic structure and therefore
these descriptors can be used with ease in processing of
large databases. The fragmental descriptors are widely used
to describe the structures of organic compounds in (Q)SAR
modeling of their biological activities. Often, the FD pro�
vide higher predictive power of models and better inter�
pretability of the results compared to sets of other topo�
logical indices. Earlier,16—26 we have pointed to the ad�
vantages of FD and used them for (Q)SAR prediction of
biological activities and physicochemical properties in�
cluding chromatographic retention indices,16 boiling
points,22 enthalpies of sublimation,23 polarizabilities,24

flash points,25 and the stability constants of complexes
with β�cyclodextrin (see Ref. 26) for various classes of
organic compounds.

In the present work, we studied the applicability of FD
for prediction of the assignment of various classes of or�
ganic compounds to pharmacological groups using the
SVM technique.

Calculation Procedure

The database of chemical compounds and pharmacological
groups for constructing the structure—activity classification mod�
els using the SVM technique was extracted from the KEGG
DRUG database, a part of the KEGG (Kyoto Encyclopedia of
Genes and Genomes, Kahenisa Lab, Bioinformatics Center,
Kyoto University*) database, which, in particular, contains struc�
tural information and characteristics of pharmacological groups
for 6000 compounds, the active principles of main commercially
available drugs registered on the world market. The database
includes 120 pharmacological groups. The modeled property was
the membership of an organic compound in a particular phar�
macological group; therefore, all structures of the organic com�
pounds from the database were characterized using the two�class
approach (1 if the compound belongs to a particular pharmaco�

logical group, i.e., it is active, and 0 otherwise). Then, in accor�
dance with the results of preliminary modeling, we formed the
training data sets for 40 target pharmacological groups, the num�
ber of compounds in each group exceeded 40 (Table 1). The
total number of structures of organic compounds in the whole
data set was 3450.

SVM�based SAR modeling was performed using the two�
class classification with the LIBSVM software (Chih�Chung
Chang and Chih�Jen Lin, LIBSVM: a library for support vector
machines, 2001*). To estimate the probability of assignment of a
chemical compound to a particular class in the framework of the
SVM methodology, the Platt method27 modified by Wu28 was
applied. The chemical structures of the organic compounds from
the working set were characterized by some sets of fragmental
descriptors (occurrence numbers of structural fragments in the
chemical structure) calculated using the FRAGMENT module
of the NASAWIN software developed at the Department of
Chemistry, M. V. Lomonosov Moscow State University.29 The
FD were generated using the algorithm of hierarchical classifi�
cation of atoms.30 A scheme that included the type of the chem�
ical element, hybridization, bonding environment of atoms, for�
mal atomic charge, and the number of hydrogen atoms in the
nearest environment was used for assignment of fragments to
different types. We also considered the atomic types of organo�
gens (C, N, O, S, Se, P, As, Si, F, Cl, Br, I). To choose particu�
lar FD for the most accurate description of the topology of the
organic structures under study, we analyzed fragments with dif�
ferent number of nonhydrogen atoms, namely, the 1—10 atomic
chains, rings of size from 3 to 10 atoms, branched fragments
comprising 4 to 6 atoms, and bicycles built of 6 to 10 atoms. In
constructing the structure—activity classification models, for
each pharmacological group we used the sets of descriptors cor�
responding to the number of inclusions of structural fragments
containing 1 to 4, 1 to 8, and 1 to 10 nonhydrogen atoms. The
predictive power of the models was assessed using the tenfold
cross�validation procedure; the smallest error of prediction was
provided by choosing optimum values of the variable SVM pa�
rameters (see Ref. 5) C (parameter characterizing the balance
between the error in classification and complexity of the model)
and g (Gaussian core parameter).

The following statistical characteristics were calculated for
all models.

1. The accuracy of prediction (relative number of com�
pounds with correctly predicted activity).

2. The balanced accuracy (arithmetic mean of the accura�
cy of prediction for active and inactive compounds). For a bal�
anced set containing equal number of active and inactive com�
pounds, the balanced accuracy equals the overall accuracy.

The optimum values of the parameters C and g were chosen
in accordance with the maximum values of the balanced accura�
cy of the models.

Results and Discussion

Practically, in most cases where the biological activity
of organic compounds is predicted using the two�class
approach (the assignment of a chemical compound to
a particular class is determined by the occurrence or lack

* http://kegg.org/Kyoto/KEGG/DRUG. * http://www.csie.ntu.edu.tw/~cjlin/libsvm.
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of particular kind of biological activity), researchers deal
with unbalanced sets. The set is considered unbalanced if
the number of active compounds with respect to a particu�
lar property differs significantly from the number of inac�
tive compounds. The quality of the SVM classification
models is known to depend on the degree of balance of the
database with respect to the modeled property.31 In par�
ticular, in solving the problem of two�class classification
using unbalanced databases the SVM�models constructed
are also unbalanced, i.e., they show a trend to distortion of

the results of prediction, giving preference to the class
containing the larger number of compounds in the data�
base. In other words, unbalanced models give different
accuracy of prediction for the active and inactive com�
pounds. In the limiting case, the unbalanced models may
lead to trivial results where the most abundant class in the
database is assigned to all compounds.

To avoid this situation, in the present work we studied
two different strategies. One of them involved the use of
a special modification of the SVM technique for un�

Table 1. Accuracy of the SVM and NBC classification models used for assignment of organic compounds to 40 pharmacological groups

Group Group Group name Fragment size Accuracy (%)
code (1 to N nonhydro�

SVM NBCgenatoms)

1 1 Neurotropic agents 1—4 75.2 68.9
2 11 Neurotropic agents for central nervous system 1—10 81.8 76.8
3 112 Anxiolytics, sedatives, and hypnotics 1—4 85.9 80.1
4 113 Antiepileptic agents 1—10 81.5 73.2
5 114 Antipyretics and non�narcotic analgesics, 1—8 78.6 73.9

non�steroidal anti�inflammatory agents
6 116 Antiepileptic agents 1—8 70.6 76.3
7 117 Psychotropic agents 1—8 85.3 79.7
8 12 Neurotropic agents for peripheral nervous system 1—8 78.9 81.4
9 13 Neurotropic agents affecting individual sensory organs 1—10 62.4 62.8
10 131 Ophthalmic agents 1—4 66.8 62.4
11 2 Organotropic agents 1—8 72.4 68.7
12 21 Cardiovascular agents 1—4 77.1 —
13 211 Cardiotonics 1—8 77.8 69.9
14 212 Antiarrhythmic agents 1—10 85.0 73.9
15 213 Diuretics 1—4 89.3 75.7
16 214 Antihypertensive agents 1—4 80.9 72.2
17 217 Vasodilators 1—4 67.6 65.9
18 22 Respiratory organ agents 1—8 75.7 75.2
19 225 Bronchodilators 1—10 86.6 78.9
20 23 Gastrointestinal agents 1—10 73.9 70.8
21 232 Anti�gastric ulcer and anti�duodenal ulcer agents 1—4 72.9 72.0
22 24 Hormones 1—4 90.7 86.9
23 247 Estrogens and progesterones 1—4 91.7 90.9
24 25 Urogenital agents 1—4 74.9 64.6
25 26 Dermatotropic agents 1—4 76.0 67.1
26 265 Antiparasitic dermatosis agents 1—8 84.7 78.1
27 3 Metabolics 1—8 75.4 73.4
28 4 Cellular function agents 1—8 68.4 65.2
29 42 Antineoplastics 1—10 72.3 68.9
30 44 Allergic agents 1—8 75.1 66.5
31 6 Antimicrobial and antiparasitic agents 1—10 84.2 80.8
32 61 Antibiotics 1—10 94.3 90.6
33 611 Antibiotics acting on gram�(+) bacteria 1—4 91.3 84.0
34 613 Antibiotics acting on gram�(+)� and gram�(–) bacteria 1—4 95.7 92.0
35 6132 Cephem antibiotics 1—4 98.9 97.6
36 62 Chemotherapeutics 1—4 85.8 76.9
37 624 Synthetic antibacterials 1—4 94.5 86.7
38 625 Antivirals 1—8 82.9 74.1
39 64 Antiparasitic agents 1—8 70.0 64.4
40 8 Narcotics 1—8 84.0 84.1
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balanced databases.32 In this case we assigned to ac�
tive compounds the weight parameter (w) equal to the
ratio of the total number of inactive (with respect to the
modeled property) compounds to the total number of ac�
tive compounds (w = Nia/Na). According to the intrinsic
algorithm of the LIBSVM software, the introduction of
the parameter w should reduce the unbalance of the mod�
els by using the weighting procedure. Indeed, our numeri�
cal simulation showed that this holds for a number of the
pharmacological categories under study. Nevertheless, for
some other pharmacological groups (metabolics, agents
affecting cellular functions, neurotropic agents affecting
individual sensory organs, dermatotropic agents, antipar�
asitic dermatosis agents, ophthalmic agents, antiarrhyth�
mic agents, vasodilators, anti�gastric ulcer and anti�duode�
nal ulcer agents), for which the corresponding sets were
significantly unbalanced while the number of non�assigned
compounds much exceeded that of assigned compounds
(Nia/Na>>1), even using the weighting parameter we failed
not only to construct balanced models, but also to aviod
trivial results. Unbalanced character of classification mod�
els for these groups was a consequence of highly unbal�
anced character of the database with respect to a given
pharmacological group. Consequently, the first approach
was rejected because it provides no correct solution to the
problem posed.

Contrary to this, the other approach appeared to be
efficient. It is based on a procedure recommended31 for
constructing models for prediction of biological activity in
the case of unbalanced sets. In the framework of this ap�
proach, we used the resampling procedure to reduce the
effect of the degree of unbalance of the working sets in
constructing models for all 40 target pharmacological
groups. Based on the resampling, three balanced model
sets were formed for each pharmacological group. Each
model set contained information on (i) all active com�
pounds and (ii) inactive ones that were randomly chosen
from the initial database in such a manner that the num�
bers of the active and inactive compounds be equal. Next,
for each pharmacological group we constructed classifica�
tion models based on the corresponding three sets with
subsequent averaging of the results obtained.

At first glance, the fact that the quality of a model is
improved after rejection of some data may appear to be
surprising because this contradicts the practice in applica�
tion of statistical methods. Nevertheless, there are strong
grounds supporting this strategy. First, since all models in
the "ensemble" were constructed using different sets of
inactive compounds, we reject a much smaller amount of
information on the inactive compounds compared with
the case of a single model. Moreover, almost no informa�
tion is lost for a large number of models in the ensemble.
Second, a feature of the biological activity databases for
organic compounds is that they contain only information
on the presence of a particular type of activity and do not

contain information that a given compound is inactive. It
follows that by performing the resampling procedure we
reject "digitized assumptions" (generally, a guess�work)
rather than actual experimental data on the lack of activi�
ty. Again, the actual activity data are not rejected in the
course of resampling.

The model construction procedure involved the choice
of the optimum FD size (number of nonhydrogen atoms
in the corresponding fragment of the chemical structure)
to achieve the best description of the structures of all com�
pounds assigned to each pharmacological group. Table 1
presents the averaged accuracies (equal to the balanced
accuracy) of the best SVM models for assignment of or�
ganic compounds to 40 pharmacological groups construct�
ed using the tenfold cross�validation procedure, resam�
pling procedure, and optimum FD size for each group.
For comparison, Table 1 also lists the accuracies of the
corresponding NBC models (WEKA 3.5.8 software).33*

From Table 1 it follows that the accuracies of the SVM
models for 38 pharmacological groups are better than those
of the models based on the NBC algorithm. The exception
is group 116 (anti�Parkinsonian agents). The spread in the
accuracy values for the 40 SVM models is 62.3—98.9%.
By and large, all models constructed for the six main phar�
macological groups (neurotropic agents, organotropic
agents, metabolics, agents affecting cellular functions, an�
timicrobial and antiparasitic agents, and narcotics) have
a somewhat lower accuracy than the models for pharma�
cological groups at lower hierarchical levels. This can be
due to the variety of chemical classes of compounds and,
correspondingly, to a large number of structurally differ�
ent organic compounds in each pharmacological group,
which reduces the quality of the models. The best accura�
cy was obtained for the SVM�models for the following
pharmacological groups (see Table 1): 6132 (98.9%),
613 (95.7%), 624 (94.6%), and 61 (94.3%). The least ac�
curate are the models for the following pharmacological
groups: 13 (62.3%), 131 (66.8%), and 217 (67.6%).

To additionally verify the quality of the classification
models constructed, we estimated the probability of as�
signment of eight organic compounds (active component
of the known drugs) including aspirin, aztreonam, levo�
floxacin, lidocaine, omeprazole, enalapril, theophylline,
hypothiazide, and cefalexin to 40 pharmacological groups
studied.34 The results obtained are listed in Table 2.

From the analysis of the data in Table 2 it follows that
in addition to the correct prediction of the main action of
the drugs, the models constructed can also predict the side
effects of the drugs, although in the latter case the data�
base used for constructing the models contained no rele�
vant information. For instance, levofloxacin was assigned
to the main pharmacological group 624 with a probability
of 0.740. However, this drug can also be assigned to the

* http://www.cs.waikato.ac.nz/ml/weka/.
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Table 2. Prediction of assignment of eight organic compounds to pharmacological groups based on the SVM models according to
the hierarchy of the KEGG DRUG database (listed are the probabilities greater than 0.4)

Compound Probability Pharmacological Pharmacological
of assignment group (KEGG DRUG) effects34*

(KEGG DRUG) (prediction)

0.890 114. Antipyretic and Pain relieve,
Aspirin non�narcotic analgesics, antipyretic and

non�steroidal anti�inflammatory anti�inflammatory
 agents action

0.740 624. Synthetic antibacterial Antibacterial
 agents

Levofloxacin 0.502 131. Ophthalmic agents Involuntary eye
movements

0.403 112. Anxiolytics, sedatives, Drowsiness,
and hypnotics apathy

0.658 61. Antibiotics Antibacterial
0.916 6. Antimicrobial, antiparasitic, Antimicrobial,

and antihelminthic antiparasitic,
agents antihelminthic

Aztreonam 0.927 613. Antibiotics affecting Antibiotic affecting
 gram�(+) and
gram�(–) bacteria gram�(–) bacteria

0.749 212. Antiarrhythmic agents Antiarrhythmic
0.481 112. Anxiolytics, sedatives, Drowsiness

and hypnotics
0.541 22. Respiratory agents Vertigo,

Lidocaine respiratory arrest
0.628 117. Psychotropic agents Euphoria, impairment

consciousness

Enalapril 0.974 214. Antihypertensive agents Antihypertensive

Theophylline 0.753 225. Bronchodilators Broncholytic

0.775 25. Urogenital agents Diuretic
0.611 131. Ophthalmic agents Reduction

Hypothiazide of intraocular pressure
0.881 214. Antihypertensive agents Antihypertensive

0.574 23. Gastrointestinal agents Anti�ulcer
Omeprazole 0.425 112. Anxiolytics, sedatives, Drowsiness, weakness

     and hypnotics

* Listed are the main and side (in italics) effects.
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pharmacological group 131, although with a lower proba�
bility of 0.502; this can be related to such side effects of
levofloxacin as "involuntary eye movements".34 Moreover,
this compound can also be assigned to the pharmacologi�
cal group 112 with a probability of 0.403, which can again
be related to the side effects of the drug (drowsiness, apa�
thy). From Table 2 it follows that the side effects of
lidocaine ("drowsiness", "vertigo, respiratory arrest", and
"euphoria, impairment of consciousness"), hypothiazide
("reduction of intraocular pressure"), and omeprazole
("drowsiness, weakness") are predicted in exactly the
same manner.

Thus, in the present work we have shown that by com�
bining the fragmental approach, the SVM technique, the
Platt—Wu probabilistic model, and resampling procedure
one can construct models for quite reliable assignment of
organic compounds to pharmacological groups of regis�
tered drugs from the KEGG DRUG database. In the vast
majority of cases, the models constructed have a much
higher predictive power than the models constructed us�
ing the NBC approach, which is treated so far as a refer�
ence when solving this type of tasks. For a number of
drugs, the results of prediction are consistent with the
known, both main (desired) and side (undesired), phar�
macological effects of the corresponding compounds.34
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