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Abstract: This article reviews the application of fragment descriptors at different stages of virtual screening: filtering, 

similarity search, and direct activity assessment using QSAR/QSPR models. Several case studies are considered. It is 

demonstrated that the power of fragment descriptors stems from their universality, very high computational efficiency, 

simplicity of interpretation and versatility. 
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1. INTRODUCTION 

 Chemogenomics aims to discover active and/or selective 
ligands for biologically related targets by conducting screen-
ing, ideally, of all possible compounds against all possible 
targets, or at least, in practice, available libraries of com-
pounds against main target families [1]. One can hardly 
imagine to screen experimentally the chemical universe con-
taining from 10

12
 to 10

180
 druglike compounds [2] against 

biological target universe. Nowadays, the number of experi-
mentally screened compounds does not exceed several mil-
lions per biological target, whereas a single inexpensive 
computational study allows one to screen the libraries up to 
10

12 
molecules and this number tends to grow up with the 

evolution of hardware and related software tools. Therefore, 
this is not surprising that the virtual, or in silico, screening 
approaches play a key role in chemogenomics. 

 Virtual screening is usually defined as a process in which 
large libraries of compounds are automatically evaluated 
using computational techniques [3]. Its goal is to discover 
putative hits in large databases of chemical compounds (usu-
ally ligands for biological targets) and remove molecules 
predicted to be toxic or those possessing unfavorable phar-
macodynamic or pharmacokinetic properties. Generally, two 
types of virtual screening are known: structure-based and 
ligand-based. The former explicitly uses 3D structure of a 
biological target at the stage of hit detection, whereas the 
latter uses only information about structure of small mole-
cules and their properties (activities). Structure-based virtual 
screening (docking, 3D pharmacophores) has been described 
in series of review articles, see references [4-6] and citations 
therein. 

 In this paper mostly ligand-based virtual screening in-
volving fragment descriptors is considered. Fragment de-
scriptors, represent selected substructures (fragments) of 2D 
molecular graphs and their occurrences in molecules; they 
constitute one of the most important types of molecular de-
scriptors [7]). Their main advantage is related to simplicity  
of their calculation, storage and interpretation (see review  
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articles [8-12]). Substructural fragment are information-
based descriptors [13] which tend to code the information 
stored in molecular structures. This contrasts with knowl-
edge-based (or semiempirical) descriptors issued from the 
consideration of the mechanism of action. Selected descrip-
tors form a “chemical space” in which each molecule us rep-
resented as a vector. Due to their versatility, fragment de-
scriptors could be efficiently used to create a chemical space 
which separates active and non-active compounds. 

 Historically, molecular fragments were used in first addi-
tive schemes developed in 1950-ies to estimate physico-
chemical properties of organic compounds by Tatevskii 
[14,15], Bernstein [16], Laidler [17], Benson and Buss [18] 
and others. The Free-Wilson method [19], one of the first 
QSAR approaches invented in 1960-ies, is based on the as-
sumption of the additivity of contributions of structural 
fragments to the biological activity of the whole molecule. 
Later on, fragment descriptors were successfully used in 
expert systems able to classify chemical compounds as ac-
tive or inactive with respect to certain type of biological ac-
tivity. Hiller [20,21], Golender and Rosenblit [22,23], Pi-
ruzyan, Avidon et al. [24,25], Cramer [26], Brugger, Stuper 
and Jurs [27,28], and Hodes et al. [29] pioneered in this 
field. 

 An important class of fragmental descriptors, so-called 
screens (structural keys, fingerprints), has been developed in 
seventies [30-34]. As a rule, they represent bit strings which 
can effectively be stored and processed by computers. Al-
though their primary role is to provide efficient substructure 
searching capabilities in large chemical databases, they are 
efficiently used for similarity searching [35,36], to cluster 
large data sets [37,38], to assess chemical diversity [39], as 
well as to conduct SAR [40] and QSAR [41] studies. Nowa-
days, application of modern machine-learning techniques 
significantly improves predictive performance of structure-
property models based on fragment descriptors. 

 This paper briefly reviews the application of fragment 
descriptors in virtual screening of large libraries of organic 
compounds focusing mostly on its three approaches: (i) fil-
tering, (ii) similarity search, and (iii) direct activity/property 
assessment using QSAR/QSPR models. 
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2. TYPES OF FRAGMENT DESCRIPTORS 

 Due to their enormous diversity, one could hardly review 
all types of 2D fragment descriptors used for structural 
search in chemical database or in SAR/QSAR studies. Here, 
we focus on some of them which are the most efficiently 
used in virtual screening and in silico design of organic 
compounds. 

 Generally, molecular fragments could be classified with 
respect to their topology (atom-based, chains, cycles, poly-
cycles, etc), information content of vertices in molecular 
graphs (atoms, groups of atoms, pharmacophores, descriptor 
centers) and the level of abstraction when some information 
concerning atom and bond types is omitted. 

 Purely structural fragments are used as descriptors in 
ACD/Labs [42], NASAWIN [43], ISIDA [12] and some 
other programs. These are 2D subgraphs in which all atoms 
and/or bonds are represented explicitly and no information 
about their properties is used. Their typical example is se-
quences of atoms and/or bonds of variable length, branch 
fragments, saturated and aromatic cycles (polycycles) and 
atom-centered fragments (ACF). The latter consist of a sin-
gle central atom surrounded by one or several shells of atoms 
with the same topological distance from the central one. The 
ACF were invented by Tatevskii [14] and Benson and Buss 
[18] in 1950-ies as elements of additive schemes for predict-
ing physicochemical properties of organic compounds. In 
earlier seventies, Adamson [44] investigated the distribution 
of one shell ACF in some chemical databases with respect to 
their possible application as screens. Hodes reinvented one 
shell ACF as descriptors in SAR studies under the name 
augmented atoms [29], and also suggested ganglia aug-
mented atoms 45 representing two shells ACF with general-
ized second-shell atoms. Later on, one shell ACF were im-
plemented by Baskin et al.. in the NASAWIN [43] software 
and by Solov’ev and Varnek in ISIDA [12] package (Fig. 1). 
Atom-centered fragments with arbitrary number of shells 
were implemented by Filimonov and Poroikov in the PASS 
[46] program under the name multilevel neighborhoods of 
atoms [47], by Xing and Glen under the name tree structured 
fingerprints [48], by Bender et al.. as atom environments 
[49,50] and circular fingerprints [51-53], and by Faulon un-
der the name molecular signatures [54-56]. 

 It has been found that characterizing atoms only by ele-
ment types is too specific for similarity searching and there-
fore does not provide sufficient flexibility needed for large-
scaled virtual screening. For that reason, numerous studies 
were devoted to increase an informational content of frag-

ment descriptors by adding some useful empirical informa-
tion and/or by representing a part of molecular graph implic-
itly. The simplest representatives of those descriptors were 
atom pairs and topological multiplets based on the notion of 
descriptor center representing an atom or a group of atoms 
which could serve as centers of intermolecular interactions. 
Usually, descriptor centers include heteroatoms, unsaturated 
bonds and aromatic cycles. An atom pair is defined as a pair 
of atoms (AT) or descriptor centers separated by a fixed 
topological distance: ATi-ATj-Dist, where Distij is the short-
est path (the number of bonds) between ATi and ATj. Analo-
gously, a topological multiplet is defined as a multiplet (usu-
ally triplet) of descriptor centers and topological distances 
between each pair of them. In most of cases, these descrip-
tors are used in binary form in order to indicate the presence 
or absence of the corresponding features in studied chemical 
structures. 

 The atom pairs were first suggested for SAR studies by 
Avidon under the name SSFN (Substructure Superposition 
Fragment Notation) [25,57]. Then they were independently 
reinvented by Carhart and co-authors [58] for similarity and 
trend vector analysis. In contrast to SSFN, Carhart’s atom 
pairs are not necessarily composed only of descriptor cen-
ters, but account for the information about element type, the 
number of bonded non-hydrogen neighbors and the number 
of  electrons. Nowadays, Carhart’s atom pairs are rather 
popular for conducting virtual screening. Topological Fuzzy 
Bipolar Pharmacophore Autocorrelograms (TFBPA) [59] by 
Horvath are based on atom pairs, in which real atoms are 
replaced by pharmacophore sites (hydrophobic, aromatic, 
hydrogen bond acceptor, hydrogen bond donor, cation, an-
ion), while Distij corresponds to different ranges of topologi-
cal distances between pharmacophores. These descriptors 
were successfully applied in virtual screening against a panel 
of 42 biological targets using similarity search based on sev-
eral fuzzy and non-fuzzy metrics [60], performing only 
slightly less well than their 3D counterparts [59]. Fuzzy 
Pharmacophore Triplets (FPT) by Horvath [61] is an exten-
tion of FBPF [60] for three sites pharmacophores. An impor-
tant innovation in the FPT concerns accounting for prote-
olytic equilibrium as a function of pH [61]. Due to this fea-
ture, even small structural modifications leading to a pKa 
shift, may have a profound effect on the fuzzy pharmo-
cophore triples. As a result, these descriptors efficiently dis-
criminate structurally similar compounds exhibiting signifi-
cantly different activities [61]. 

 Some other topological triplets should be mentioned. 
Thus, Similog pharmacophoric keys by Jacoby [62] represent 
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Fig. (1). Decomposition of a chemical structure into fragments. Examples of sequences and augmented atoms used as descriptors in the IS-

IDA program [12]. 
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triplets of binary coded types of atoms (pharmacophoric cen-
ters) and topological distances between them. Atomic types 
are generalized by four features (represented as four bits per 
atom): potential hydrogen bond donor or acceptor; bulkiness 
and electropositivity. The topological pharmacophore-point 
triangles implemented in the MOE software [63] represent 
triplets of MOE atom types separated by binned topological 
distances. Structure-property models obtained by support 
vector machine method with these descriptors have been 
successfully used for virtual screening of COX-2 inhibitors 
[64] and D3 dopamine receptor ligands [65]. 

 Topological torsions by Nilakantan et al. [66] is a se-
quence of four consecutively bonded atoms ATi-ATj-ATk-

ATl, where each atom is characterized by a number of pa-
rameters similarly to atoms in Carhart’s pairs. In order to 
enhance efficiency of virtual screening, Kearsley et al. [67] 
suggested to assign atoms in the Carhart’s atom pairs and 
Nilakantan’s topological torsions to one of seven classes: 
cations, anions, neutral hydrogen bond donors, neutral hy-
drogen bond acceptors, polar atoms, hydrophobic atoms and 
other. 

 In contrast to QSPR studies based mostly on the use of 
complete (containing all atoms) or hydrogen-suppressed mo-
lecular graphs, handling biological activity at the qualitative 
level, often demands more abstractions. Namely, it is rather 
convenient to approximate chemical structures by reduced 
graphs, in which each vertex is an atom or a group of atoms 
(descriptor or pharmacophoric center), whereas each edge is 
a topological distance Distij. Such biology-oriented represen-
tation of chemical structures was suggested by Avidon et al. 
as descriptor center connection graphs [25]. Gillet, Willett 
and Bradshaw have proposed the GWB-reduced graphs 
which use the hierarchical organization of vertex labels. This 
allows one to control the level of their generalization which 
may explain their high efficiency in similarity searching. 

 An alternative scheme of reducing molecular graph pro-
posed by Bemis and Murcko [68,69] involves four-level hi-
erarchical scheme of molecular structure simplification: (1) 
full molecular structure with all atoms; (2) structure without 
hydrogen atoms; (3) scaffolds, i.e. structures without sub-
stituents (which are deleted recursively by means of elimi-
nating the “leaves” of molecular graph), (4) molecular 
frameworks, i.e. scaffolds, in which all heteroatoms are sub-
stituted by carbon atoms, while all multiple bonds are re-
placed by single bonds. This presentation of molecular graph 
was found very useful for diversity analysis of large data-
bases [68,69]. 

3. APPLICATION OF FRAGMENT DESCRIPTORS IN 
VIRTUAL SCREENING AND IN SILICO DESIGN 

 In this chapter, the application of fragment descriptors at 
different stages of virtual screening is considered. 

3.1. Filtering 

 Filtering is a rule-based approach aimed to perform fast 
assessment of usefulness molecules in the given context. In 
drug design area, the filtering is used to eliminate com-
pounds with unfavorable pharmacodynamic or pharmacoki-
netic properties as well as toxic compounds. Pharmacody-
namics considers binding drug-like organic molecules 
(ligands) to chosen biological target. Since the efficiency of 

ligand-target interactions depends on spatial complementar-
ity of their binding sites, the filtering is usually performed 
with 3D-pharmacophores, representing “optimal” spatial 
arrangements of steric and electronic features of ligands 
[70,71]. Pharmacokinetics is mostly related to absorption, 
distribution, metabolism and excretion (ADME) related 
properties: octanol-water partition coefficients (log P), solu-
bility in water (log S), blood-brain coefficient (log BB), par-
tition coefficient between different tissues, skin penetration 
coefficient, etc. 

 Fragment descriptors are widely used for early 
ADME/Tox prediction both explicitly and implicitly. The 
easiest way to filter large databases concerns detecting unde-
sirable molecular fragments (structural alerts). Appropriate 
lists of structural alerts are published for toxicity [72], 
mutagenicity [73], and carcinogenicity [74]. Klopman et al. 
were the first to recognize the potency of using fragmental 
descriptors for this purpose [75-77]. Their programs CASE 
[75], MultiCASE [78,79], as well as more recent MCASE 
QSAR expert systems [80], proved to be effective tools to 
assess mutagenicity [76,79,80] and carcinogenicity [77,79] 
of organic compounds. In these programs, sets of biophores 
(analogs of structural alerts) were identified and used for 
activity predictions. A number of more sophisticated frag-
ment-based expert systems of toxicity assessment - DEREK 
[81], TopKat [82] and Rex [83] – have been developed. 
DEREK is a knowledge-based system operating with hu-
man-coded or automatically generated [84] rules about toxi-
cophores. Fragments in the DEREK knowledge base are 
defined by means of linear notation language PATRAN 
which codes the information about atom, bonds and stereo-
chemistry. TopKat uses a large predefined set of fragment 
descriptors, whereas Rex implements a special kind of atom-
pairs descriptors (links). To read more information about 
fragment-based computational assessment of toxicity, in-
cluding mutagenicity and carcinogenicity, see review [85] 
and references therein. 

 The most popular filter used in drug design area is based 
on the Lipinsky “rule of five” [86], which takes into account 
the molecular weight, the number of hydrogen bond donors 
and acceptors, along with the octanol-water partition coeffi-
cient logP, to assess the bioavailability of oral drugs. Similar 
rules of “drug-likeness” or “lead-likeness” were later pro-
posed by by Oprea [87], Veber [88] and Hann [89]. Formal-
ly, fragment descriptors are not explicitly involved there. 
However, many computational approaches to assess logP are 
fragment-based [42,90,91]; whereas H-donors and acceptor 
sites are simplest molecular fragments. 

3.2. Similarity Search 

 The similarity-based virtual screening is based on an as-
sumption that all compounds in a chemical database, which 
are similar to a query compound, could also have similar 
biological activity. Although this hypothesis is not always 
valid (see discussion in [92]), quite often the set of retrieved 
compounds is enriched by actives [93]. 

 To achieve high efficacy of similarity-based screening of 
databases containing millions compounds, molecular struc-
tures are usually represented by screens (structural keys) or 
fixed-size or variable-size fingerprints. Screen and finger-
prints can contain both 2D- and 3D-information. However, 
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the 2D-fingerprints, which are a kind of binary fragment 
descriptors, dominate in this area. Fragment-based structural 
keys, like MDL keys [40], are sufficiently good for handling 
small and medium-sized chemical databases, whereas proc-
essing of large databases is performed with fingerprints hav-
ing much higher information density. Fragment-based Day-
light [94], BCI [95] and UNITY 2D [96] fingerprints are the 
most known examples. 

 The most popular similarity measure for comparing 
chemical structures represented by means of fingerprints is 
the Tanimoto (or Jaccard) coefficient T [97]. Two structures 
are usually considered similar if T>0.85 [93] (for Daylight 
fingerprints [94]). Using this threshold, Taylor estimated a 
probability to retrieve actives as 0.012-0.50 [98], whereas 
according to Delaney this number raises to 0.40-0.60 [99] 
(using Daylight fingerprints [94]). These computer experi-
ments confirm usefulness of the similarity approach as an 
instrument of virtual screening. 

 Schneider et al. have developed a special technique for 
performing virtual screening referred to as CATS (Chemi-
cally Advanced Template Search) [100]. In its framework 
chemical structures are described by means of correlation 
vectors, each component of which is equal to occurrence of 
certain atom pair in a chemical structure divided by the total 
number of non-hydrogen atoms. Each atom in an atom pair 
is attributed to one of five classes: hydrogen-bond donor, 
hydrogen-bond acceptor, positively charged, negatively 
charged, and lipophilic. Topological distances of up to 10 
bonds are considered in the atom-pair specification. The 
similarity is assessed in [100] using Euclidean distance be-
tween the corresponding correlation the MERLIN system 
from Daylight [94] for retrieving thrombin inhibitors in a 
virtual screening experiments. 

 Hull et al. have developed the Latent Semantic Structure 
Indexing (LaSSI) approach to perform similarity search in 
low-dimensional chemical space [101, 102]. To reduce the 
dimension of initial chemical space, the singular value de-
composition method is applied for the descriptor-molecule 
matrix. Ranking molecules by similarity to a query molecule 
was performed in the reduced space using the cosine similar-
ity measure [103], whereas the Carhart’s atom pairs [58] and 
the Nilakantan’s topological torsions [66] were used as de-
scriptors. The authors claim that this approach “has several 
advantages over analogous ranking in the original descriptor 
space: matching latent structures is more robust than match-
ing discrete descriptors, choosing the number of singular 
values provides a rational way to vary the ‘fuzziness’ of the 
search” [101]. 

 The issue of “fuzzification” of similarity search was ad-
dressed by Horvath et al. [59-61]. The first fuzzy similarity 
metric suggested in work [59] relies on partial similarity 
scores calculated with respect to the inter-atomic distances 
distributions for each pharmacophore pair. In this case the 
“fuzziness” enables to compare pairs of pharmacophores 
with different topological or 3D distances. Similar results 
[60] were achieved using fuzzy and weighted modified Dice 
similarity metric [103]. Fuzzy pharmacophore triplets FPT 
(see section 2) can be gradually mapped onto related basis 
triplets, thus minimizing binary classification artifacts [61]. 
In new similarity scoring index introduced in reference [61], 
the simultaneous absence of a pharmacophore triplet in two 

molecules is taken into account. However, this is a less-
constraining indicator of similarity than simultaneous pres-
ence of triplets. 

 Most of similarity search approaches require only a sin-
gle reference structure. However, in practice several com-
pounds with the same type of biological activity are often 
available. This motivated Hert et al. [104] to develop the 
data fusion method which allows one to screen a database 
using all available reference structures. Then, the similarity 
scores are combined for all retrieved structures using se-
lected fusion rules. Searches conducted on the MDL Drug 
Data Report database using fragment-based UNITY 2D [96], 
BCI [95], and Daylight [94] fingerprints have proved the 
effectiveness of this approach. 

 The main drawback of the conventional similarity search 
concerns an inability to use experimental information on 
biological activity to adjust similarity measures. This results 
in inability to discriminate between relevant and non-
relevant fragment descriptors being used for computing simi-
larity measures. To tackle this problem, Cramer et al. [26] 
developed substructural analysis in which each fragment 
(represented as a bit in a fingerprint) is weighted by taking 
into account its occurrence in active and in inactive com-
pounds. Later on, many similar approaches have been de-
scribed in the literature [105]. 

 One more way to conduct a similarity-based virtual 
screening is to retrieve the structures containing a user-
defined set of “pharmacophoric” features. In Dynamic Map-
ping of Consensus positions (DMC) algorithm [106] those 
features are selected by finding common positions in bit 
strings for all active compounds. The potency-scaled DMC 
algorithm (POT-DMC) [107] is a modification of DMC in 
which compounds activities are taken into account. The latter 
two methods may be considered as intermediate between 
conventional similarity search and probabilistic SAR ap-
proaches. 

 Batista, Godden and Bajorath developed the MolBlaster 
method [108], in which molecular similarity is assessed by 
Differential Shannon Entropy [109] computed from popula-
tions of randomly generated fragments. For the range 0.64 < 
T < 0.99, this similarity measure provides with the same 
ranking as the Tanimoto index T. However for the smaller 
values of T the entropy-based index is a more sensitive, since 
it distinguishes between pairs of molecules having almost 
identical T. To adapt this methodology for large-scale virtual 
screening, the Proportional Shannon Entropy (PSE) metrics 
was introduced [110]. A key feature of this approach is that 
class-specific PSE of random fragment distributions enables 
the identification of the molecules sharing with known active 
compounds a significant number of signature substructures. 

 Similarity search methods developed for individual com-
pounds are difficult to apply directly for chemical reactions 
involving many species subdividing by two types: reactants 
and products. To overcome this problem, Varnek et al. [12] 
suggested to condense all participating in reaction species in 
one only molecular graph (Condensed Graphs of Reactions 
(CGR) [12]) followed by its fragmentation and application of 
developed fingerprints in “classical” similarity search. Be-
sides conventional chemical bonds (simple, double, aro-
matic, etc), a CGR contains dynamical bonds corresponding 
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to created, broken or transformed bonds. This approach 
could be efficiently used for screening of large reaction data-
bases. 

 It should be noted that the similarity concepts are widely 
used in selecting of diverse sets of compounds (see reviews 
[111-115] and references therein). 

3.3. SAR/QSAR/QSPR Models 

 Simplistic and heuristic similarity-based approaches can 
hardly produce as good predictive models as modern statisti-
cal and machine learning methods able to assess quantita-
tively biological or physicochemical properties. QSAR-
based virtual screening consists in direct assessment of activ-
ity values (numerical or binary) of all compounds in the da-
tabase followed by selection of hits possessing desirable ac-
tivity. Mathematical methods used for models preparation 
could be subdivided into probabilistic and regression ap-
proaches. The former assesses a probability that a given 
compound is active or not active whereas the latter numeri-
cally evaluate the activity values. A limited size of this paper 
doesn’t allow us to cite all successful stories related to appli-
cation of probabilistic and regression models in virtual 
screening; only some examples will be presented. 

 Harper et al. [116] have demonstrated a much better per-
formance of probabilistic binary kernel discrimination 
method to screen large databases compared to backpropaga-
tion neural networks or conventional similarity search. The 
Carhart’s atom-pairs [58] and Nilakantan’s topological tor-
sions [66] were used as descriptors in that study. 

 Aiming to discover new cognition enhancers, Geronikaki 
et al. [117] applied the PASS program [46], which imple-
ments a probabilistic Bayesian-based approach, and the 
DEREK rule-based system [81] to screen a database of 
highly diverse chemical compounds. Eight compounds with 
the highest probability of cognition-enhancing effect were 
selected. Experimental tests have shown that all of them pos-
sessed a pronounced antiamnesic effect. 

 Bender et al. [49-53] have applied several probabilistic 
machine learning methods (naïve Bayesian classifier, induc-
tive logic programming, and support vector inductive learn-
ing programming) in combination with circular fingerprints 
to perform the classification of bioactive chemical com-
pounds and to carry out virtual screening on several biologi-
cal targets. It has been shown that he performance of support 
vector inductive learning programming was significantly 
better than the other two methods [53]. 

 Regression QSAR/QSPR models are used to assess 
ADME/Tox properties or to detect “hit” molecules capable 
to bind a certain biological target. A general scheme of 
building QSAR/QSPR models using fragment descriptors is 
given in Fig. 2. Available in the literature fragments based 
QSAR models for blood-brain barrier [118], skin permeation 
rate [119], blood-air [120] and tissue-air partition coeffi-
cients [120] could be mentioned as examples. Many theo-
retical approaches of calculation of octanol/water partition 
coefficient log P involve fragment descriptors. The methods 
by Rekker [121,122], Leo and Hansch (CLOGP) [90,123], 
Ghose-Crippen (ALOGP) [124-126], Wildman and Crippen 
[127], Suzuki and Kudo (CHEMICALC-2) [128], Convard  
 

(SMILOGP) [129], Wang (XLOGP) [130,131] represent just 
a few modern examples. Fragment-based predictive models 
for estimation solubility in water [132] and DMSO [132] are 
available. 

 Benchmarking studies performed in references [118-
120,133] show that QSAR/QSPR models for various bio-
logical and physicochemical properties involving fragment 
descriptors are, at least, as robust as those involving topo-
logical, quantum, electrostatic and other types of descriptors. 

3.4. In Silico Design 

 In this section we consider examples of virtual screening 
performed on a database containing only virtual (still non-
synthesized or unavailable) compounds. Generation of vir-
tual libraries is usually performed using combinatorial chem-
istry approaches [134-136]. One of simplest ways is to attach 
systematically user-defined substituents R1, R2, …, RN to a 
given scaffold. If the list for the substituent Ri contains ni 
candidates, the total number of generated structures is N = 

ni
i

, although taking symmetry into account could reduce 
the library’s size. The number of substituents Ri (ni) should 
be carefully selected in order to avoid a generation of too 
large set of structures (combinatorial explosion). The “opti-
mal” substituents could be prepared using fragments selected 
at the QSAR stage, since their contributions into activity (for 
linear models) allow one to estimate an impact of combining 
the fragment into larger species (Ri). In such a way, a fo-
cused combinatorial library could be generated. 

 The technology based on combining QSAR, generation 
of virtual libraries and screening stages has been imple-
mented into ISIDA program and applied to computer-aided 
design of new uranyl binders belonging to two different 
families of organic molecules: phosphoryl containing po-
dands [137] and monoamides [138]. QSAR models have 
been developed using different machine-learning methods 
(multi-linear regression analysis, associative neural networks 
[139] and support vector machines [140]) and fragment de-
scriptors (atom/bond sequences and augmented atoms). 
Then, these models were used to screen virtual combinatorial 
libraries containing up to 11000 compounds. Selected hits 
were synthesized and tested experimentally. Experimental 
data well correspond to predicted the uranyl binding affinity. 
Thus, initial data sets were significantly enriched with new 
efficient uranyl binders, and one of new molecules was 
found more efficient than previously studied compounds. 
 A similar study was conducted for development of new 
1-[2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) 
derivatives potentially possessing high anti-HIV activity 
[141]. This demonstrates universality of fragment descriptors 
and broad perspectives of their use in virtual screening and 
in silico design. 

CONCLUSION 

 The power of fragment descriptors originates from their 
universality, very high computational efficacy, simplicity of 
interpretation, as well as their high diversity and versatility. 
The latest challenges in chemogenomics and high throughput 
virtual screening have raised their role in effective process-
ing of huge amounts of relevant data and computer-aided 
design of new compounds. 
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