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1 Introduction

Chemoinformatics, a young field incorporating several “old”
fields (QSAR and chemical databases development),[1] is ap-
proaching maturity.[2–10] Indeed, it is widely applied in aca-
demia and industry (especially in the drug design area), it is
taught in many universities at the undergraduate and grad-
uate level, and there are several specialized international
journals, as well as many international meetings being held
every year. At the same time, it has not still been recog-
nized as an individual scientific discipline, but mostly con-
sidered as an interface between chemistry and informatics,
or as a collection of methods and tools specifically oriented
toward drug design. This is clearly seen from the early defi-
nitions of chemoinformatics suggested by Brown, Paris,
Gasteiger, and Faulon (Table 1). In fact, any scientific disci-
pline should satisfy some obvious requirements: it should
be based on its own concepts and approaches, and its dif-
ferences from and complementarity to related disciplines
must be clearly identified.

One of the ultimate applications of chemoinformatics is
the development of models linking chemical structure and
various molecular properties. This logically relates chemoin-
formatics with two other modeling approaches – quantum
chemistry and force-field simulations. These three comple-
mentary fields differ with respect to the form of their mo-
lecular models, their basic concepts, inference mechanisms
and domains of application (Table 2). Unlike the molecular
models used in quantum mechanics (ensembles of nuclei
and electrons) and force field molecular modeling (ensem-
bles of “classical” atoms and bonds), chemoinformatics
treats molecules as molecular graphs or related descriptor
vectors with associated features (physicochemical proper-
ties, biological activity, 3D geometry, etc.) (Figure 1). The
ensemble of graphs or descriptor vectors forms a chemical
space in which some relations between the objects must
be defined. Unlike real physical space, a chemical space is
not unique: each ensemble of graphs and descriptors de-
fines its own chemical space. Thus, chemoinformatics could
be defined as a scientific field based on the representation of
molecules as objects (graphs or vectors) in a chemical space.

Here, we attempt to define chemoinformatics as a theo-
retical chemistry discipline by characterizing its fundamen-
tal concepts and underlining its links with some “sister” dis-
ciplines. First, we present theoretical chemistry as an en-

semble of three complementary disciplines: chemoinfor-
matics, quantum chemistry and force field simulations.
Then, we discuss two fundamental concepts of chemoinfor-
matics: chemical space and statistical learning theory. Final-
ly, some relations of chemoinformatics with machine learn-
ing, bioinformatics and chemometrics are discussed.

2 Complementarities of the Chemoinformatics,
Quantum Chemistry and Force Field
Approaches

2.1 Basic Molecular Models

Differences and complementarities of three theoretical
chemistry disciplines – Chemoinformatics, Quantum
Chemistry and Force Field approach – are directly related
to the way they represent molecular structures, i.e. , their
basic molecular models (Table 2). Quantum chemistry (QC)
explicitly considers ensembles of electrons and nuclei
which are described by the Schrçdinger wave equation.
Since this equation can only be solved analytically for
atoms with one electron, in practice various approximate
methods (commonly Hartree–Fock or Density Functional
Theory) are used. Since even such calculations are time-
consuming, they are usually performed on single molecules
or reactions in the gas phase, or on relatively small ensem-
bles of molecules. The Force Field (FF) approach considers
“classical” atoms and bonds and it uses empirical equations
to calculate the molecular potential energy as a sum of
terms corresponding to both bonding and nonbonding in-
teractions. This approach can be easily coupled with classi-
cal mechanics, allowing one to calculate molecular trajecto-
ries (Molecular Dynamics simulations), or with statistical
mechanics in order to generate Boltzmann ensembles
(Monte-Carlo simulations), or, simply, with optimization
techniques (Molecular Mechanics).[11] Due to the simplicity
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of the basic molecular model and potential energy equa-
tions, Force Field methods can be applied to rather large
systems containing many thousands of atoms (proteins,
solutions, etc.). Chemoinformatics considers a molecule as a
graph or an ensemble of descriptors generated from this
graph. A set of molecules forms a chemical space for which

the relationships between the objects themselves, on one
hand, and between their chemical structures and related
properties, on the other hand, are established using two
main mathematical approaches: graph theory and statisti-
cal learning. Due to the rapidity of such calculations, these
structure-property relationships can be applied to fast
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Figure 1. Chemoinformatics: from objects to major applications. Notice that for each Chemoinformatics Object (graph, descriptor vector in
the input or in the feature space) there exist associated machine-learning approaches: graph based, vector-based or kernel-based methods,
respectively.
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screening of large databases. Any property for which a suf-
ficient number of experimental data is available can be
modeled in chemoinformatics, whereas this is not always
so for QC and FF approaches.

Thus, Chemoinformatics, Quantum Chemistry and Force
Field approaches are interrelated areas. Indeed, QC influ-
enced the development of many popular molecular con-
nectivity indices such as E-state, whereas molecular me-
chanics is indispensible part of 3D shape descriptors gener-
ation. On the other hand, various machine-learning meth-
ods can be used to fit the parameters in some QC and FF
approaches.

Nonetheless, QC, FF and chemoinformatics are different,
if highly complementary approaches. Each has its own ap-
plication area, its advantages and problems. A good knowl-
edge of the all these areas is beneficial for a theoretical
chemist to enable selection of the most suitable tools for a
particular task.

2.2 Inference in Chemoinformatics

One of the main distinctions of chemoinformatics from QC
and FF concerns the inference (learning) mechanism. Quan-
tum chemical studies are a typical example of deductive in-
ference, where a general physical model is applied to par-

ticular molecules. In chemoinformatics, the logic of infer-
ence is different, because it is generally not based on exist-
ing physical theories. Chemoinformatics considers the
world too complex to be a priori described by any set of
rules. The incompleteness of our knowledge changes the
inference paradigm: instead of searching for exact solu-
tions, chemoinformatics applies plausible reasoning quanti-
fied by probability theory.[13] The rules (models) in chemoin-
formatics are not explicitly taken from rigorous physical
models, but learned inductively from the data. Thus, in in-
ductive learning, the models are the result of generalization
of patterns in the data. More general models have a greater
chance to be predictive. Various approaches to assess the
generalization ability of models have been suggested in
the statistical learning theory[14–15] that is the mathematical
basis of modeling in chemoinformatics.

It should be noted that the inductive learning approach
is also used to some extent in QC and FF methods. In
quantum chemistry, the parameterization of the electron
density functional[16] and pseudopotentials[17–18] is often
based on empirical parameters fitted to experimental data,
as is the case in numerous semi-empirical methods.[8, 19] The
number of these parameters is sometimes so great that
some quantum chemical methods, like DFT with the func-
tional M06[20] or B97D,[21] can be considered to define a sort

Table 1. Different definitions of chemoinformatics as a field.

Frank Brown[5] The use of information technology and management has become a critical part of the drug discovery process.
Chemoinformatics is the mixing of those information resources to transform data into information and information
into knowledge for the intended purpose of making better decisions faster in the area of drug lead identification
and organization.

Greg Paris[45] Chemoinformatics is a generic term that encompasses the design, creation, organization, management, retrieval,
analysis, dissemination, visualization, and use of chemical information.

Johann Gasteiger[2] Chemoinformatics is the application of informatics methods to solve chemical problems.

Jean-Loup Faulon and
Andreas Bender[8]

Chemoinformatics is the field of handling chemical information

This work Chemoinformatics is a field based on the representation of molecules as objects (graphs or vectors) in a chemical
space.

Table 2. Interrelations between three branches of theoretical chemistry.

Quantum chemistry Force field based molecular modeling Chemoinformatics

Molecular model Electrons and Nuclei Atoms and bonds Graphs and descriptor vectors

Inference mechanism Deductive�inductive Deductiveffiinductive Deductive�inductive

Typically applied to Individual species or ensemble of
a few species

Individual species, complex system rep-
resenting an ensemble of many species

Ensemble of species (both for knowl-
edge extraction and predictions), indi-
vidual species (for predictions only)

Basic concept Wave/particle dualism Classical mechanics Chemical space

Basic mathematical
approaches

Schrçdinger equation and approx-
imate methods (HF, DFT, …)

Force field method and its implemen-
tation in molecular mechanics, molecu-
lar dynamics, Monte-Carlo and free
energy perturbation techniques

Statistical learning, graph theory
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of “Schrçdinger force field”.[16] In Force-Field simulations, in-
ductive learning is at least as important as deductive, since
potential energy calculations involve many empirical pa-
rameters.

3 Fundamentals of Chemoinformatics

For the objects in chemical space, chemoinformatics builds
its models using two main mathematical approaches:
graph theory and statistical learning. While these mathe-
matical methods can be applied to other fields, the chemi-
cal space is a particular concept of chemoinformatics de-
scribing a way to handle ensembles of chemical structures.

3.1 Chemical Space Paradigm

As pointed out by C. Lipinski and A. Hopkins, “chemical
space can be viewed as being analogous to the cosmologi-
cal universe in its vastness, with chemical compounds pop-
ulating space instead of stars”.[20] Any attempt even to
count the number of chemical compounds which potential-
ly could be synthesized leads to combinatorial explosion
and yields an absolutely unrealistic number estimated as
more than 1060,[22] which exceeds the number of elemental
particles in the cosmological universe. Clearly that this
number is so huge that it is impossible not only to synthe-
size these molecules but even to generate computationally
their structures. The goal of chemoinformatics is to find a
rational way of representing this literally infinite chemical
space and to navigate in this space. Efficient strategies for
navigating chemical space are crucially important for the
development of new biologically active compounds and
the design of new drugs for medicine.[20] This is due to the
fact that biologically active compounds of a certain type
are not distributed evenly over the whole chemical space,
but form very compact regions in it, like galaxies in the cos-
mological universe.[20] This is certainly true for any other
chemical property. A special term, chemography, analogous
to geography, has even been suggested for the art of navi-
gating in chemical space.[23]

Although the expression “Chemical space” is widely used
in the chemoinformatics literature, it is not still well de-
fined. Generally speaking, the notion of “space” stands for
a set of objects with some particular properties and some
relationships between them (metric). Below, we consider
two types of chemical objects (graphs and descriptor vec-
tors), different metrics, and related chemical spaces.

3.1.1 Representation of Chemical Objects in Chemoinformatics

In chemoinformatics, the molecules are treated as informa-
tional objects, identifying their structure and properties.
Generally, two main types of objects are used: graphs and
descriptor vectors. In a vertex- and edge-labeled undirected
graph, the vertices and edges correspond to atoms and

chemical bonds, respectively. The vertex labels identify
symbols of chemical elements, whereas the edge labels
characterize the bond type. The label corresponds either to
the bond order in molecules or to some special bond types
in more complex systems. For instance, different types of
“coordination” bonds can be defined for supramolecular
systems, whereas “dynamic” bonds corresponding to chem-
ical transformations can be used to encode chemical reac-
tions.[24] More complex chemical systems, like polymers or
mixtures can be described by ensembles of graphs.

For several practical purposes, more generalized repre-
sentations of chemical structures are needed. For example,
for pharmacophore analysis, the graph vertexes can be la-
beled as pharmacophoric centers (H-donors, H-acceptors,
cation, anion, aliphatic, aromatic), while the separation of
two centers can be depicted by an edge labeled by the
value of the 2D or 3D distance.[25] In Markush structures
used for patent searches, a graph vertex can stand for sev-
eral types of either individual atoms or whole substructures
(e.g. , substituents).[26] The same is true for substructure
queries used for searching chemical databases.[27]

Consideration of some complex chemical objects reveals,
however, some limitations of graph theory to code chemi-
cal structures and their ensembles. Instead, hypergraphs[28]

have been suggested as a more adequate mathematical
model to encode stereochemical information and multicen-
ter bonds. However, hypergraphs are much more difficult
objects to operate compared to graphs, and, therefore,
their use is still very limited.

Another popular representation of molecular structure is
based on molecular descriptors defined by Todeschini and
Consonni as “… the final result of a logical and mathemati-
cal procedure which transforms chemical information en-
coded within a symbolic representation of a molecule into
a useful number or the result of some standardized experi-
ment.”[29] This molecular representation is extremely popu-
lar in chemoinformatics because: (a) various descriptors can
be generated from one and the same molecular graph,
thus describing different facets of the information hidden
in the graph; (b) it is invariant to any renumbering of
graph vertices; (c) most of the descriptors are easy inter-
pretable; (d) inductive transfer of knowledge can be per-
formed via descriptors;[30] and, (e) descriptors define a
vector space which is mathematically much easier to
handle compared to the graph-based space. Descriptor
vectors can be prepared not only for individual molecules
but for more complex systems like chemical reactions[24] or
multicomponent mixtures.[31] Nowadays, more than 5000
types of descriptors of different types have been report-
ed.[29] They are used for database processing (as screens or
fingerprints), for building SAR/QSAR/QSPR models, in simi-
larity searching, clustering, etc.

At the same time, several weak points of molecular de-
scriptors should be mentioned: (a) If descriptors are not
well selected, in the resulting chemical space two different
molecules can be superposed on one point; (b) The
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number of existing descriptors is very large and despite nu-
merous variables selection techniques reported in the liter-
ature,[32] there is always a risk of selecting irrelevant and re-
dundant descriptors ; (c) A serious drawback of molecular
descriptors is the loss of reciprocity with the molecular
structure. Indeed, the reverse reconstruction of molecular
graphs from descriptors is a very difficult and, in some
cases, impossible task known in QSAR as the “inverse”
problem.[33–34] From the practical point of view, it concerns
generation of molecular structures possessing desired
property values. Attempts to solve this problem have been
reported by Gordeeva et al. ,[35] Skvortsova et al. ,[36] and
Faulon et al.[37] who observed some degeneracy of solu-
tions, when several chemical structures corresponded to
one set of molecular descriptor values. As pointed out in,[38]

this prevents a reverse engineering of chemical structures
from molecular descriptors, but, on the other hand, can be
useful to safely exchange chemical information in the form
of molecular descriptors.

3.1.2 Chemical Similarity as a Metric of Chemical Space

By definition, a metric is a function which defines a dis-
tance between the elements of a set. For all x, y, z, this
function must satisfy the following conditions: (i) d(x, y)�0
(nonnegativity) ; (ii) d(x, y) = d(y, x) (symmetry) and, (iii) d(x,
z)�d(x, y) + d(y, z) (triangle inequality). Strictly speaking, the
distance d(x, z) is a dissimilarity measure which is zero for
identical elements and increases with the decrease of simi-
larity between them. Thus, it can be defined as distance =
1�similarity. Some similarity measures are briefly consid-
ered below.

Molecular similarity (or chemical similarity) is one of the
most basic concepts in chemoinformatics.[39–40] It is widely
used in virtual screening and in silico design of new com-
pounds. Such studies are based on the similar property prin-
ciple which states that similar compounds have similar
properties.[39] In application to classification problems this
means that similar chemical compounds tend to belong to
the same class (e.g. , possessing similar biological activity),
whereas as applied to regression problems it means that
the approximating function should be as smooth as possi-
ble. It should also be pointed out that molecular similarity
always depends on the choice of descriptors and methods
to compare molecular graphs.

Chemical similarity measures described in the literature
can be calculated from (a) molecular graphs; (b) descriptor
vectors; (c) molecular fields; they can also be assessed from
(d) kernels, and (e) unsupervised or (f) supervised modeling
studies. This classification is rather fuzzy, and some similari-
ty measures belong simultaneously to several classes. Some
details are given below.

A similarity measure based on the size of the maximum
common subgraph (MCS) for a pair of graphs is perhaps
the most well-known graph-based similarity measure. Due
to the relative complexity and inefficiency of computational

algorithms to search for an MCS,[41] this approach, however,
is rarely used to perform a similarity search[42] or to cluster
chemical databases.[43]

Another type of graph-based similarity measure is that of
graph kernels which assign to each pair of graphs a posi-
tive real number characterizing similarity.[44–45] They are
used to map a graph-based chemical space to a vector
(feature) space in which the structure–property model is
built. This approach has been successfully used in SAR and
QSAR.[46]

The most popular similarity measures are based on fixed-
sized descriptor vectors. These are various types of distan-
ces (Euclidean, Manhattan, Mahalanobis, Minkowski) meas-
uring molecular dissimilarity or some indices (Tanimoto,
Dice, cosine, Tversky, etc.) measuring similarity. These meas-
ures are widely discussed in the literature, e.g. , see the
review paper by Willett[47] and references therein.

Several approaches have been developed to compare
molecular fields. The Carbo index is computed by integrat-
ing overlaps of electronic densities of two molecules as-
sessed using quantum-chemical approaches.[48–51] The SEAL
index[52] is used to assess an alignment of steric and elec-
trostatic fields of the molecules. Since any molecular field
could be represented as a descriptor vector based on the
field value on the grid points, a similarity measure can be
simply calculated as the product of two vectors.

Similarity measures for which all matrices of values are
semipositive definite (the determinant is larger or equal to
zero) are called “Mercer kernels”, or simply “kernels”. Gener-
ally, kernels are used to project the objects (graphs or vec-
tors) into a Hilbert “feature space”, in which a similarity
measure between these objects is equal to dot-product of
their projections. A dot product of vectors, which can be
viewed as the cosine similarity measure for normalized vec-
tors, is the simplest type of kernel.

Unsupervised machine-learning methods of nonlinear
neighborhood-preserving projections of data can also be
used to assess similarity. A typical example is mapping to
Self-Organizing (Kohonen) Maps, SOM,[53] where the similari-
ty is measured as a distance between different cells. This
offers the possibility to use SOMs for property predic-
tions[54] and in virtual screening.[55]

If several QSAR models are simultaneously applied to
predict a property for a series of compounds, the similarity
can be assessed in the “models’ space”. Indeed, for each
compound, one can form a vector based on the prediction
results. A dot product of these vectors can be considered
as a measure of the similarity of two molecules. This ap-
proach has been used by Tetko in the ASNN (Associative
Neural Networks) method.[56]

Generally, similarity measures could be used both for
similarity-based predictions and similarity searching.[39] Simi-
larity-based prediction approaches in the initial descriptor
space are based on the k nearest neighbors method (kNN).
However, kernel similarity measures implemented in kernel-
based machine learning methods lead generally to more
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computationally efficient and predictive models.[44] Both in
similarity-based prediction methods and in querying large
chemical databases, the computational efficiency largely
depends on whether a given similarity measure defines a
metric in chemical space.[57]

For most of similarity measures, the metric axioms (i)–(iii)
are valid, and, therefore, they can be perceived as distances
in chemical space.

3.1.3 Navigation in Graph-based Chemical Space

In principle, each ensemble of molecular graphs forms a
discrete metric topological space. Its topology is defined by
a set of all its possible subsets, where the simplest discrete
metric gives the distance 0 if two chemical objects are
equivalent, i.e. corresponding chemical graphs are isomor-
phic to each other and 1 otherwise. This simplest metric is
however not useful in practical applications, because in
such space all distinct objects are equally similar to each
other. More flexible relationship between graphs can be ex-
pressed as a degree of their mutual similarity/dissimilarity.
In particular, this relationship can be established by map-
ping an ensemble of graphs onto a descriptor vector space
followed by an assessment of standard similarity measures.

The three main approaches used to describe a set of mo-
lecular graphs and to navigate in this space are: (a) sub-
structure-based, (b) superstructure-based, and (c) mutation-
based.

In the substructure-based approach a special “navigation”
graph is usually constructed. It can be used for the visuali-
zation of chemical databases, exploring relations between
compounds and discovering unexplored regions in the
chemical space. In the navigation graph, the nodes corre-
spond to individual molecular graphs and edges corre-
spond to some transition rules. Bemis and Mursko have
considered transitions between an unlabelled graph (frame-
work) to a labeled graph (full chemical structure).[58–59] They
invented the concept of molecular frameworks,[58–59] used
to organize the structural data by grouping the atoms of
each drug molecule into ring, linker, framework, and side
chain atoms. Thus, a huge database can be described by a
limited number of frameworks. In the “scaffold tree” graph
approach of Schuffenhauer et al. ,[60–61] transitions are al-
lowed between a molecular graph and its subgraph. It has
been demonstrated that this type of navigation graphs
allows one to perform an efficient and intuitive activity
mapping, visualization and navigation of the chemical
space defined by a given library, which in turn leads to
building correlations with bioactivity and further com-
pound design.[62] Thus, the hierarchical scaffold classifica-
tion proposed in[61] helps to chart biologically relevant
chemical space using data on natural products. The idea of
a “scaffold tree” is implemented in the open source “Scaf-
fold Hunter” software,[63] an interactive tool for navigation
in chemical space, which facilitates recognition of complex
structural relationships associated with bioactivity.

To represent relationships in analogous series of com-
pounds having the same scaffold and different substitution
patterns, multilayer-rooted “combinatorial analogue
graphs” (CAGs) have been proposed by Peltason et al.[19]

These graphical representations hierarchically organize
compounds according to substitution patterns and are an-
notated with SARI discontinuity scores[64] in order to ac-
count for SAR discontinuity at the level of functional
groups. The approach makes it possible to identify under-
sampled regions and highlight key substitution patterns
which determine the SAR of a compound series. An alterna-
tive way to visualize SARs in analogous series with a
common scaffold is offered by the “SAR maps” invented by
Agrafiotis et al.[65] In a “SAR map”, each series is rendered as
a rectangular matrix of cells, each representing a unique
combination of substituents (i.e. , a unique compound).
Color-coding the cells by their potency easily identifies SAR
patterns.

Pollock et al.[66] introduced the scaffold topology ap-
proach, which represents a connected graph with the mini-
mum number of nodes and edges required to fully de-
scribe its ring structure. An algorithm for systematic gener-
ation of scaffold topologies allows one to analyze systemat-
ically all scaffold topologies for up to eight-ring molecules
and four-valence atoms, thus providing coverage of the
lower portion of the chemical space of small molecules.[66]

Scaffold topology distributions were analyzed for several of
the most popular chemical structure databases with huge
number of compounds, both real and virtual, and many in-
teresting features were found.[67] It is claimed that “scaffold
topologies can be the first step toward an efficient coarse-
grained classification scheme of the molecules found in
chemical databases”.[67]

In the superstructure-based approach, each individual mo-
lecular graph is considered as a subgraph of a common su-
pergraph corresponding to the ensemble of individual
graphs.[68] Although this approach is limited to relatively
small congeneric sets of compounds, it has been found
very suitable to build QSAR models, as demonstrated in the
positional analysis by Magee,[69–70] the DARC/CALPHI system
by Mercier et al. ,[71] the MTD-PLS approach of Kurunczi
et al. ,[72–74] and the MFTA approach by Palyulin et al.[68, 75] For
each individual chemical structure, the occupancies of su-
pergraph nodes or local physicochemical descriptors of
atoms matching these nodes, form a fixed-size descriptor
vector used in machine-learning methods as an input.

An alternative mutation-based approach to travel in
graph-based chemical space has been suggested by van
Deursen et al.[76] They represent a chemical space as a
graph in which vertices correspond to individual molecules
and edges correspond to structural mutations: change of
atom type; inversion of stereochemical configuration at
chiral centers, removal and addition of atom; saturation
and unsaturation of bond; bond rearrangement; and aro-
matic ring addition. Traveling in such space from one
active molecule to another one, one can discover along the

26 www.molinf.com � 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Mol. Inf. 2011, 30, 20 – 32

Review A. Varnek, I. I. Baskin

www.molinf.com


trajectory a certain number of novel structures which can
be further analyzed in the context of lead optimization. A
similar approach has been reported by Bishop et al.[77] who
suggested the use of chemical reactions as structural muta-
tions connecting in the chemical space known organic
compounds taken from the Beilstein database. The super-
graph created in such a way enabled the authors to select
a set of the “most useful compounds” from which the ma-
jority of chemical compounds can be synthesized.

3.1.4 Navigation in Descriptor-Based Chemical Space

Descriptor-based chemical space is a multidimensional
space in which molecules are represented as vectors. Two
main approaches – dimensionality reduction and clustering
-are used to facilitate the navigation in this space.

Dimensionality reduction is achieved in classical multi-
variate data analysis by the Principal Component Analysis
(PCA) procedure.[78–79] In PCA, several features (called “prin-
cipal components”) corresponding to the principal inertia
axes of the “cloud” of data points in the initial descriptor
space are used as axes of a new low-dimensional space,
onto which the initial data points are projected. Such pro-
jection occurs with the minimal loss of information and,
therefore, maximal conservation of the neighborhood rela-
tionships between data points. Thus, representation of the
data points in the resulting low-dimensional space can be
considered as a “navigation map” of the descriptor space.
This idea has been implemented in the ChemGPS (chemical
global positioning system) technique[23] which positions
chemical structures in drug-like chemical space (drug
space). This makes this approach as well as the related
ChemGPS-NP[80–81] tool a well-suited reference system to
compare multiple libraries and to keep track of previously
explored regions of the chemical descriptor space.[23]

Although the axes of the PCA “navigation map” are or-
thogonal, corresponding latent variables are statistically in-
dependent only for a Gaussian distribution of data points.
Since this distribution in the descriptor space is usually
strongly non-Gaussian, this can hamper the chemical inter-
pretability of particular latent variables and reduce the use-
fulness of the whole “navigation map”. To solve this prob-
lem, Independent Component Analysis (ICA) has been sug-
gested.[82–85] It has been demonstrated that the application
of ICA instead of PCA yields chemically more readily inter-
pretable latent variables.[86]

Hierarchical cluster analysis represents an alternative ap-
proach to navigate in the descriptor space. The resulting
dendrogram gives a clear picture of the neighborhood rela-
tions between chemical objects, although for a large
number of compounds it becomes too burdensome.

The combined application of dimensionality reduction
and clustering methods is realized in Kohonen Self-Organiz-
ing Maps (SOM).[53] In SOMs, the dimensionality reduction is
achieved by embedding a net of neurons onto a 2D sur-
face. The SOMs provide more efficient solutions than PCA,

because the former are more suitable to analyze complex
topological structures of the descriptor space. The ability of
SOMs to build “navigation maps” for visualizing chemical
space has been demonstrated on GPCR ligands,[54] toxic
compounds,[87] inhibitors of P-glycoprotein[88] and different
organic reactions.[89]

A set of chemical structures can be presented as a graph
in which the vertices correspond to individual molecules
and the edges connecting them correspond to certain
neighborhood relations.[90] This technique has been used to
represent relationships between different classes of drug
molecules,[91] to elucidate similarity relationships within the
sets of active compounds,[92] and to explore structure-selec-
tivity relationships.[93]

Hierarchical clustering techniques using some similarity
measures also offer the possibility of analyzing large chemi-
cal data sets. Thus, Agrafiotis et al.[94] have used radial clus-
terograms, different segments of which are color-coded by
biological activity or any other user-defined property.

To characterize structure–activity landscapes in the de-
scriptor-based chemical space, SARI and SALI indices have
been suggested. The SARI index[64] globally characterizes
structure-activity landscapes. It consists of two terms: the
continuity score which measures the potency-weighted
structural diversity, and the discontinuity score calculated
as the average potency difference among similar pairs of
molecules. The SALI index[95] is local, considering two relat-
ed molecules, and it is often used to quantify “activity
cliffs”.[96]

3.2 Modeling Background

The two main mathematical approaches used in chemoin-
formatics are graph theory and computational learning
theory. Whilst the chemical applications of graphs are de-
scribed in numerous books and review articles (e.g. , see
Bonchev[97]), the latter is described mostly in the data-
mining literature. Here, we give some general information
about some basic concepts of computational learning
theory.

3.2.1 Computational Learning Theory

In recent years, in statistical modeling there has been a
shift from the classical statistical paradigm of “model pa-
rameterization” to a new paradigm of “predictive flexible
modeling”. The first paradigm supposes that the functional
dependence between the input and output data is estab-
lished from some external knowledge and the goal of the
statistical study is to find a few independent free parame-
ters by fitting to experimental data. This usually requires a
certain number of experimental observations per each free
parameter. Unfortunately, this requirement can be met only
in very few cases, e.g. , within the classical Hansch-Fujita ap-
proach based on three descriptors only.[98] The aim of the
second paradigm is to build models with maximal predic-
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tive performance by fitting to experimental data rather flex-
ible families of functions involving large numbers of inter-
correlated parameters. Such a setup is evidently much
more appropriate for most chemoinformatics studies. The
first attempts to implement the second paradigm in the
framework of so-called nonparametric statistical analysis
failed because of the “curse of dimensionality” (which re-
quired a huge number of observations exponentially grow-
ing with the number of free parameters).[99] Nonetheless,
early works on predictive modeling were successfully car-
ried out using completely heuristic methodologies of artifi-
cial neural networks[100–101] and decision trees.[102] For the
first time, a strong theoretical background to build statisti-
cal models using finite (even small) data sets was devel-
oped by Vapnik in his Statistical Learning Theory (SLT).[14]

This approach, together with that developed later as the
PAC (Probably Approximately Correct) theory by Valiant[15]

and the MDL (Minimum Description Length) concept by
Rissanen[103] constitute the basis of modern computational
learning theory.

According to SLT, the goal of statistical study is to
choose from a given set of functions f(x, q) the “best” one
f(x, q*) with the minimum value of the risk functional R[f] ,
which is defined as an expected prediction error on new
data taken from the same distribution as the training set
(i.e. , the mean prediction performance on all possible test
sets). Here x denotes the variables (descriptors in QSAR
studies) and q the adjustable parameters. Another impor-
tant characteristic is the empirical risk functional Remp [f] ,
which is defined as an error on the training set (fitting
error). For regression tasks, Remp is usually calculated as:

Remp½f � ¼
1
N

XN

i¼1

ðyi � f ðxi; qÞÞ2 ð1Þ

Here i denotes the observations (compounds in QSAR
studies) in the training set, N is the size of the training set,
yi is the response value in i-th observation (the property
value of i-th compound in QSAR studies). According to
Vapnik,[14, 99] for the classification tasks the risk can be esti-
mated as

R½f � � Remp½f � þ cðh,NÞ ð2Þ

Here, the complexity term c(h,N) characterizes the flexi-
bility of the set of functions f(x, q) to fit experimental data.
It increases with the Vapnik-Chervonenkis (VC) dimension h
and decreases with the number of data N. It follows from
Equation 2 that in order to obtain a predictive model, one
should minimize both the empirical risk Remp (i.e. , fitting
error) and the complexity term.

In fact, the notion of complexity is related to the
smoothness of functions for regression tasks. If f is not flexi-
ble enough, the complexity term is small, but Remp could be
large (underfitting). Too complex (flexible) f perfectly fits

the data, thus reducing Remp. On the other hand, f could fit
not only a trend but also noise in the data, thus increasing
the complexity term (overfitting). Thus, to minimize the risk
R[f] , one should find a compromise between Remp and the
complexity term in (2). This can be achieved by introduc-
tion of some trade-off parameters depending on particular
machine learning method. For example, these include the
number of descriptors in multiple linear regression models
with variables selection; the ridge value in the ridge regres-
sion; the number of “leaves” in decision trees; the number
of iterations in neural networks; the parameter k in kNN
and the C and n parameters in SVM calculations. These pa-
rameters should be optimized in order to achieve the best
prediction performance of the model.

One of the most interesting conclusions of SLT is that
the value of the complexity term does not directly depend
on the number of free parameters q in the function class f,
the flexibility (capacity, complexity) of which is measured
by the VC dimension h. The value of h can be considered
as an “effective” number of free parameters. (Note that h is
equal to the number of free parameters in classical multiple
linear regression without descriptor selection).

According to SLT, h is controlled by the trade-off parame-
ter used to simultaneously minimize both terms in Equa-
tion 2. This offers an opportunity to build models with any
(even very huge) number of variables using kernel ap-
proaches, which approximate nonlinear functional depend-
encies of any form by projecting descriptors onto a feature
space of any (even infinite) dimensionality and build linear
models in this feature space.[44]

Nowadays, computation learning theory represents a
quickly developing area. Thus recently, a Bayesian learning
approach to predictive flexible modeling has been de-
scribed.[104] Instead of one single model (as in STL), it con-
siders the whole statistical distributions of models weight-
ed by their ability to fit data, thus allowing one to make
probabilistic predictions by averaging these distributions.
This approach has come to be rather popular in chemoin-
formatics: its implementations in Bayesian Neural Net-
works,[105] Gaussian Processes,[106] and Bayesian Networks[107]

have been recently published.

3.2.2 Different Facets of Statistical Modeling

It should be pointed out that the range of application of
different statistical (machine learning) methods in chemoin-
formatics is currently very wide (Figure 2). Most of the exist-
ing machine learning approaches can provisionally be di-
vided into two large families: supervised and unsupervised
machine learning. (Some other approaches – semisuper-
vised, active and multi-instant learning – are very rarely
used in chemistry so far).

The goal of the supervised learning in chemistry is to
predict physicochemical properties and biological activities
of chemical compounds. The quantitative prediction of
real-valued properties is performed by regression models,
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whereas qualitative predictions (“active” or “inactive”?) are
assessed in classification models. The most popular regres-
sion methods currently used in chemoinformatics applica-
tions are multiple linear regression (MLR), partial least
squares (PLS), neural networks, support vector regression
(SVR), and kNN, whereas the na�ve Bayes, support vector
machines (SVM), neural networks and classification trees
(especially the Random Forest method[108]) are widely used
for classification. There are also ranking models,[109] in
which ranking order instead of property values are predict-
ed, and models with structured output,[110] in which predict-
ed values belong to classes of any complexity. Models of
the latter two types can be built using some special modifi-
cations of SVM.

Unsupervised learning describes the data and reveals
their hidden patterns. The most important tasks treated by
unsupervised modeling approaches are: (a) cluster analysis
(data reduction) ; (b) dimensionality reduction; (c) novelty
(outlier) detection. All these tasks can be perceived as par-
ticular cases of data density estimation. Many standard al-
gorithms for both nonhierarchical (e.g. , k-means) and hier-
archical clustering algorithms are used. The most popular
algorithms for dimensionality reduction are PCA (Principal
Component Analysis) and ICA (Independent Component
Analysis). Tasks (a) and (b) are solved simultaneously in the
Kohonen Self-Organizing Maps (SOMs),[53] which are inten-
sively used for the purposes of visualization and analysis of
the chemical space. The ability of several machine learning
methods, such as one-class SVM,[44] to tackle the problem
of novelty detection is currently used to define the applica-
bility domains of QSAR/QSPR models[111] as well as in virtual
screening experiments.[112]

With respect to data description, two types of models –
primal and dual – can be identified. Primal models are
based on the direct use of descriptors, whereas dual
models are based on measures describing similarity rela-

tionships between chemical structures. Kernels represent
the most useful types of such measures; they can be com-
puted both from molecular descriptors and by direct com-
parison of chemical structures. Both primal and dual ap-
proaches can be used within supervised and unsupervised
modeling tasks.

Finally, statistical models can be built for a net of mutual-
ly related models, in which their predictive performance
can be leveraged due to Inductive Learning Transfer phe-
nomenon,[30, 113] in the framework of the Multi-Task Learning
and Feature Net approaches.[30]

4 Relations of Chemoinformatics with the
“Sister” Disciplines

4.1 Chemoinformatics and Machine Learning

Although machine learning is widely used for structure-
property modeling, chemoinformatics can be considered as
a very specific area of its application. The specificity of che-
moinformatics results from (i) the nature of chemical ob-
jects, (ii) the complexity of the chemical universe and (iii) a
possibility to take into account an extra-knowledge.

The basic chemical object is a graph (or hypergraph),
rather than simple fixed-sized vector of numbers as in the
typical applications in mathematical statistics and machine
learning. This dictates the need to apply graph theory, to
develop novel descriptors and structured graph kernels,
and to apply machine learning methods capable of dealing
with structured discrete data.

The second important distinction comes from the fact
that the chemical data result from an explorative process in
a huge chemical space rather than from specially organized
sampling. Hence, they cannot be considered as representa-
tive, independent and identically distributed sampling from
a well defined distribution. Thus, special approaches are

Figure 2. Different approaches to model description.
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needed to treat this problem: various strategies to explore
chemical space, the “applicability domain” concept, the
active learning approach, etc.

Finally, one can use the relationships between different
properties issued from physicochemical theory. (For exam-
ple, the Arrhenius law could be particularly useful upon the
modeling the rate constants). These relationships could be
integrated into chemoinformatics workflow as an external
knowledge.

4.2 Chemoinformatics and Chemometrics

Massart[114] has defined chemometrics as “a chemical disci-
pline that applies mathematics, statistics and formal logic (a)
to design and select optimal experimental procedures ; (b) to
provide maximum relevant chemical information by analyz-
ing chemical data; and (c) to obtain knowledge about chemi-
cal systems”. Generally, chemometrics requires no informa-
tion about chemical structure and, therefore it overlaps
with chemoinformatics only in the area of application of
machine learning methods. It is widely used in experiment
design, chemical engineering, analytical chemistry and
treatment of spectra – fields where an exhaustive treat-
ment of multivariate data is needed.

4.3 Chemoinformatics and Bioinformatics

Unlike chemoinformatics dealing with “chemical size” mole-
cules, bioinformatics uses computational tools to study the
structure and function of biomolecules (proteins, nucleic
acids). This is a broad field mostly involving 3D (force field
and quantum mechanics calculations) and 1D (sequence
alignment) modeling. In the latter, a biomolecule is repre-
sented as a string of characters (building blocks). Graph
and fixed size vector models used in chemoinformatics are
very rarely used in bioinformatics. In this sense, chemo-
and bioinformatics are “complementary”. On the other
hand, there are many examples of interpenetration of these
fields. Thus, in docking calculations, protein structures
could be generated by bioinformatics tools, whereas some
scoring functions involve vector representation of ligands.

Another way to combine bio- and chemoinformatic ap-
proaches is related to the construction of protein-ligand
descriptors or fingerprints based on available 3D informa-
tion about protein-ligand complexes. Thus, Tropsha
et al.[115] developed CoLiBRI descriptors calculated for a
pseudomolecule constructed from interacting atoms of the
protein and the ligand. Marcou and Rognan[116] have devel-
oped “interaction fingerprints” accounting for eight interac-
tion types per each protein atom interacting with the
ligand: hydrophobic; aromatic (face to face) ; aromatic
(edge to face) ; H-bond (protein donor atom); H-bond (pro-
tein acceptor atom); ionic (positively charged protein
atom); ionic (negatively charged protein atom); metal com-
plexation. , Langer et al.[117] have reported a technique to

build pharmacophoric ligand models based on the analysis
of 3D protein-ligand structures.

A promising way to describe ligand–receptor complexes
concerns construction of protein-ligand kernels (PLK) as
products of “chemical” ligand–ligand (LLK) and “biological”
protein–protein kernels (PPK). The resulting feature space
for PLK is a tensor product of the features spaces corre-
sponding to LLK and PPK. Machine learning models involv-
ing PLK are based on the idea that similar ligands bind to
similar proteins. Using these kernels, one can predict bind-
ing potency of both different ligands with respect to a
given protein, and different proteins with respect to a
given ligand. Several articles describing PPK have been
published. Erhan et al. combined “chemical” kernels based
on MOE descriptors and “biological” kernels based on pro-
tein-ligand “interaction fingerprints”.[118] Faulon et al.[119]

used the signature molecular descriptors to calculate
“chemical” and “biological” Tanimoto kernels. Jacob and
Vert[120] combined a Tanimoto kernel for the ligands and
several types of kernels for the proteins. In particular, for
PPK they compared either protein sequences or EC num-
bers. Bajorath et al.[121] used a linear kernel for the ligands
and protein-protein kernels calculated from sequence iden-
tity matrix.

5 Conclusions

Here, chemoinformatics has been described as a fundamen-
tal theoretical chemistry discipline complementary to quan-
tum chemistry and force-field molecular modeling. Chemo-
informatics represents molecules as graphs or descriptor
vectors whose ensembles form, respectively, graph-based
or descriptor-based spaces. Chemical similarity measures or
hierarchical relationships between graphs are used as met-
rics in the chemical space. Chemoinformatics uses two
main mathematical approaches – graph theory and statisti-
cal learning theory; the latter is briefly described here.

In this paper, we have not aimed to describe all facets of
chemoinformatics, but have attempted to delineate some
important points identifying this field as an independent
scientific discipline. This view is probably incomplete. How-
ever, we hope it will initiate a discussion which in any case
could be useful for the chemoinformatics community.
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