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1.1 Introduction

Chemoinformatics1–5 is an emerging science that concerns the mixing of chemi-
cal information resources to transform data into information, and information
into knowledge. It is a branch of theoretical chemistry based on its molecular
model, and which uses its own basic concepts, learning approaches and areas of
application. Unlike quantum chemistry, which considers molecules as ensemble of
electrons and nuclei, or force field molecular mechanics or dynamics simulations
based on a classical molecular model (‘‘atoms’’ and ‘‘bonds’’), chemoinformatics
represents molecules as objects in a chemical space defined by molecular
descriptors. Among thousands of descriptors, fragment descriptors occupy a
special place. Fragment descriptors represent selected subgraphs of a 2D mole-
cular graph; structure–property approaches use their occurrences in molecules or
binary values (0, 1) to indicate their presence or absence in the given graph.
The unique properties of fragment descriptors are related to the fact that

(i) any molecular graph invariant (i.e., any molecular descriptor or property)
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can be uniquely represented as a linear combination of fragment descriptors;7–9

(ii) any symmetric similarity measure can be uniquely expressed in terms
of fragment descriptors;10,11 and (iii) any regression or classification structure–
property model can be represented as a linear equation involving fragment
descriptors.12,13

An important advantage of fragment descriptors is related to the simplicity of
their calculation, storage and interpretation (see review articles14–18). They belong
to information-based descriptors,19 which tend to code the information stored in
molecular structures. This contrasts with knowledge-based (or semi-empirical)
descriptors derived from consideration of the mechanism of action. Owing to
their versatility, fragment descriptors can efficiently be used to build structure–
property models, perform similarity search, virtual screening and in silico design
of chemical compounds with desired properties.
This chapter reviews fragment descriptors with respect to their use in

structure–property studies, similarity search and virtual screening. After a
short historical survey, different types of fragment descriptors are considered
thoroughly. This is followed by a brief review of the application of fragment
descriptors in virtual screening, focusing mostly on filtering, similarity search
and direct activity/property assessment using quantitative structure–property
models.

1.2 Historical Survey

Among a multitude of descriptors currently used in Structure–Activity Rela-
tionships/Quantitative Structure–Activity Relationships/Quantitative Structure–
Property Relationships (SAR/QSAR/QSPR) studies,20 fragment descriptors
occupy a special place. Their application as atoms and bonds increments in the
framework of additive schemes can be traced back to the 1930–1950s; Vogel,21

Zahn,22 Souders,23,24 Franklin,25,26 Tatevskii,27,28 Bernstein,29 Laidler,30 Benson
and Buss31 and Allen32 pioneered this field. Smolenskii was one of the first, in
1964, to apply graph theory to tackle the problem of predictions of the physico-
chemical properties of organic compounds.33 Later on, these first additive
schemes approaches have gradually evolved into group contribution methods.
The latter are closely linked with thermodynamic approaches and, therefore,
they are applicable only to a limited number of properties.
The epoch of QSAR (Quantitative Structure–Activity Relationships) studies

began in 1963–1964 with two seminal approaches: the s-r-p analysis of Hansch
and Fujita34,35 and the Free–Wilson method.36 The former approach involves
three types of descriptors related to electronic, steric and hydrophobic charac-
teristics of substituents, whereas the latter considers the substituents themselves
as descriptors. Both approaches are confined to strictly congeneric series of
compounds. The Free–Wilson method additionally requires all types of sub-
stituents to be sufficiently present in the training set. A combination of these
two approaches has led to QSAR models involving indicator variables, which
indicate the presence of some structural fragments in molecules.
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The non-quantitative SAR (Structure–Activity Relationships) models
developed in the 1970s by Hiller,37,38 Golender and Rosenblit,39,40 Piruzyan,
Avidon et al.,41 Cramer,42 Brugger, Stuper and Jurs,43,44 and Hodes et al.45

were inspired by the, at that time, popular artificial intelligence, expert systems,
machine learning and pattern recognition paradigms. In those approaches,
chemical structures were described by means of indicators of the presence of
structural fragments interpreted as topological (or 2D) pharmacophores (bio-
phores, toxophores, etc.) or topological pharmacophobes (biophobes, toxo-
phobes, etc.). Chemical compounds were then classified as active or inactive
with respect to certain types of biological activity.
Methodologies based on fragment descriptors in QSAR/QSPR studies are

not strictly confined to particular types of properties or compounds. In the
1970s Adamson and coworkers46,47 were the first to apply fragment descriptors
in multiple linear regression analysis to find correlations with some biological
activities,48,49 physicochemical properties,50 and reactivity.51

An important class of fragment descriptors, the so-called screens (or struc-
tural keys, fingerprints), were also developed in 1970s.52–56 As a rule, they
represent the bit strings that can effectively be stored and processed by com-
puters. Although their primary role is to provide efficient substructure
searching in large chemical structure databases, they can be efficiently used also
for similarity searching,57,58 clustering large chemical databases,59,60 assessing
their diversity,61 as well as for SAR62 and QSAR63 modeling.
Another important contribution was made in 1980 by Cramer who invented

BC(DEF) parameters obtained by means of factor analysis of the physical
properties of 114 organic liquids. These parameters correlate strongly with
various physical properties of diverse liquid organic compounds.64 On the other
hand, they could be estimated by linear additive-constitutive models involving
fragment descriptors.65 Thus, a set of QSPR models encompassing numerous
physical properties of diverse organic compounds has been developed using
only fragment descriptors.
One of the most important developments of the 1980s was the CASE

(Computer-Automated Structure Evaluation) program by Klopman et al.66–69

This ‘‘self-learning artificial intelligent system’’69 can recognize activating and
deactivating fragments (biophores and biophobes) with respect to the given
biological activity and to use this information to determine the probability that
a test chemical is active. This methodology has been successfully applied to
predict various types of biological activity: mutagenicity,67,70,71 carcinogeni-
city,66,69,71–73 hallucinogenic activity,74 anticonvulsant activity,75 inhibitory
activity with respect to sparteine monooxygenase,76 b-adrenergic activity,77

m-receptor binding (opiate) activity,78 antibacterial activity,79 antileukemic
activity,80 etc. Using the multivariate regression technique, CASE can also
build quantitative models involving fragment descriptors.72,77

Starting in the early 1990s, various approaches and related software tools
based on fragment descriptors have been developed and are listed in several
conceptual and mini-review papers.14–18 Because of the wide scope and large
variety of different approaches and applications in this field, many important
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ideas were reinvented many times and continue to be reinvented. In this review
we try to present a clear state-of-the-art picture in this area.

1.3 Main Characteristics of Fragment Descriptors

In this section different types of fragments are classified with respect to their
topology and the level of abstraction of molecular graphs.

1.3.1 Types of Fragments

A tremendous number of various fragments are used in structure–property
studies: atoms, bonds, ‘‘topological torsions’’, chains, cycles, atom- and bond-
centered fragments, maximum common substructures, line notation (WLN
and SMILES) fragments, atom pairs and topological multiplets, substituents
and molecular frameworks, basic subgraphs, etc. Their detailed description is
given below.
Depending on the application area, two types of values taken by fragment

descriptors are considered: binary and integer. Binary values indicate the pre-
sence (true, yes, 1) or the absence ( false, no, 0) of a given fragment in a
structure. They are usually used as screens and elements of fingerprints for
chemical database management and virtual screening using similarity-based
approaches as well as in SAR studies. Integer values corresponding to the
occurrences of fragments in structures are used in QSAR/QSPR modeling.

1.3.1.1 Simple Fixed Types

Disconnected atoms represent the simplest type of fragments. They are used to
assess a chemical or biological property P in the framework of an additive
scheme based on atomic contributions:

PE
XN

i ¼ 1

ni � Ai ð 1:1 Þ

where ni is the number of atoms of i-type, Ai is corresponding atomic con-
tributions. Usually, the atom types account for not only the type of chemical
element but also hybridization, the number of attached hydrogen atoms (for
heavy elements), occurrence in some groups or aromatic systems, etc. Nowa-
days, atom-based methods are used to predict some physicochemical properties
and biological activities. Thus, several works have been devoted to assess the
octanol–water partition coefficient log P: the ALOGP method by Ghose-
Crippen,81–83 later modified by Ghose and co-workers,84,85 and by Wildman
and Crippen,86 the CHEMICALC-2 method by Suzuki and Kudo,87 the
SMILOGP program by Convard and co-authors,88 and the XLOGP method
by Wang and co-authors.89,90 Hou and co-authors91 used Equation (1.1) to
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calculate aqueous solubility. The ability of this approach to assess biological
activities was demonstrated by Winkler et al.92

Chemical bonds are another type of simple fragment. The first bond-based
additive schemes, such as those of Zahn,22 Bernstein29,93 and Allen,32,94

appeared almost simultaneously with the atom-based ones and dealt, pre-
sumably, with predictions of some thermodynamic properties.
‘‘Topological torsions’’ invented Nilakantan et al.95 are defined as a linear

sequence of four consecutively bonded non-hydrogen atoms. Each atom there
is described by the type of corresponding chemical element, the number of
attached non-hydrogen atoms and the number of p-electron pairs. Molecular
descriptors indicating the presence or absence of topological torsions in
chemical structures have been used to perform qualitative predictions of bio-
logical activity in structure–activity (SAR) studies.95 Later on, Kearsley et al.96

recognized that characterizing atoms by element types can be too specific for
similarity searching and, therefore, it does not provide sufficient flexibility for
large-scaled virtual screening. To solve this problem, they suggested assigning
atoms in the Carhart’s atom pairs and Nilakantan’s topological torsions to one
of seven classes: cations, anions, neutral hydrogen bond donors, neutral
hydrogen bond acceptors, polar atoms, hydrophobic atoms and other.
The above-mentioned structural fragments – atoms, bonds and topological

torsions – can be regarded as chains of different lengths. Smolenskii33 suggested
using the occurrences of chains in an additive scheme to predict the formation
enthalpy of alkanes. For the last four decades, chain fragments have proved to
be one of the most popular and useful type of fragment descriptors in QSPR/
QSAR/SAR studies. Fragment descriptors based on enumerating chains in
molecular graphs are efficiently used in many popular structure–property and
structure–activity programs: CASE66–69 and MULTICASE (MultiCASE,
MCASE) by Klopman97,98 NASAWIN99 by Baskin et al., BIBIGON100

by Kumskov, TRAIL101,102 and ISIDA18 by Solov’ev and Varnek. ‘‘Molecular
pathways’’ by Gakh and co-authors,103 and ‘‘molecular walks’’ by Rücker,104

represent chains of atoms.
In contrast to chains, cyclic and polycyclic fragments are relatively rarely

applied as descriptors in QSAR/QSPR studies. Nevertheless, implicitly cyclicity
is accounted for by means of: (i) introducing special ‘‘cyclic’’ and ‘‘aromatic’’
types of atoms and bonds, (ii) ‘‘collapsing’’ the whole cycles and even polycyclic
systems into ‘‘pharmacophoric’’ pseudo-atoms and (iii) generating cyclic
fragments as a part of large fragments [Maximum Common Substructure
(MCS), molecular framework, substituents]. Besides, the cyclic fragments are
widely used as screens for chemical database processing.105,106

1.3.1.2 WLN and SMILES Fragments

WLN and SMILES fragments correspond respectively to substrings of the
Wiswesser Line Notation107 or Simplified Molecular Input Line Entry
System108,109 strings used for encoding the chemical structures. Since simple
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string operations are much faster than processing of information in connection
tables, the use of WLN descriptors was justified in the 1970s when computers
were still very slow. At that time Adamson and Bawden published some linear
QSAR models based on WLN fragments.48,50,51,110,111 They have also applied
this kind of descriptor for hierarchical cluster analysis and automatic classifi-
cation of chemical structures.112 Qu et al.113,114 have developed AES (Advanced
Encoding System), a new WLN-based notation encoding chemical information
for group contribution methods. Interest in line notation descriptors has not
disappeared completely with the advent of powerful computers. Thus, SMILES
fragment descriptors are used in the SMILOGP program to predict log P,88

whereas the recently developed LINGO system for assessing some biophysical
properties and intermolecular similarities uses holographic representations of
canonical SMILES strings.115

1.3.1.3 Atom-centered Fragments

Atom-Centered Fragments (ACF) consist of a single central atom surrounded
by one or several shells of atoms separated from the central one by the same
topological distance. This type of structural fragments was introduced in
the early 1950s by Tatevskii,27,28,116–119 and then by Benson31 to predict some
physicochemical properties of organic compounds in the framework of additive
schemes.
ACF fragments containing only one shell of atoms around the central one (i.e.,

atom-centered neighborhoods of radius 1) were introduced into chemoinfor-
matics practice in 1971 under the names ‘‘atom-centered fragments’’ and ‘‘aug-
mented atoms’’ by Adamson,120,121 who studied their distribution in large
chemical databases with the intention of using them as screens in chemical
database searching. Hodes used, in SAR studies, both ‘‘augmented atoms’’45 and
‘‘ganglia augmented atoms’’325 representing ACF fragments with radius 2 and
generalized second-shell atoms. Subsequently, ACF fragments with radius 1 were
implemented in NASAWIN,122–124 TRAIL101,102,125 and ISIDA18 programs.
ACF fragments with arbitrary radius were implemented by Filimonov, Poroikov
and co-authors in the PASS126 program under the name Multilevel Neighbor-
hoods of Atoms (MNA),127 by Xing and Glen as ‘‘tree structured finger-
prints’’,128 by Bender and Glen as ‘‘atom environments’’129,130 and ‘‘circular
fingerprints’’131–133 (Figure 1.1), and by Faulon as ‘‘molecular signatures’’.134–136

Several types of ACF fragments were designed to store local spectral para-
meters (chemical shifts) in spectroscopy data bases. Thus, Bremser has deve-
loped Hierarchically Ordered Spherical Environment (HOSE), a system of
substructure codes aimed at characterizing the spherical environment of single
atoms and complete ring systems.137 The codes are generated automatically
from 2D graphs and describe structural entities corresponding to chemical
shifts. A very similar idea has also been implemented by Dubois et al. in the
DARC system based on FREL (Fragment Réduit à un Environment Limité)
fragments.138,139 Xiao et al. have applied Atom-Centered Multilayer Code
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(ACMC) fragments for structural and substructural searching in large data-
bases of compounds and reactions.140 An important recent application of ACF
fragments concerns target prediction (‘‘target fishing’’) in chemogenomic data
analysis.126,141,142

1.3.1.4 Bond-centered Fragments

Bond-centered fragments (BCF) consist of two atoms linked by the bond and
surrounded by one or several shells of atoms separated by the same topological
distance from this bond. Although these fragments are rather rarely used in
structure–property studies, they can be efficiently used as screens for chemical
database processing.143 BCF have been used as a part of MDL keys144,145 for
substructure search in chemical databases, database clustering60 and for SAR
studies of 17 different types of biological activity.62 Bond-centered fragments
have also been used in the DARC system.138,139

1.3.1.5 Maximum Common Substructures

For a set of molecular graphs, a Maximum Common Substructure (MCS) is
defined as a largest substructure in all graphs belonging to the given set. In most
practical applications, only MCS for graph pairs are considered, i.e., for sets
containing only two graphs. MCS can be found by intersecting molecular
graphs using several different algorithms (for a review see ref. 146), the best
known of which involve clique detection in so-called compatibility graphs.

C

NH2

OH

O

0

1
2

Layers: 0 1 2

C.ar (sp2) C.ar (sp2)
C.ar (sp2)

C.ar (sp2)

C.ar (sp2)

C (sp2) N (sp3)
O (sp2)
O (sp3)

Figure 1.1 Circular fingerprints with Sybyl mol2 atom typing. An individual finger-
print is calculated for each atom in the molecule, considering those atoms
up to two bonds from the central atom (level 2). The molecular fingerprint
consists of the individual atom fingerprints of all the heavy atoms in the
structure. (Adapted from ref. 132.)
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Notably, a pair of graphs can have more than one MCS. The main advantage
of MCS fragments is related to the fact that their complexity is not limited and
therefore they can be used to detect property-relevant features that could not be
detected by fragments (subgraphs) of limited complexity.
MCSs were first applied to SAR studies in the early 1980s by Rozenblit and

Golender in the framework of their logical-combinatorial approach.40,41,147

Since at that time computer power was limited, the authors suggested the use of
reduced graphs (Section 1.3.5) built on pharmacophoric centers. The MCS
fragments were subsequently applied to perform a similarity search,148 to
cluster chemical databases149,150 as well to assess biological activities of organic
compounds.99,151,152

1.3.1.6 Atom Pairs and Topological Multiplets

Characterizing atoms only by element types is too specific for similarity
searching and, therefore, does not provide sufficient flexibility for large-scale
virtual screening. For that reason, numerous studies have been devoted to
increase the informational content of fragment descriptors by adding some
useful empirical information and/or by representing a part of the molecular
graph implicitly. The simplest representatives of such descriptors were ‘‘atom
pairs and topological multiplets’’ based on the notion of a ‘‘descriptor center’’
representing an atom or a group of atoms that could serve as centers of
intermolecular interactions. Usually, descriptor centers include heteroatoms,
unsaturated bonds and aromatic cycles. An atom pair is defined as a pair of
atoms (AT) or descriptor centers separated by a fixed topological distance:
ATi-Dist-ATj, where Distij is the shortest path (the number of bonds) between
ATi and ATj. Analogously, a topological multiplet is defined as a multiplet
(usually triplet) of descriptor centers and topological distances between each
pair of them. In most of cases, these descriptors are used in binary form
to indicate the presence or absence of the corresponding features in studied
chemical structures.
Atom pairs were first suggested for SAR studies by Avidon as Substructure

Superposition Fragment Notation (SSFN).41,153 They were then independently
reinvented by Carhart and co-authors154 for similarity and trend vector analysis.
In contrast to SSFN, Carhart’s atom pairs are not necessarily composed only of
descriptor centers but account for the information about element type, the
number of bonded non-hydrogen neighbors and the number of p electrons.
Nowadays, Carhart’s atom pairs are popular in virtual screening. Topological
Fuzzy Bipolar Pharmacophore Autocorrelograms (TFBPA)155 by Horvath are
based on atom pairs, in which real atoms are replaced by pharmacophore sites
(hydrophobic, aromatic, hydrogen bond acceptor, hydrogen bond donor,
cation, anion), while Distij corresponds to different ranges of topological dis-
tances between pharmacophores. These descriptors were successfully applied in
virtual screening against a panel of 42 biological targets using a similarity search
based on several fuzzy and non-fuzzy metrics,156 performing only slightly less
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well than their 3D counterparts.155 Fuzzy Pharmacophore Triplets (FPT) by
Horvath157 is an extension of FBPF156 for three-site pharmacophores. An
important innovation in the FPT concerns accounting for proteolytic equili-
brium as a function of pH.157 Owing to this feature, even small structural
modifications leading to a pKa shift may have a profound effect on the fuzzy
pharmocophore triples. As a result, these descriptors efficiently discriminate
structurally similar compounds exhibiting significantly different activities.157

Some other topological triplets should be mentioned. Similog pharmacophoric
keys by Schuffenhauer et al.158 represent triplets of binary coded types of atoms
(pharmacophoric centers) and topological distances between them (Figure 1.2).
Atomic types are generalized by four features (represented as four bits per atom):
potential hydrogen bond, donor or acceptor, bulkiness and electropositivity. The
‘‘topological pharmacophore-point triangles’’ implemented in the MOE soft-
ware159 represent triplets of MOE atom types separated by binned topological
distances. Structure–property models obtained by a support vector machine
method with these descriptors have been successfully used for virtual screening
of COX-2 inhibitors160 and D3 dopamine receptor ligands.161

1.3.1.7 Substituents and Molecular Frameworks

In organic chemistry, decomposition of molecules into substituents and mole-
cular frameworks is a natural way to characterize molecular structures.
In QSAR, both the Hansch–Fujita34,35 and the Free–Wilson36 classical
approaches are based on this decomposition, but only the second one explicitly
accounts for the presence or the absence of substituent(s) attached to molecular
framework at a certain position. While the multiple linear regression technique
was associated with the Free–Wilson method, recent modifications of this
approach involve more sophisticated statistical and machine-learning approa-
ches, such as the principal component analysis162 and neural networks.163
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Figure 1.2 Example of a Similog key. (Adapted from ref. 158.)
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In contrast to substituents, molecular frameworks are rarely used in SAR/
QSAR/QSPR studies. In most cases, they are implicitly involved as indicator
variables discriminating different types of molecular motifs (see, for example,
ref. 164). The distributions of different molecular frameworks and substituents
(side chains) in the databases of known drug molecules has been thoroughly
studied by Bemis and Murcko.165,166

1.3.1.8 Basic Subgraphs

Regarding fragment descriptors, one could imagine a huge number of possi-
bilities to split a molecular graph into constituent fragments. Making a parallel
with the decomposition of vectors into a limited number of basis functions,
Randič326 suggested the existence of a small set of basic subgraphs representing
any structure and which could be used to calculate any molecular property. In
particular, for small alkanes a set of disconnected graphs representing paths
(chains) of different length has been proposed (Figure 1.3).
However, later it has since been found that this set is not sufficient to dif-

ferentiate any two structures. Skvortsova et al. have extended the set of Randič
basic subgraphs by including cyclic fragments and more complex subgraphs
consisting of single node attached to a cyclic fragment.167 This set exhibits good
coding uniqueness (i.e., different vectors of descriptors correspond to different
structures) and coding completeness (i.e., they can approximate a numerous
structure–property functions). Basic fragment descriptors of this kind were
used in several QSPR studies.168
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Figure 1.3 Randič basic graphs for a maximum number of nodes of 7.
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In fact, a rigorous solution of the problem of finding a set of basic graph
invariants was obtained by Mnukhin169 for simple graphs and then extended to
molecular graphs by Baskin, Skvortsova et al.7–9 (Figure 1.4). It has been shown
that the complete set of basic graph invariants could be built on all possible
subgraphs, and hence one can not to confine this to any subset of limited size.
Nonetheless, for many practical tasks the application of a limited number of
basic subgraphs and the corresponding fragment descriptors could be useful.
Another application of basic subgraphs arises from the possibility8,169 of

relating the invariants of molecular graphs to the occurrence numbers of some
basic subgraphs. Estrada has developed this methodology for spectral moments
of the edge-adjacency matrix of molecular graphs – defined as the traces of the
different powers of such matrix:170–172

mk ¼ tr ð Ek Þ ð 1:2 Þ

where mk is the k-th spectral moment of the edge-adjacency matrix E (which is a
symmetric matrix whose elements eij are 1 only if edge i is adjacent to edge j)
and tr is the trace, i.e. the sum of the diagonal elements of the matrix. On the
other hand, spectral moments can be expressed as linear combinations of the
occurrence numbers of certain structural fragments in the molecular graph.
These linear combinations for simple molecular graphs not containing hetero-
atoms have been reported for acyclic170 and cyclic172 chemical structures.
To illustrate these notions, consider a correlation between the boiling points

of alkanes and their spectral moments reported in ref. 170:

bp ð �C Þ ¼ � 76:719 þ 23:992m0 þ 2:506m2 � 2:967m3 þ 0:149m5 ð 1:3 Þ

R ¼ 0:9949; s ¼ 4:21; F ¼ 1650

The first six spectral moments of the edge-adjacency matrix E are expressed as
linear combinations of the occurrence numbers of fragments listed in Figure 1.5:

m0 ¼ F1j j ð 1:4 Þ

k = 2 k = 3 k = 4

k = 5

Figure 1.4 Skvortsova’s basic graphs for a maximum number of nodes of 5.
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m2 ¼ 2� F2j j ð 1:5 Þ

m3 ¼ 6� F3j j ð 1:6 Þ

m4 ¼ 2� F2j j þ 12� F3j j þ 24� F4j j þ 4� F5j j ð 1:7 Þ

m5 ¼ 30� F3j j þ 120� F4j j þ 10� F6j j ð 1:8 Þ

m6 ¼ 2� F2j j þ 60� F3j j þ 480� F4j j þ 12� F5j j þ 24� F6j j
þ 6� F7j j þ 36� F8j j þ 24� F9j j ð 1:9 Þ

where |Fi| denotes the occurrence number of subgraph Fi in molecular graph.
Thus, by substituting spectral moments in the QSPR Equation (1.4) for their

expansions (Equations 1.5–1.10) one can obtain the following QSPR equation
with fragment descriptors:

bp ð �CÞ ¼ � 76:719 þ 23:992 j F1 j þ 5:01 j F2 j � 13:332 j F3 j
þ 17:880 j F4 j þ 1:492 j F6 j ð 1:10 Þ

Thus, any spectral moment and hence the activities/properties of chemical
compounds can be represented by contributions of corresponding fragments.
This approach was further extended to molecular graphs containing hetero-
atoms by weighting the diagonal elements of the bond adjacency matrix.171

This methodology has been implemented in TOSS-MODE (TOpological Sub-
Structural MOlecular Design) and TOPS-MODE (TOPological Substructural
MOlecular DEsign) methods,173 which were successfully used to assess various
physicochemical properties of chemical compounds: retention indices in chro-
matography,174 diamagnetic and magnetooptic properties,175 dipole moments,176

F1 F2 F3 F4

F5 F6 F7

F8 F9 F10

Figure 1.5 First ten structural fragments contained in molecular graphs of alkanes.
(Adapted from ref. 170.)
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permeability coefficients through low-density polyethylene,177 etc.), 3D-para-
meters178 and a different types of biological activity (sedative/hypnotic activity,173

anti-cancer activity,179 anti-HIV activity,180 skin sensitization,181 herbicide acti-
vity,182 affinity to A1 adenosine receptor,

183 inhibition of cyclooxygenase,184 anti-
bacterial activity,185 toxicity in Tetrahymena pyriformis,186 mutagenicity,187–189 etc.

1.3.1.9 Mined Subgraphs

The notion of mined subgraphs is closely linked to graph mining (or subgraph
mining), a field of searching the graphs (subgraphs) specifically related to some
properties or activities.190–195 The advantage of this approach is that all relevant
fragments are available for analysis without the need to consider an almost
infinite number of all possible subgraphs, which allows one to select the most
‘‘useful’’ fragments. This methodology196,197 is based on efficient algorithms for
mining the most frequent fragments occurring in sets of molecular graphs, such
as the AGM (Apriori-based Graph Mining) algorithm by Inokuchi et al.,198

the FSG (Frequent Sub-Graphs) algorithm by Kuramochi and Karypis,199 the
chemical sub-structure discovery algorithm by Borgelt and Berthold,200 the
gSpan (graph-based Substructure pattern mining) algorithm by Yan and Han,194

the TreeMiner algorithm by Zaki201 and the HybridTreeMiner and CMTree-
Miner algorithms by Chi, Yang and Muntz,202,203 etc. The mined subgraphs
approach was originally used to classify chemical structures.204,205 ‘‘Weighted
substructure mining, in conjunction with linear programming boosting,206 allows
one to build QSAR regression models involving mined fragment descriptors.195

1.3.1.10 Random Subgraphs

The success of different fragmentation schemes in SAR/QSAR studies strongly
depends on the initial choice of relevant fragment types. Since it is unrealistic to
consider all possible fragments because of their enormous number, one should
always select their small subsets. However, any attempt to apply a limited
subtype of them (e.g., to use only chains with the user specified length) risks
being inefficient because of missing of important fragments. One possible
solution is to generate substructural fragments using stochastic techniques.
Such an approach has been used by Graham et al., who generated ‘‘tape
recordings’’ of chemical structures from atom-bond-atom fragments extracted
from molecular graphs by random walks.207 In the MolBlaster method by
Batista, Godden and Bajorath, for each molecule the program generates a
‘‘random fragment profile’’ representing a population of fragments generated
by randomly deleting bonds in hydrogen-suppressed molecular graph.208 This
method was successfully applied in similarity-based virtual screening.209

1.3.1.11 Library Subgraphs

Many studies employ fixed sets of fragments taken from some libraries con-
taining preliminary selected fragments. Thus, most additive schemes and group
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contribution methods have been derived using fixed sets of fragments. Some
SAR/QSAR/QSPR expert systems also employ fixed sets of selected fragments
and often apply an internal language specifically designed for handling the
descriptors lists. For example, to describe fragments, the DEREK expert sys-
tem for assessing toxicity uses the PATRAN language,210 whereas the ALogP
method86 for predicting the octanol–water partition coefficient log P is based
on the SMARTS line notation [as implemented in the MOE (Molecular
Operating Environment) software suite159].

1.3.2 Fragments Describing Supramolecular Systems

and Chemical Reactions

Using ‘‘special’’ bond types, molecular graphs can represent not only individual
molecules but also more complex species: supramolecular systems, chemical
reactions and polymers with periodic structure. For example, the ISIDA pro-
gram can recognize a ‘‘coordination bond’’ between central metal atom and
donor atoms of the ligand in the metal complexes and ‘‘hydrogen bond’’ in
supramolecular assemblies.32 Varnek et al. used fragment descriptors derived
from ‘‘supramolecular’’ graphs in QSPR modeling of free energy and enthalpy
of formation of 1 : 1 hydrogen bonded complexes.18

The concept of molecular graphs can also be expanded to describe chemical
reactions by introducing special types of ‘‘dynamical’’ bonds corresponding to
formation, modification and breaking of chemical bonds (for a review see ref.
211). The resulting reaction graph contains all necessary information to
reconstruct both reactants and products in the corresponding reaction equa-
tion. Partial reaction graphs containing only ‘‘dynamical’’ bonds were used to
classify and enumerate organic reactions in the framework of Ugi–Dugundji
matrix formalism212 and the Zefirov–Tratch formal-logical approach.213,214

Vladutz condensed reactants and products of a chemical reaction into a single
Superimposed Reaction Skeleton Graph (SRSG)215 containing both dynamical
and conventional (not modified in the reaction) bonds. Similar reaction graphs
under the name ‘‘imaginary transition state’’ were also suggested by
Fujita216,217 for classification and enumeration of organic reactions. This
approach has been extended recently by Varnek et al.18 in Condensed Graphs
of Reactions (CGRs) containing both ‘‘dynamical’’ and conventional bonds
(Figure 1.6). Fragment descriptors derived from CGRs were used in similarity
search of reactions, in reaction classification and in the development of QSPR
models of the rate constant of SN2 reactions in water.218

To encode reaction transformations Borodina et al. have developed Reacting
Multilevel Neighborhood of Atom (RMNA)219 descriptors representing an
extended version of the MNA descriptors. Unlike CGRs, where reaction
information is condensed, in the RMNA approach the information about
modified, created or broken bonds is added to the list of the MNA descriptors
generated for all products and reactants. The RMNA descriptors were applied
to predict metabolic P450-mediated aromatic hydroxylation.219
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1.3.3 Storage of Fragment Information

This section discusses different techniques to store the information about
molecular fragments. The most common way is present a given chemical
structure as a fixed-size array (vector), in which each element corresponds to
the occurrence of a given molecular fragment. Structural keys are descriptor
vectors containing binary values indicating presence of absence of fragments.
Since structural keys can be kept in computer memory as bit strings they are
processed very rapidly, which explains their popularity in chemical database
management, similarity search, SAR/QSAR studies and in virtual screening
(Figure 1.7).
The composition and length of structural keys always depend on the

choice of constituent fragments. Often, structural keys become very sparse,
i.e., they contain very few non-zero values. Such highly imbalanced data pre-
sentation is rather inefficient for computer processing. As a partial solution to
this problem, fragment descriptors can be stored in a list containing the codes
(names) of fragments ‘‘ON’’. Although application of lists reduces the storage’s
size, it is still time consuming to be used for a substructural search in large
databases.
Search efficiency can be improved significantly by using hash tables, allowing

one to link directly the name of descriptor and location of the descriptor’s
value. This technology is used in hashed molecular fingerprints operating with
binary values (Figure 1.8). In contrast to structural keys, in molecular finger-
prints each fragment is mapped onto several cells, positions of which are
computed from the fragment code. The advantage of hashed fingerprints is a
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Figure 1.6 Phenol acetylation and related Condensed Graph of Reaction. ‘‘Dyna-
mical’’ bonds marked with green and red correspond, respectively, to
formation and breaking a single bond.
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possibility to include a big number of fragments in a bit string of reasonable
length. Their drawback is related to the existence of collisions when two or
more fragments are mapped in the same bit. Nonetheless, this problem could be
solved by trade-off between the length of bit string, the number of fragments
types and the number of bits allocated for each fragment.
An interesting way of encoding structural information is realized in mole-

cular holograms, which represent an integer array of bins of predetermined
length (hologram length) that contains information about the occurrences
of fragments. In the course of generating a molecular hologram, each fragment
is coded using the SLN (SYBYL Line Notation).220 Using the cyclic redun-
dancy check (CRC) algorithm,221 this code is transformed into a fragment
integer ID, indicating the location of the particular bin in the molecular
hologram (Figure 1.9). The occupancy of bins is then incremented by one as
soon as the corresponding fragments occur. Since the hologram length I always
smaller than the number of fragments, several different fragments map to the
same bin in the molecular hologram. The resulting bin occupancy is equal to
the sum of occurrence numbers of all these fragments. Molecular holograms
were specially designed to be used in the Holographic QSAR (HQSAR)
approach.63

1.3.4 Fragment Connectivity

Fragments used for building fragment descriptors can be connected and dis-
connected. Most applications are based on connected fragments. The point is

O O

Molecular Structure

Fragment
Generation

Fragments

. . .

12 5 9

CRC
Algorithm

Fragment Integer IDs . . .

3 6 2 0 5 13 0 7 1 8

1 2 3 4 5 6 7 8 9 10

Molecular Hologram

Bin IDs

Figure 1.9 Generation of a molecular hologram. A molecule is broken into several
structural fragments that are assigned fragment integer identifica-
tions (IDs) using the CRC algorithm. Each fragment is then placed
in a particular bin based on its fragment integer ID corresponding to
the bin ID. The bin occupancy numbers are the molecular holo-
gram descriptors that count structural fragments in each bin. (Adapted
from ref. 63.)
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that the indicators of presence or occurrences of disconnected fragments can
always be expressed through the corresponding values obtained for connected
fragments.8 Hence, descriptors based on disconnected fragments are redun-
dant, since they do not carry any additional information compared to their
connected counterparts.
Nonetheless, in some cases disconnected fragments descriptors could simplify

QSAR/QSPR equations. In particular, nonlinear models involving connected
fragments can be replaced with linear models built on disconnected fragments,
because the occurrences of disconnected and connected fragments are non-
linearly related. Thus, the use of disconnected fragments may be viewed as an
implicit way of introducing nonlinearity into QSARs/QSPRs. If binary
descriptor values are used, disconnected fragments implicitly introduce con-
junctions (logical .AND.) into logical expressions instead of nonlinear terms for
connected fragments. Tarasov et al.222 have shown that the compound structural
descriptors defined as combinations of unrelated fragments improve sig-
nificantly the efficiency of mutagenicity predictions. Implicitly, disconnected
fragments, as conjugations of binary (logical) connected fragment descriptors,
were used to build probabilistic SAR models for some biological activities (see
ref. 223 and references therein).

1.3.5 Generic Graphs

In contrast to QSPR studies based on complete (containing all atoms) or
hydrogen-suppressed molecular graphs, assessment of biological activity,
especially at the qualitative level, often requires greater generalization. In that
case, it is convenient to describe chemical structures by reduced graphs, in which
each vertex – descriptor center or pharmacophoric center – represents an atom
or a group of atoms capable of interacting with biological targets, whereas each
edge measures the number of bonds between them. Such a biology-oriented
representation of chemical structures was invented in 1982 by Avidon et al.
under the name Descriptor Center Connection Graphs (DCCG)41 as a gen-
eralization of SSFN descriptors (Section 1.3.1.6).
Figure 1.10(b) shows the DCCG for phenothiazine. In this case, the reduced

graph consists of 16 edges and 10 vertices corresponding to descriptor centers
shown in Figure 1.10(a). Descriptor centers involve four heteroatoms (1–4; see
numbering in Figure 1.10a), which can take part in donor–acceptor interaction
with biomolecules and in the formation of hydrogen bonds, three methyl
groups (5–7), which can take part in hydrophobic interaction with bio-
molecules, two benzene rings (8, 9) and one heterocycle (10), which can take
part in p–p and p–cation interactions with biomolecules. Eleven edges in the
DCCG labeled with positive numbers indicate the topological distances
(counted as the number of bonds) between the atoms included in the corre-
sponding descriptor centers, while the negative labels denote relations between
rings within a polycyclic system. Such graphs are very useful not only as a
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source of biology-oriented fragment descriptors but also for pharmacophore
based virtual screening.
The atom-pairs proposed by Carhart et al.154 are rather similar to the SSFN

descriptors. They can be considered as two-vertex connected fragments of
reduced graphs, in which edges correspond to paths between certain atoms.
Modifications introduced to the atom-pairs descriptors by Kearsley et al.96

through encoding physicochemical properties of atoms render these fragments
even more generic. In 2003 Gillet, Willett and Bradshaw (GWB) introduced
another type reduced graphs and proved their high efficiency in a similarity
search.224 A GWB reduced graph consisting of six vertices and five edges is
shown in Figure 1.11. Its three vertices R correspond to rings, its two vertices
L to linkers, while the vertex F corresponds to a feature – an oxygen atom in this
case, which can form hydrogen bonds. In contrast to DCCG, the edges of GWB
reduced graphs are not labeled and correspond to ordinary chemical bonds.
An important feature of the GWB reduced graphs is a hierarchical organi-

zation of vertex labels. For example, the label Arn (non-hydrogen-bonding
aromatic cycle) is less general than the label Ar (any aromatic cycle), which, in
turn, is less general than R (any ring). Due to this feature, GWB reduced graphs
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Figure 1.10 (a) Structure of phenothiazine with descriptor centers marked on it.
(Adapted from ref. 41.) (b) Descriptor center connection graph for
phenothiazine. (Adapted from ref. 41.)
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can also be organized hierarchically, and the level of their generalization can be
controlled (Figure 1.12). Besides similarity searching, fragment descriptors
based on GWB reduced graphs have been applied to derive SAR models using
decision trees.225

1.3.6 Labeling Atoms

In some cases selected atoms in molecules could be marked with special labels,
indicating their particular role in a modeled property. Some examples are (i)
local properties, such as atomic charges or NMR chemical shifts, which should
always be attributed to a given atom(s), (ii) anchor atoms in the given scaffold
to which substituents are attached (Figure 1.13), (iii) atoms forming a main
chain in polymers and (iv) reaction centers in a set of reactions. Zefirov et al.
have applied labeling in QSPR studies of pKa

226,227 chemical NMR shifts and
reaction rate constant for the acid hydrolysis of esters.226,228 Varnek et al.18

labeled hydrogen bond donor and acceptor centers to model free energies and
enthalpies of formation of the 1 : 1 hydrogen-bond complexes.

1.4 Application in Virtual Screening

and In Silico Design

This section considers the application of fragment descriptors at different stages
of virtual screening and in silico design.
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Figure 1.11 Examples of chemical structures corresponding to the same GWB
reduced graph of type R/F (shown in center). (Adapted from ref. 224.)
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1.4.1 Filtering

Filtering is a rule-based approach aimed to perform fast assessment of usefulness
of molecules in the given context. In terms of drug design, the filtering is used to
eliminate compounds with unfavorable pharmacodynamic or pharmacokinetic
properties as well as toxic compounds. Pharmacodynamics considers binding
drug-like organic molecules (ligands) to chosen biological target. Since the effi-
ciency of ligand–target interactions depends on spatial complementarity of their
binding sites, the filtering is usually performed with 3D-pharmacophores,
representing ‘‘optimal’’ spatial arrangements of steric and electronic features of
ligands.229,230 Pharmacokinetics is mostly related to absorption, distribution,
metabolism and excretion (ADME) related properties: octanol–water partition
coefficients (log P), solubility in water (log S), blood–brain coefficient (log BB),
partition coefficient between different tissues, skin penetration coefficient, etc.
Fragment descriptors are widely used for early ADME/Tox prediction both

explicitly and implicitly. The easiest way to filter large databases concerns
detecting undesirable molecular fragments (structural alerts). Appropriate lists of
structural alerts are published for toxicity,231 mutagenicity,232 and carcinogeni-
city.233 Klopman et al. were the first to recognize the potency of fragment
descriptors for this purpose.66,67,69 Their programs CASE,66 MultiCASE,97,234 as
well as more recent MCASE QSAR expert systems,235 proved to be effective tools
to assess the mutagenicity67,234,235 and carcinogenicity69,234 of organic com-
pounds. In these programs, sets of biophores (analogs of structural alerts) were
identified and used for activity predictions. Several more sophisticated fragment-
based expert systems of toxicity assessment – DEREK,210 TopKat236 and Rex237

– have been developed. DEREK is a knowledge-based system operating with
human-coded or automatically generated238 rules concerning toxicophores.
Fragments in the DEREK knowledge base are defined by means of the linear
notation language PATRAN, which codes the information about atom, bonds
and stereochemistry. TopKat uses a large predefined set of fragment descriptors,
whereas Rex implements a special kind of atom-pairs descriptors (links). For
more information about fragment-based computational assessment of toxicity,
including mutagenicity and carcinogenicity, see ref. 239 and references therein.
The most popular filter used in drug design area is the Lipinski ‘‘rule of

five’’,240 which takes into account the molecular weight, the number of hydrogen
bond donors and acceptors, along with the octanol–water partition coefficient
log P, to assess the bioavailability of oral drugs. Similar rules of ‘‘drug-likeness’’
or ‘‘lead-likeness’’ were later proposed by Oprea,241 Veber242 and Hann.243

Formally, fragment descriptors are not explicitly involved there. However, most
computational approaches that assess log P are fragment-based;244–246 whereas
H-donors and acceptor sites are the simplest molecular fragments.

1.4.2 Similarity Search

The notion of molecular similarity (or chemical similarity) is one of the most
useful and at the same time one of the most contradictory concepts in
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chemoinformatics.247,248 The concept of molecular similarity plays an impor-
tant role in many modern approaches to predicting the properties of chemical
compounds, designing chemicals with a predefined set of properties and,
especially, in conducting drug design studies by screening large databases
containing structures of available (or potentially available) chemicals. These
studies are based on the similar property principle of Johnson and Maggiora,
which states: similar compounds have similar properties.247 The similarity-
based virtual screening assumes that all compounds in a database that are
similar to a query compound have similar biological activity. Although this
hypothesis is not always valid (see discussion in ref. 249), quite often the set of
retrieved compounds is considerably enriched with actives.250

To achieve high efficacy of similarity-based screening of databases containing
millions compounds, molecular structures are usually represented by screens
(structural keys) or fixed-size or variable-size fingerprints. Screens and finger-
prints can contain both 2D- and 3D-information. However, the 2D-fingerprints,
which are a kind of binary fragment descriptors, dominate in this area.
Fragment-based structural keys, like MDL keys,62 are sufficiently good for
handling small and medium-sized chemical databases, whereas processing of
large databases is performed with fingerprints having much higher information
density. Fragment-based Daylight,251 BCI,252 and UNITY 2D253 fingerprints are
the best known examples.
The most popular similarity measure for comparing chemical structures

represented by means of fingerprints is the Tanimoto (or Jaccard) coefficient
T.254 Two structures are usually considered similar if T 4 0.85250 (for Daylight
fingerprints251). Using this threshold, Taylor estimated a probability to retrieve
actives as 0.012–0.50,255 whereas according to Delaney this probability is even
higher, i.e., 0.40–0.60 (ref. 256) (using Daylight fingerprints251). These com-
puter experiments confirm the usefulness of the similarity approach as an
instrument of virtual screening.
Schneider et al. have developed a special technique for performing virtual

screening referred to as Chemically Advanced Template Search (CATS).257

Within its framework, chemical structures are described by means of so-called
correlation vectors, each component of which is equal to the occurrence of a
given atom pair divided by the total number of non-hydrogen atoms in it. Each
atom in the atom pair is specified as belonging to one of five classes (hydrogen-
bond donor, hydrogen-bond acceptor, positively charged, negatively charged,
and lipophilic), while topological distances of up to ten bonds are also con-
sidered in the atom-pair specification. In ref. 257, the similarity is assessed by
Euclidean distance between the corresponding correlation vectors. CATS has
been shown to outperform the MERLIN program with Daylight fingerprints251

for retrieving thrombin inhibitors in a virtual screening experiment.257

Hull et al. have developed the Latent Semantic Structure Indexing (LaSSI)
approach to perform similarity search in low-dimensional chemical space.258,259

To reduce the dimension of initial chemical space, the singular value decom-
position method is applied for the descriptor-molecule matrix. Ranking
molecules by similarity to a query molecule was performed in the reduced space
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using the cosine similarity measure,260 whereas the Carhart’s atom pairs154 and
the Nilakantan’s topological torsions95 were used as descriptors. The authors
claim that this approach ‘‘has several advantages over analogous ranking in the
original descriptor space: matching latent structures is more robust than
matching discrete descriptors, choosing the number of singular values provides
a rational way to vary the ‘fuzziness’ of the search’’.258

The issue of ‘‘fuzzification’’ of similarity search has been addressed by
Horvath et al.155–157 The first fuzzy similarity metric suggested155 relies on
partial similarity scores calculated with respect to the inter-atomic distances
distributions for each pharmacophore pair. In this case the ‘‘fuzziness’’ enables
comparison of pairs of pharmacophores with different topological or 3D dis-
tances. Similar results156 were achieved using fuzzy and weighted modified Dice
similarity metric.260 Fuzzy pharmacophore triplets (FPT, see Section 1.3.1.6)
can be gradually mapped onto related basis triplets, thus minimizing binary
classification artifacts.157 In a new similarity scoring index introduced in ref.
157, the simultaneous absence of a pharmacophore triplet in two molecules is
taken into account. However, this is a less-constraining indicator of similarity
than simultaneous presence of triplets.
Most similarity search approaches require only a single reference structure.

However, in practice several lead compounds are often available. This moti-
vated Hert et al.261 to develop the data fusion method, which allows one to
screen a database using all available reference structures. Then, the similarity
scores are combined for all retrieved structures using selected fusion rules.
Searches conducted on the MDL Drug Data Report database using fragment-
based UNITY 2D,253 BCI,252 and Daylight251 fingerprints have proved the
effectiveness of this approach.
The main drawback of the conventional similarity search concerns an

inability to use experimental information on biological activity to adjust
similarity measures. This results in an inability to discriminate relevant and
non-relevant fragment descriptors used for computing similarity measures. To
tackle this problem, Cramer et al. 42 developed substructural analysis, in which
each fragment (represented as a bit in a fingerprint) is weighted by taking into
account its occurrence in active and in inactive compounds. Subsequently,
many similar approaches have been described in the literature.262

One more way to conduct a similarity-based virtual screening is to retrieve
the structures containing a user-defined set of ‘‘pharmacophoric’’ features. In
the Dynamic Mapping of Consensus positions (DMC) algorithm263 those
features are selected by finding common positions in bit strings for all active
compounds. The potency-scaled DMC algorithm (POT-DMC)264 is a modi-
fication of DMC in which compounds activities are taken into account. The
latter two methods may be considered as intermediate between conventional
similarity search and probabilistic SAR approaches.
Batista, Godden and Bajorath have developed the MolBlaster method,208 in

which molecular similarity is assessed by Differential Shannon Entropy265

computed from populations of randomly generated fragments. For the range
0.64 o T o 0.99, this similarity measure provides with the same ranking as the
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Tanimoto index T. However, for smaller values of T the entropy-based index is
more sensitive, since it distinguishes between pairs of molecules having almost
identical T. To adapt this methodology for large-scale virtual screening, Pro-
portional Shannon Entropy (PSE) metrics were introduced.209 A key feature of
this approach is that class-specific PSE of random fragment distributions
enables the identification of the molecules sharing with known active com-
pounds a significant number of signature substructures.
Similarity search methods developed for individual compounds are difficult

to apply directly for chemical reactions involving many species subdivided by
two types: reactants and products. To overcome this problem, Varnek et al.18

suggested condensing all participating reaction species in one molecular graph
[Condensed Graphs of Reactions (CGR),18 see Section 1.3.2] followed by its
fragmentation and application of developed fingerprints in ‘‘classical’’ simi-
larity search. Besides conventional chemical bonds (simple, double, aromatic,
etc.), a CGR contains dynamical bonds corresponding to created, broken or
transformed bonds. This approach could be efficiently used for screening of
large reaction databases.

1.4.3 SAR Classification (Probabilistic) Models

Simplistic and heuristic similarity-based approaches can hardly produce as
good predictive models as modern statistical and machine learning methods
that are able to assess quantitatively biological or physicochemical properties.
QSAR-based virtual screening consists of direct assessment of activity values
(numerical or binary) of all compounds in the database followed by selection of
hits possessing desirable activity. Mathematical methods used for models
preparation can be subdivided into classification and regression approaches.
The former decide whether a given compound is active, whereas the latter
numerically evaluate the activity values. Classification approaches that assess
probability of decisions are called probabilistic.
Various classification approaches have been reported to be used successfully

in conjunction with fragment descriptors for building classification SAR mod-
els: the Linear Discriminant Analysis (LDA),266,267 the Partial Least Square
Discriminant Analysis (PLS-DA),268 Soft Independent Modeling by Class
Analogy (SIMCA),269 Artificial Neural Networks (ANN),270 Support Vector
Machines (SVM),271 Decision Trees (DT), 269,272,273 Spline Fitting with Genetic
Algorithm (SFGA),269 etc. Probabilistic methods usually used with fragment
descriptors are: Naı̈ve Bayes (NB)142 and its modification implemented in
PASS,126 Binary Kernel Discrimination,6 Inductive Logic Programming
(ILP),274 Support Vector Inductive Logic Programming (SVILP),133 etc.
Numerous studies have been devoted to classification (probabilistic)

approaches used in conjunction with fragment descriptors for virtual screening.
Here we present several examples.
Harper et al. 6 have demonstrated a much better performance of probabilistic

‘‘binary kernel discrimination’’ method to screen large databases compared to
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backpropagation neural networks or conventional similarity search. The Car-
hart’s atom-pairs154 and Nilakantan’s topological torsions95 were used as
descriptors.
Aiming to discover new cognition enhancers, Geronikaki et al.275 applied

the PASS program,126 which implements a probabilistic Bayesian-based
approach, and the DEREK rule-based system210 to screen a database of highly
diverse chemical compounds. Eight compounds with the highest probability of
cognition-enhancing effect were selected. Experimental tests showed that all of
them possess a pronounced antiamnesic effect.
Bender, Glen et al. have applied129–133 several probabilistic machine learning

methods (naı̈ve Bayesian classifier, inductive logic programming, and support
vector inductive learning programming) in conjunction with circular finger-
prints for making classification of bioactive chemical compounds and per-
forming virtual screening on several biological targets. The latter of these three
methods (i.e., support vector inductive learning programming) performed
significantly better than the other two methods.133 The advantages of using
circular fingerprints were pointed out.131

1.4.4 QSAR/QSPR Regression Models

The Multiple Linear Regression (MLR) method was historically the first and to
date the most popular method used to develop QSAR/QSPR models with
fragment descriptors (Figure 1.14). Linear models involving fragments are built
in several program packages: CASE,66–69 MULTICASE,97,98 TRAIL,101,102

ISIDA,18 EMMA,276 QSAR Builder from Pharma Algorithms277 and some
others. The Partial Least Squares (PLS) regression,278,279 an alternative tech-
nique for building linear quantitative models, has also been successfully cou-
pled with fragment descriptors.63,128,280–282 This approach is efficiently used the
Holographic QSAR (HQSAR)63 (implemented in the Sybyl software253) and
the ‘‘Generalized Fragment-Substructure Based Property Prediction
Method’’.282 The success of treating the fragment descriptors in PLS is
explained by efficient handling of multicollinearity, which is a typical problem
of fragment descriptors. Two other methods, the Group Method of Data
Handling (GMDH)283 and the more recent Maximal Margin Linear Pro-
gramming Method (MMLPM),284,285 also displayed their efficiency in building
the linear models from an initial pool of highly correlated fragment descriptors.
Among nonlinear regression methods used in conjunction with fragment

descriptors, the Back-Propagation Neural Networks (BPNN)286–289 occupy a
special place. It has been proved7,8 that any molecular graph invariant can be
approximated by an output of a BPNN using fragment descriptors as an input.
Indeed, numerous studies have shown that the BPNN models based on frag-
ment descriptors efficiently predict various physicochemical properties16,290–294

and some biological activities16,163,295 of organic compounds. A popular ASNN
(Associative Neural Networks) approach consists of an ensemble of BPNN
coupled with kNN correction in the space of models.296 This technique,
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together with fragment descriptors, has been successfully used to model the
thermodynamic parameters of metal complexation285 and melting point of
ionic liquids.297 Besides, the Radial Basis Function Neural Networks298

(RBFNNs) have also been used with fragment descriptors for predicting the
properties of organic compounds.285,299 The Support Vector Regression (SVR)
technique300–303 is a serious ‘‘competitor’’ of neural networks, as has been
demonstrated in QSAR/QSPR studies285,304 involving fragment descriptors.
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Figure 1.14 General scheme of constructing linear QSAR/QSPR models based on
fragment descriptors.
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In drug design, regression QSAR/QSPR models are often used to assess
ADME/Tox properties or to detect ‘‘hit’’ molecules capable of binding a cer-
tain biological target. Thus, one could mention fragments based QSAR models
for blood–brain barrier,305 skin permeation rate,306 blood–air307 and tissue-
air partition coefficients.307 Many theoretical approaches to calculating the
octanol–water partition coefficient log P involve fragment descriptors. In
particular, it concerns the methods by Rekker,308,309 Leo and Hansch
(CLOGP),245,310 Ghose-Crippen (ALOGP),81–83 Wildman and Crippen,86

Suzuki and Kudo (CHEMICALC-2),87 Convard (SMILOGP)88 and by Wang
(XLOGP).89,90 Fragment-based predictive models for estimation of solubility
in water311 and DMSO311 are also available.
Benchmarking studies on various biological and physicochemical proper-

ties305–307,312 show that QSAR/QSPR models for involving fragment descriptors
in many cases outperform those built on topological, quantum, electrostatic and
other types of descriptors.

1.4.5 In Silico Design

In this section we consider several examples of virtual screening performed on a
database containing only virtual (still non-synthesized or unavailable) com-
pounds. Virtual libraries are usually generated using combinatorial chemistry
approaches.313–315 One of simplest ways is to attach systematically user-defined
substituents R1, R2, . . . , RN to a given scaffold. If the list for the substituent Ri

contains ni candidates, the total number of generated structures is:

N ¼
Y

i

ni ð 1:11 Þ

although taking symmetry into account could reduce the library’s size. The
number of substituents Ri (ni) should be carefully selected to avoid generation
of too large a set of structures (combinatorial explosion). The ‘‘optimal’’ sub-
stituents could be prepared using fragments selected at the QSAR stage, since
their contributions to activity (for linear models) allow one to estimate an
impact of combining the fragment into larger species (Ri). In such a way, a
focused combinatorial library could be generated.
The technology based on combining QSAR, generation of virtual libraries

and screening stages has been implemented in the ISIDA program and applied
to computer-aided design of new uranyl binders belonging to two different
families of organic molecules: phosphoryl containing podands316 and mono-
amides.317 QSARmodels have been developed using different machine-learning
methods (multi-linear regression analysis, associative neural networks296 and
support vector machines301) and fragment descriptors (atom/bond sequences
and augmented atoms). These models were then used to screen virtual com-
binatorial libraries containing up to 11000 compounds. Selected hits were
synthesized and tested experimentally. Predicted uranyl binding affinity was
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shown to agree well with the experimental data. Thus, initial data sets were
significantly enriched with new efficient uranyl binders, and one of new mole-
cules was found to be more efficient than previously studied compounds. A
similar study was conducted for the development of new 1-(2-hydroxy-
ethoxy)methyl)-6-(phenylthio)thymine (HEPT) derivatives potentially posses-
sing high anti-HIV activity.318 This demonstrates the universality of fragment
descriptors and the broad perspectives of their use in virtual screening and in
silico design.

1.5 Limitations of Fragment Descriptors

Despite the many advantages of fragment descriptors they are not devoid of
certain drawbacks, which deserve serious attention. Two main problems should
be mentioned: (i) ‘‘missing fragments’’;319 and (ii) modeling of stereochemically
dependent properties.
The term ‘‘missing fragments’’ concerns comparison of the lists of fragments

generated for the training and test sets. A test set molecule may contain fragments
that, on one hand, belong to the same family of descriptors used for the mod-
eling, and, on the other hand, are different from those in the initial pool calcu-
lated for the training set. The question arises whether the model built from that
initial pool can be applied to those test set molecules? This is a difficult problem
because a priori it is not clear if the ‘‘missing fragments’’ are important for the
property being predicted. Several possible strategies to treat this problem have
been reported. The ALOGPS program,320 predicting lipophilicity and aqueous
solubility of chemical compounds, flags calculations as unreliable if the analyzed
molecule contains one or more E-state atom or bond types missed in the training
set. In such a way, the program detects about 90% of large prediction errors.319

The ISIDA program18 calculates a consensus model as an average over the
‘‘best’’ models developed with different sets of fragment descriptors. Each model
corresponds to its ‘‘own’’ initial pool of descriptors. If a new molecule contains
fragments different from those in that pool, the corresponding model is ignored.
As demonstrated by benchmarking studies,285 this improves the predictive per-
formance of the method. For each model, the NASAWIN software99 creates a
list of ‘‘important’’ fragments including cycles and all one-atom fragments. The
test molecule is rejected if its list of ‘‘important’’ fragments contains those absent
in the training set.321 The LOGP program for lipophilicity predictions322 uses a
set of empirical rules to calculate the contribution of missed fragments.
The second problem of using fragment descriptors deals with accounting for

stereochemical information. In fact, its adequate treatment is not possible at the
graph-theoretical level and requires explicit consideration of hypergraphs.323

However, in practice, it is sufficient to introduce special labels indicating ste-
reochemical configuration of chiral centers or (E/Z)-isomers around a double
bond, and then to use them in the specification of molecular fragments. Such an
approach has been used in hologram fragment descriptors324 as well as in the
PARTAN language.238
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1.6 Conclusion

Fragment descriptors constitute one of the most universal types of molecular
descriptors. The scope of their application encompasses almost all existing
areas of SAR/QSAR/QSPR studies. Their universality stems from the basic
character of structural theory in chemistry as well as from the fundamental
possibility of molecular graph invariants being expressed in terms of subgraph
occurrence numbers.8 The main advantages of fragment descriptors lie in the
simplicity of their computation, the easiness of their interpretation as well as in
efficiency of their applications in similarity searches and SAR/QSAR/QSPR
modeling. Progress of their use in virtual screening could be related to the
development of new types of fragments and of new mathematical approaches of
their processing.
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