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  Abstract   This chapter critically reviews some of the important methods being 
used for building quantitative structure-activity relationship (QSAR) models using 
the artificial neural networks (ANNs). It attends predominantly to the use of 
multilayer ANNs in the regression analysis of structure-activity data. The high-
lighted topics cover the approximating ability of ANNs, the interpretability of the 
resulting models, the issues of generalization and memorization, the problems of 
overfitting and overtraining, the learning dynamics, regularization, and the use 
of neural network ensembles. The next part of the chapter focuses attention on 
the use of descriptors. It reviews different descriptor selection and preprocessing 
techniques; considers the use of the substituent, substructural, and superstructural 
descriptors in building common QSAR models; the use of molecular field descrip-
tors in three-dimensional QSAR studies; along with the prospects of “direct” 
graph-based QSAR analysis. The chapter starts with a short historical survey of the 
main milestones in this area.  

  Keywords   Artificial neural networks ,  QSAR ,  back-propagation ,  learning , 
 generalization     

  1. Introduction  

 The first application of artificial neural networks (ANNs) in the domain of 
 structure-activity relationships dates back to the early 1970s. In 1971, Hiller et al. 
[ 1 ] reported on a study dealing with the use of perceptrons, the only type of artifi-
cial neural networks known at that time [ 2 ], to classify substituted 1,3- dioxanes as 
active or inactive with regard to their physiological activity. In the cited work, 
coded elements of chemical structures were projected onto the perceptron retina; 
the perceptron was trained using a set of compounds with known activities, and the 
trained neural network demonstrated good recognition ability on both the training 
and the test sets of compounds. This methodology was discussed in detail in 
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another paper [ 3 ]. Nevertheless, the approach was not appreciated properly at that 
time; the articles remained almost unknown and have never been cited in any pub-
lication dealing with the use of neural networks in structure-activity studies. 

 The next stage of scientific development in this direction started in 1990 with 
the first publications of Aoyama, Suzuki, and Ichikawa dealing with the use of 
ANNs in QSAR studies [ 4 ,  5 ]. For the last 15 years, this approach to modeling 
structure- activity relationships has grown up and developed into a well- established 
scientific area with numerous ideas, theoretical approaches, and successful 
practical applications. Several relevant books [ 6 ,  7 ] and numerous review arti-
cles [ 8 – 28 ] are available. Figure  8.1  depicts the linear dependence of the number 
of papers published each year in this field on the year of publication. This linear 
trend demonstrates the steady growth of this scientific area, which now encom-
passes the use of artificial neural networks for predicting not only different 
types of biological activity of chemical compounds but also their physicochemi-
cal, ADME, biodegradability, and spectroscopic properties, as well as their 
reactivity. The aim of this paper is to review some important concepts and ideas 
accumulated in this field.   

  2. Methods, Discussion, and Notes  

  2.1.  Neural Network Computational Methods Used 
in QSAR Studies 

 Applications of artificial neural networks in QSAR studies are characterized by a 
wide variety of architectures of neural networks as well as numerous approaches to 
represent chemical structures, preprocessing and selection of relevant descriptors, 
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  Fig. 8.1    Dependence of the number of papers published per year on the year of publication       
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running the learning process, handling the predicted results, and so forth. All these 
notions characterize the  computational methods  used in this scientific area. The 
notion of the computational method is more specific than the notions of the neural 
network  architecture  and neural network  paradigm . For example, we treat the 
genetic, the Bayesian, and the ordinary back-propagation neural networks as dis-
tinct computational methods, although they actually use the same architecture.
Table  8.1  lists the main computational neural network methods with at least one 
application in QSAR studies. For each method, the table shows its name, a short 
identifier (used further in this chapter), the year of the first publication dealing with 
its use in QSAR studies, as well as the reference to such publication.      

 Table 8.1    Neural network methods used in QSAR studies  

 Name  Identifier  Year  Reference 

 Perceptron  Perceptron  1971  [ 1 ,  3 ] 
 Back-propagation neural network  BPNN  1990  [ 4 ] 
 Autoassociative feedforward neural network  AAFFNN  1991  [ 29 ] 
 Self-organizing maps (Kohonen neural network)  SOM  1991  [ 30 ] 
 Counterpropagation neural network  CPNN  1992  [ 31 ] 
 Function-link neural network  FUNCLINK  1992  [ 32 ] 
 Neural device for direct structure-property correlation  NDDSPC  1993  [ 33 ,  34 ] 
 Radial basis functions neural network  RBFNN  1993  [ 35 ] 
 Evolutionary algorithm for BPNN  Ev-BPNN  1993  [ 36 ] 
 Ensembles of BPNNs  Ens-BPNN  1993  [ 37 ] 
 Simulated annealing for BPNN  SA-BPNN  1995  [ 38 ] 
 Genetic algorithm for BPNN  GA-BPNN  1996  [ 39 ] 
 Principal component analysis for BPNN  PCA-BPNN  1996  [ 40 ] 
 Adaptive resonance theory 2-A  ART-2-A  1997  [ 41 ] 
 Bayesian regularized neural network  BRNN  1997  [ 42 ] 
 Probabilistic neural network  PNN  1997  [ 43 ] 
 Receptor-like neural network  RLNN  1997  [ 44 ] 
 Cascade-correlation neural network  CCNN  1998  [ 45 ] 
 Genetic algorithm for CPNNs  GA-CPNN  1999  [ 46 ] 
 Fuzzy adaptive resonance theory for mapping  FARTMAP  2000  [ 47 ] 
 Fuzzy neural network  FNN  2000  [ 48 ] 
 Recursive cascade correlation neural network  RCCNN  2001  [ 49 ] 
 Volume learning algorithm neural network  VLANN  2001  [ 50 ] 
 Comparative molecular surface analysis  CoMSA  2002  [ 51 ] 
 Genetic algorithm for RBFNN  GA-RBFNN  2002  [ 52 ] 
 Generalized regression neural network  GRNN  2002  [ 53 ] 
 Integrated SOM-fuzzy ARTMAP neural system  SOM-FARTMAP  2002  [ 54 ] 
 Particle swarms for BPNN  PS-BPNN  2002  [ 55 ] 
 Artificial ant colonies for BPNN  ANT-BPNN  2002  [ 56 ] 
 Hopfield neural network  HNN  2003  [ 57 ] 
 Genetic algorithm and principal component analysis 

for back-propagation neural network 
 PCA-GA-BPNN  2003  [ 58 ] 

 Variable structure neural net for pattern recognition  VSNNPR  2003  [ 59 ] 
 Niching particle swarms for BPNN  NPS-BPNN  2003  [ 60 ] 
 Genetic algorithm for self-organizing maps  GA-SOM  2004  [ 61 ] 
 Learning vector quantization  LVQ  2004  [ 62 ] 
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  2.2. Tasks Performed by Neural Networks in QSAR Studies 

 In principle, ANNs can be used for solving any solvable task in computational 
mathematics, ranging from simple addition of binary numbers up to theorem prov-
ing. A special field in the computer science,  neuromathematics , tackles such 
problems. In practice, ANNs are usually used for solving so-called ill-posed prob-
lems, for which numerous alternative solutions can be suggested, such as function 
approximation, pattern recognition, clustering, and data reduction. These prob-
lems exactly correspond to tasks performed by neural networks in an absolute 
majority of QSAR studies. Solving typical ill-posed problems involves some sort 
of  learning  or  training , which can be  supervised ,  unsupervised , or  reinforcement . 
The last type of learning has not yet been used in QSAR/QSPR applications. 
Unsupervised learning analyzes the internal data structure by finding clusters and 
reducing dimensionality. In this paper, we discuss only supervised learning.  

  2.3. Supervised Learning 

 In the course of the supervised learning, a neural network tries to approximate experi-
mental data by comparing its output values with the “desired” ones and  minimizing 
the discrepancy by adjusting its internal parameters, such as connection weights and 
activation thresholds. If the experimental data are expressed by real numbers, the 
network performs  function approximation , while for discrete, especially binary, val-
ues it performs  pattern recognition . So, in statistical terms, it performs  regression  
analysis and data  classification  (discriminant analysis), respectively. QSAR studies 
usually deal with regression analysis, while data classification is carried out in SAR 
studies. The rest of this chapter attends to the regression analysis performed by 
ANNs in QSAR studies. 

  2.3.1. Regression 

 The regression task is solved in almost all quantitative structure-property rela-
tionships (QSPR) and in a big part of structure-activity applications. The most 
widely used computational method for this purpose is BPNN (feedforward neural 
net trained with error back propagation, or back-propagation neural networks) or 
one of its derivatives (such as BRNN or GA-BPNN). The popularity of BPNN 
originates from its ability to be a “model-free mapping device” [ 63 ], which can 
approximate any nonlinear dependence of output variables (properties, activities) 
on the values of input variables (usually descriptors). Kolmogorov’s superposi-
tion theorem [ 64 ] on the representation of continuous functions of many variables 
by superposition of continuous functions of one variable and addition, in con-
junction with Kurková’s results [ 65 ], presents the basis for this universal approxi-
mating ability of BPNNs. 
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 So, the main advantage of using multilayer ANNs in QSAR studies lies in their 
ability to cope with nonlinearity in relationships, this ability requiring a hidden 
layer of neurons. Neural nets without hidden neurons, such as FUNCLINK, can 
hardly be considered as universal approximators, although some kinds of nonline-
arity can be revealed by them due to nonlinear transforms of input variables (see 
the discussion in [ 66 ]). BPNNs approximate properties  globally , since all hidden 
neurons are involved in production of neural-net output signal for all input vectors. 
In contrast, some other kinds of ANNs, such as CPNN or RBFNN, approximate 
properties  locally , since only few neighboring (in descriptor space) hidden neurons 
are really involved in production of neural-net output. As a result, in spite of the 
ability of CPNNs and RBFNNs to approximate any nonlinear function with any 
precision (as a consequence of Kolmogorov’s theorem), the number of hidden 
neurons required for attaining a given approximation error depends, in the general 
case, exponentially on data dimensionality. This is a consequence of the  dimen-
sionality curse  [ 67 ], which is inherent to nonparametric kernel-based approxima-
tors. Since the number of hidden neurons should be much smaller than the number 
of data points, which is always very limited in QSAR studies, the approximating 
ability of BPNNs outperforms that of CPNNs and RBFNNs for data sets with not 
very low data dimensionality. 

 The global approximation character of BPNNs has some additional important 
implications for QSAR studies. If the compounds used for training and predictions 
are rather distinct from each other, one cannot expect good predictive performance 
of any statistical or neural-net model. However, if the compounds from the predic-
tion set are similar to each other and the property to be predicted is measured for 
some of them, then it is possible to correct predictions for the remaining com-
pounds from the prediction set by utilizing the measured property values of similar 
compounds without the need to retrain the neural network. This idea lies behind the 
associative neural networks (ASNN) concept [ 68 ], which combines global approxi-
mation performed by BPNNs with a local nearest-neighbors correction. In ASNN, 
the similarity of chemical structures is computed in the model space by correlating 
predictions made by different BPNN models. We implemented a different proce-
dure in the NASAWIN program, which consists in correcting BPNN predictions by 
utilizing experimental property values of neighboring compounds, which maps 
onto the same cell in Kohonen neural network (SOM) trained using the same or 
another set of descriptors [ 59 ]. Raevsky et al. suggested correcting MLR (multiple 
linear regression, which performs global approximation) predictions with  nearest-
neighbor corrections, the similarity being determined by means of Tanimoto coef-
ficients computed using substructure screens [ 69 ]. So, local correction to global 
structure-property approximations can be very useful, and it can efficiently be 
utilized by BPNNs. 

 The global approximating character of BPNNs has a direct connection to the dis-
tributed (holographic) character of information storage in human brain. As a conse-
quence, the influence of an input signal on an output one is coded by means of 
several connection weights, and therefore the values of individual connection 
weights, taken separately, tell nothing about the influence of any input signal on any 
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output one. In other words, weights provide nonlocal information on the influence 
of an input variable [ 70 ]. Consequently, individual connection weights cannot be 
interpreted separately from the other ones, and this has given rise to the myth of 
uninterpretability of neural network models.  

  2.3.2. Interpretation of Neural Network Regression Models 

 The problem of neural network  interpretation  has been addressed in a number 
of studies (see [ 70 ,  71 ] for relevant references). Aoyama and Ichikawa sug-
gested using the partial differential coefficients of output value with respect to 
input parameters to analyze the relationship between inputs and outputs in neu-
ral  network for each data point and demonstrated this method for QSAR data 
on  biological activity of mitomycins [ 72 ]. Developing these ideas further, we 
 suggested in a paper [ 73 ] to use the first (mean value) and the second (disper-
sion) distribution moments of the first and the second partial derivatives of the 
outputs with respect to inputs in neural networks over the whole training set for 
interpreting neural  network QSAR /QSPR models. The use of such statistics 
makes it  possible not only to obtain actually the same characteristics as for tra-
ditional “interpretable” statistical methods, such as the linear regression analy-
sis, but also to reveal important additional information concerning the 
nonlinearity of QSAR /QSPR relationships. This approach was illustrated by 
interpreting BPNN models for predicting position of the long-wave absorption 
band of cyan dyes [ 73 ] and the acid hydrolysis rate  constants of esters [ 74 ]. In 
both cases, the interpretations of neural network models appeared to be compat-
ible with theoretical knowledge about the underlying  physical and chemical 
phenomena. 

 Guha et al. have recently readdressed this problem in two papers [ 71 ,  75 ]. 
Guha, and Jurs [ 75 ] presented a method to measure the relative importance of the 
descriptors in QSAR neural network models based on a sensitivity analysis of 
descriptors. For all the reported data sets, the important descriptors revealed by 
this method appeared to correspond to the important descriptors in the linear 
model built using the partial least squares (PLS) technique. This means that the 
interpretability of neural network models is not reduced in comparison with tra-
ditional statistical linear approaches (exemplified by the PLS method), at least for 
interpretation methods based on ranking the relative importance of descriptors. 
Guha, Stanton, and Jurs [ 71 ] presented a methodology to carry out a detailed 
interpretation of the weights and biases of neural network QSAR models. It 
allows one to understand how an input descriptor is correlated with the predicted 
output property. The proposed methodology is based on the linearization of the 
transform functions in all computational (hidden or output) neurons. The data 
flow in the resulting network mimics that of the PLS analysis, with the latent 
variables of the latter corresponding to the hidden neurons in the network and the 
appropriate matrix elements corresponding to the connection weights in the neu-
ral network. This allowed the authors to develop interpretations of a neural 
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network regression model similar in manner to the partial least squares interpre-
tation method for linear models described by Stanton [ 76 ]. The method was 
tested on several data sets, the results of the interpretation method corresponded 
well to PLS interpretations for linear models using the same descriptors, and they 
were shown to be consistent with the generally accepted physical interpretations 
for these properties. 

 So, artificial neural networks (at least BPNNs) should no longer be regarded as 
uninterpretable “black boxes,” and each QSAR work involving development of neu-
ral network models would benefit from application of interpretation procedures.  

  2.3.3. Methods for Controlling Generalization 

  Generalization  means the ability of neural networks to predict the observed 
response variable for patterns not included in the training set. In other words, this 
is the ability to predict some biological activity or some other property of new 
chemical compounds.  Generalization error  can be estimated by computing the 
root-mean-square error of prediction on some external  validation  set.  Memorization  
means the ability to reproduce the values of the response variable for patterns 
taken from the training set.  Memorization error  is the root-mean-square error of 
prediction on the training set. Evidently, in QSAR studies the primary concern 
should be to build neural network models that generalize better, that is, with the 
smallest  generalization error. If, for some fixed data set, we gradually increase the 
complexity of some neural network (which is defined as the number of its adjust-
able  parameters, i.e., connection weights and biases) by adding additional hidden 
 neurons, the generalization error initially decreases but, after reaching the opti-
mal network size, starts to increase, although the memorization error decreases 
all the time. The resulting neural network has bad generalization and good memo-
rization ability. This phenomenon is called  overfitting . Generally, the training of 
a neural network is a multistep iterative process. At the first phase of the training, 
the generalization error decreases but after reaching some point starts to increase, 
although the memorization error decreases all the time. Again, the resulting neu-
ral network model shows bad generalization but good memorization ability. This 
phenomenon is called  overtraining . Therefore, one should exert every effort to 
prevent  overfitting and overtraining. Both phenomena are thoroughly analyzed in 
papers [ 77 – 80 ] as applied to building QSAR models. The recipe to prevent over-
fitting, in accordance to these papers, lies in keeping the values of the parameter 
ρ, which is the ratio of the number of data points to the number of connections, 
higher than some threshold. This parameter, put forward originally by Andrea 
and Kalayeh [ 81 ], was analyzed in detail by Livingstone and coworkers [ 77 ,  78 ]. 
The overtraining can be avoided by means of “early stopping” of training after 
reaching the lowest generalization error as estimated using an additional valida-
tion data set [ 80 ]. It is also asserted by Tetko, Livingstone, and Luik [ 80 ] that 
overfitting and the associated “chance effects” are also prevented with the preven-
tion of overtraining.  
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  2.3.4. The Minimum Description Length Principle 

 To understand the essence of the aforementioned phenomena and assess the afore-
mentioned results, consider the neural network learning from the statistical point of 
view [ 82 ]. According to the Bayesian theorem,

   

P N D
P D N P N

P D N P N
N

( | )
( | ) ( )

( | ) ( )
=

∑   

 (1)   

 where  N  is a neural network model,  D  is a data set used for its training,  P (  N  |  D ) 
is the probability (i.e., validity) of the neural network model  N  trained with data  D , 
 P (  D  |  N ) is the probability of data  D  to be explained by the neural network model 
 N , and  P (  N ) is an a priori probability of the neural network model  N . The best neural 
network model can be found by maximizing  P (  N  |  D ) or its logarithm:

   max log ( | ) max {log ( | ) log ( )}N NP N D P D N P N⇒ +    (2)   

 This is equivalent to  

   min { log ( | ) log ( )} min { )N N D NP D N P N I I− − = +    (3)   

 where  I   
D
   is the memorization error, expressed as the number of information bits 

necessary to account for all residuals on the training set, while  I   
N
   is the  model 

 complexity , expressed as the quantity of information needed for choosing the model 
 N  from the set with the a priori probability distribution  P ( N ). For multilayer neural 
networks,  I   

N
   can be taken as proportional to the number of connections and there-

fore to the number of hidden neurons. Equation  3  forms the basis of the minimum 
description length (MDL) principle originally put forward by Rissanen [ 83 ]. 
According to this principle, models with the shortest joint description of data and 
the model built on these data provide the lowest generalization error. Such models 
are characterized by the lowest error on the training set and the minimal possible 
number of adjustable model parameters. 

 The essence of the neural network training lies in the minimization of  I   
D
  . After 

the training,  I   
D
   becomes comparable or even lower than  I   

M
  . So, if the number of 

hidden neurons in BPNN exceeds some optimum,  I   
M
   starts to dominate over  I   

D
  , and 

the generalization error tends to be high. This explains the overfitting phenomenon 
and also opens the ways to finding the optimal number of connections  W  and hid-
den neurons  H . It can be shown that for a simple case  W  can be estimated as [ 82 ]  

   W Pd~    (4)   

 where  P  is the number of points in the training set,  d  is the number of input 
variables. More correct treatment would also include the dependence of  W  on 
some additional parameters, such as the dimensionality of  d  and the complexity of 
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a function being approximated. In any case, it is not sufficient to use the simple ρ 
parameter as a criterion for the overfitting. 

 The MDL principle can also be used for explaining the overtraining phenome-
non. The neural network training usually starts with all adjustable parameters 
 initialized with random values close to zero. The complexity  I   

N
   of such model is 

also close to zero. In the course of training,  I   
N
   gradually increases. At the initial 

phase of the training, when the values of all connection weights are still small, the 
responses of all transfer functions in neurons lie in the linear range, and therefore 
the network approximates the linear part of relationships. The effective number of 
adjustable parameters at this linear phase does not exceeds that of a fully trained 
linear model, that is, approximately  d . So, at the first phase, the effective number 
of adjustable parameters  gradually  increases from 0 to approximately  d . After that, 
with the rise of the connection weight values, the responses of neurons become 
more and more nonlinear, the network starts learning nonlinearity, and the effective 
number of adjustable parameters  gradually  increases from  d  to approximately  H⋅d . 
At some moment,  I   

N
   starts to rise quicker than  I   

D
   decreases in the course of the 

training. This explains the overtraining phenomenon. 
 Several conclusions can be drawn concerning the overtraining phenomenon. 

First, although “early stopping” is an important procedure, which is usually neces-
sary for preventing overtraining and overfitting, its application results in models 
with reduced nonlinearity. The bigger is the size of the network, the more linear 
are such models. Therefore, the “early stopping” should always be applied with 
caution. This “overlinearization” phenomenon can be prevented by applying the 
automatic weight elimination (AWE) algorithm [ 82 ]. Second, application of very 
fast algorithms for neural network training is not always the best choice, since they 
may quickly produce overtrained models without the possibility to avoid this.  

  2.3.5. Regularization of ANN Models 

 An alternative approach to preventing overtraining lies in the use of  regularization , 
which is introduced by means of special functions that penalize the growth of the 
connection weights and, by doing that, limit the growth of the model complexity  I   

N
  . 

This results in the decrease of the generalization error. The regularization method 
initially was developed by Tikhonov and Arsenin as a general principle for solving 
ill-posed problems [ 84 ]. In this method, the influence of the penalty  function is 
controlled by a special regularization parameter, the optimal value of which can be 
found either by assessing generalization using cross-validation or by means of the 
Bayesian approach through statistical analysis of connection weight distributions 
without the need to use cross-validation. So, the latter approach, called  Bayesian 
regularization , appeared to be very useful for building QSAR models (see, for 
example, [ 85 ]), since it uses the whole data set for training and the resulting neural 
network models are reproducible. Two other advantages of Bayesian neural net-
works are the possibility to apply the procedure of automatic relevance determina-
tion for selecting descriptors and the possibility to use the distributions of the 
predictions to evaluate their uncertainty.  
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  2.3.6. Ensembles of Neural Networks 

 One of the drawbacks of using BPNN in QSAR studies lies in irreproducibility of 
the resulting QSAR models. Starting with the initial random values of connection 
weights, they can produce different models. This problem can be solved by using 
an ensemble of neural networks models instead of a single one and averaging the 
prediction results. As a result, the models become more reproducible, the chance 
effects caused by initial randomization of weights are eliminated, and the memo-
rization and generalization errors usually become lower. This methodology was 
initially applied to building QSAR models in 1993 by Tetko, Luik, and Poda [ 37 ]. 
The issue of using of the neural network ensembles in QSAR and QSPR studies 
was analyzed in detail by Agrafiotis, Cedeño, and Lobanov [ 86 ].   

  2.4. Handling Chemical Structures 

  2.4.1. Descriptor Selection 

 Because of the abundance of different descriptor selection approaches used in 
QSAR studies in conjunction with ANNs, we list them while applying some sort of 
classification. Depending on the use of activity values, descriptor selection can be 
unsupervised or supervised. The  unsupervised forward selection  procedure, which 
generates a subset of nonredundant descriptors with reduced multicollinearity, is 
described by Whitley, Ford, and Livingstone [ 87 ]. A sort of an  unsupervised back-
ward elimination  procedure, which, starting with the whole descriptor set, leaves a 
subset of descriptors with pairwise correlations limited by some threshold value 
(although with multicollinearity) is implemented in the NASAWIN software [ 59 ]. 

 Supervised descriptor selection procedures can be preliminary (carried out 
before running neural networks) or online. A  supervised preliminary forward 
 selection  procedure based on the use of stepwise linear regression analysis proce-
dures is implemented in NASAWIN [ 59 ]. It works as follows. The first chosen 
descriptor provides the best correlation with the target property, while each next 
selected descriptor provides the best correlation with the residual vector obtained at 
the previous step. The procedure is stopped after a fixed number of steps or at the 
lowest prediction error for the validation set. The main advantage of the algorithm 
lies in its very high efficiency (it can easily operate with millions of descriptors on 
very large databases), although the quality of the resulting models is slightly worse 
in comparison with the standard stepwise multiple linear regression technique. 
Nonetheless, the resulting suboptimal subset of descriptors appears to be  sufficiently 
good as an initial guess for conducting not only regression but also classification 
SAR /QSAR studies using BPNNs. 

 Supervised online descriptor selection procedures, which are executed simul-
taneously with the ANN learning, can be NN-guided or controlling. The  super-
vised online NN-guided forward selection  procedures are performed by means of 
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“growing” neural network architectures, such as cascade-correlation networks 
(CCNNs) for approximation [ 45 ]. The  supervised online NN-guided backward 
elimination  procedures are based on the use of various  pruning  algorithms for 
eliminating unnecessary weights and neurons from neural networks (see, for 
example, [ 88 ]). 

 The  supervised online controlling descriptor selection  procedures are usually 
implemented by means of stochastic combinatorial optimization algorithms, which 
optimize some measure of neural network model quality by finding optimal subsets 
of selected descriptors. Probably the first application of this kind of descriptor selec-
tion procedures in SAR /QSAR studies was made by Brinn et al. in 1993 using the 
“evolution algorithm” (Ev-BPNN) [ 36 ]. This was followed by the application of the 
simulated annealing (SA) algorithm for the same purpose [ 38 ]. The next important 
step was made in 1996 by So and Karplus [ 39 ] by introduction of the  genetic algo-
rithm  (GA), which, being combined with different neural network architectures, has 
led to numerous computational methods actively used in QSAR studies: GA-BPNN 
(“genetic neural network”) [ 39 ], GA-CPNN [ 46 ], GA-RBFNN [ 52 ], GA-SOM [ 61 ]. 
Several modern combinatorial optimization algorithms have also been applied in 
combination with BPNNs for descriptor selection in QSAR studies: the  artificial ant 
colonies  (ANT-BPNN) [ 56 ], the  particle swarms  (PS-BPNN) [ 55 ], and the  niching 
particle swarms  (NPS-BPNN) [ 60 ]. So, a big arsenal of methods is currently availa-
ble for performing descriptor selection in QSAR studies.  

  2.4.2. Descriptor Preprocessing 

 Three principal types of data preprocessing are used in QSAR studies: scaling, 
nonlinear transform, and reduction of data dimensionality. While the scaling of 
input and output variables is a standard practice and does not deserve special con-
sideration in this paper, the issue of the nonlinear transform is not trivial. Although 
one might argue that nonlinear transfer is not needed with neural networks, never-
theless our practice is the evidence of its benefit [ 89 ]. Two plausible explanations 
for this can be given. The first deals with the use of the early stopping procedure 
for preventing overtraining, which hampers the learning of strong nonlinearity, 
while the second explanation concerns our use of the preliminary descriptor selec-
tion procedure based on the use of stepwise linear regressions, which can partially 
account for nonlinearity due to nonlinearly transformed descriptors (like in the 
function-link neural networks). 

 Data dimensionality reduction is usually carried out in QSAR studies by means 
of principal component analysis (PCA). This gave rise to the PCA-BPNN [ 40 ] and 
PCA-GA-BPNN [ 58 ] computational methods, although combination with other 
neural network architectures is also possible. SOMs are also used for this purpose, 
like in SOM-FARTMAP [ 54 ]. We successfully used PLS latent variables for input 
into BPNNs [ 59 ]. However, several promising modern data preprocessing tech-
niques, such as the independent component analysis (ICA) [ 90 ], are still not reported 
to have been used in QSAR studies in conjunction with ANNs.  
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  2.4.3. Substituent Descriptors 

 A big part of QSAR studies deals with the analysis of congeneric sets of com-
pounds with common scaffolds and different substituents. The classical Hansch-
Fujita [ 91 ] and Free-Wilson [ 92 ] approaches imply the use of substituent 
constants, such as Hammett σ constants and lipophilic constants π, as well as 
variables indicating the presence of some structural features at some fixed scaf-
fold positions, for deriving QSAR models. As applied to these substituent-based 
approaches, artificial neural networks have efficiently been used, in addition to 
building QSAR models, for  solving two problems specific for this kind of 
descriptor: prediction of substituent constants and construction of QSAR models 
with correct symmetry properties. 

  2.4.3.1. Prediction of Substituent Constants 

 Conducting QSAR studies in the framework of the Hansch-Fujuta approach 
involves the use of substituent constants, which are tabulated for many but not all 
possible substituents. This limits the practical use of this approach to derivatives 
with simple substituents and issues the challenge of predicting the values of vari-
ous substituent constants for any substituent. To address this problem, Kvasni ka, 
Sklwnák, Pospichal applied BPNNs trained with specially designed functional 
group descriptors (occurrence numbers of some labeled subgraphs) to predict the 
values of inductive (σ

  I
  ) and resonance (σ  

R
  ) substituent constants [ 93 ]. A training 

set consisting of 66 substituents with tabulated values of both constants was used 
in their study. Several years later, we used BPNNs and quantum-chemical 
descriptors to build neural network models for predicting five substituent con-
stants: σ  

m
  , σ  

p
  ,  F ,  R , and  E

   s
   [ 94 ]. Two BPNNs were used in this study. The first 

one, with four outputs for simultaneous prediction of σ
  m
  , σ  

p
  ,  F , and  R , was trained 

using data on 144 substituents, while the second one, with a single output and 
trained with data on 42 substituents, was used for predicting  E   

s
  . Good predictive 

performance was achieved for all cases. 
 The problem was recently readdressed by Chiu and So [ 95 ,  96 ]. They used a big 

data set of 764 substituents for training BPNNs to predict four Hansch substituent 
constants: π, MR,  F , and  R  [ 95 ]. The  E -state descriptors were used for π and MR, 
while the aforementioned Kvasni ka’s graph-theoretical functional group descrip-
tors were used for  F  and  R . In the subsequent paper [ 96 ], the values of substituent 
constants predicted using these neural network models were successfully used for 
deriving QSAR models for HIV-1 reverse transcriptase and dihydrofolate reductase 
inhibitors. So, the subsequent use of ANNs for computing descriptors and conduct-
ing QSAR studies enabled the authors to obtain easily interpretable QSAR models 
with good predictive performance [ 96 ]. This pair of works may constitute the first 
example of the hierarchical approach to QSAR modeling, which seems to be very 
promising one.  



8 Neural Networks in Building QSAR Models 149

  2.4.3.2. Building QSAR Models with Correct Symmetry Properties 

 The next problem associated with the use of substituent descriptors lies in the 
necessity to construct QSAR models with correct symmetry properties. This means 
that, if the scaffold of some congeneric series of compounds is symmetric and con-
tains topologically equivalent substituent positions, then the predicted values of any 
property, including biological activities, should not depend on the way nonequiva-
lent substituents are assigned to them. For example, if positions 1 and 2 in some 
scaffold are topologically equivalent, then the assignments (  R  

1
  = Cl,  R  

2
  = Br) and 

(  R  
1
  = Br and  R  

2
  = Cl) designate the same compound, and QSAR models with cor-

rect symmetry properties should predict for them the same activity values. 
 This issue was analyzed by us [ 97 ]. To tackle the problem, we put forward an 

approach based on the application of ANNs to the training sets expanded by adding 
the copies of compounds with the same activity values but with permuted assign-
ment of equivalent substituent positions (the learned symmetry concept). As the 
proof of the concept, the better predictive ability of resulting QSAR models, as 
compared with the performances of neural network models for nonexpanded sets, 
was demonstrated for the calcium channel blockers of 1,4-dihydropyridine type and 
hallucinogenic phenylalkylamines.   

  2.4.4. Substructural Descriptors 

 Among all other kinds of descriptors used in conjunction with ANNs, the substruc-
tural ones (i.e., the occurrence numbers of some subgraphs in molecular graphs) 
occupy a special place. As we proved earlier [ 98 ,  99 ], any molecular graph invariant 
(that is, any nonlocal property of a chemical compound) can be uniquely represented 
as (1) a linear combination of occurrence numbers of some substructures ( fragments), 
both connected and disconnected, or (2) a polynomial on occurrence numbers of 
some connected substructures. Since, according to Kolmogorov’s  theorem [ 64 ], any 
polynomial can be approximated with a three-layer neural network, any property 
that is not very sensitive to stereoisomerism (such as a majority of physical proper-
ties) can be approximated by an output of a multilayer, globally approximating 
 neural network taking occurrence numbers of connected substructures as its inputs. 
We used this as a guideline in our studies on predicting various physicochemical 
properties of organic compounds [ 89 ,  100 – 105 ]. 

 The main shortcoming of the direct use of substructural descriptors in QSAR 
studies lies in the necessity to possess a sufficiently large database, in which all 
important fragments should be well-represented. That is why substructural 
descriptors are used predominantly for predicting properties, for which such data-
bases are available, namely, the physicochemical, and toxicological ones. For an 
example of the use of fragmental descriptors in conjunction with multilayer neural 
networks and a large structurally heterogeneous data set for predicting mutagenic-
ity, see [ 36 ]. On the other hand, if only small data sets are available, substructural 
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descriptors can be very effective in mixture with physicochemical and quantum-
chemical ones (for an example, see our work on mutagenicity of substituted poly-
cyclic compounds [ 106 ]).  

  2.4.5. Superstructural Descriptors 

 Superstructural descriptors constitute a good alternative to substructural ones for 
building QSAR models for small data sets. They are computed by mapping molecu-
lar graphs into some molecular supergraph (for the whole data set), transferring their 
local atomic and bond descriptors to the corresponding supergraph elements, from 
which fixed-sized descriptor vectors are formed. This methodology can efficiently 
be combined with the use of ANNs, as was demonstrated in [ 107 ] for the cases of 
building neural network QSAR models for phospholipase inhibition by substituted 
indoles, dopamine receptor antagonistic activity of quinolinones, anti-HIV activity 
of benzylpyrimidines, and the ability of peptidyl trifluoromethyl ketones to prevent 
elastase-induced lung damage.  

  2.4.6. Molecular Field Descriptors for Three-Dimensional QSAR 

 Although computation of a big part of different molecular descriptors uses informa-
tion on molecular geometry, the term  3D-QSAR  is traditionally associated with 
CoMFA and molecular field descriptors (i.e., the values of electrostatic, steric, 
lipophilic, and similar potentials computed at some points in space, e.g., at lattice 
nodes or on a molecular surface) involved in it [ 108 ]. We confine our discussion to 
the use of this kind of descriptors. Several approaches to using ANNs in 3D-QSAR 
studies have been developed (see the review in [ 21 ]). The main milestones in this 
field are Polanski’s receptor-like neural network (RLNN) [ 44 ], which utilizes 
charges located on atoms as space-positioned descriptors; the volume learning 
algorithm neural network (VLANN) developed by Tetko, Kovalishyn, and 
Livingstone [ 50 ], which uses molecular field descriptors computed as some points 
in space; the comparative molecular surface analysis (CoMSA) put forward by 
Polanski, Gieleciak, and Bak [ 51 ], which uses molecular field descriptors com-
puted on a molecular surface; and a molecular surface-based method developed by 
Hasegawa and coworkers [ 109 ], which is similar to CoMSA and also uses molecu-
lar surface descriptors. Despite all the differences among these four methods, they 
adopt actually the same basic two-stage strategy with molecular field potentials 
being mapped from their initial points in Cartesian space onto the cells of the Kohonen 
neural network at the first step, followed by the application of some regression 
technique, such as the committee of BPNNs in VLANN and PLS in the other three 
procedures, to correlate the potential values averaged over the cells with the target 
property at the second stage of this methodology. Consider, however, the mentioned 
approaches from the view point of data processing. 
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 The specificity of the 3D-QSAR studies lies in the large number (typically, thou-
sands) of spatially organized molecular field descriptors. So, the main two challenges 
in using ANNs are to sharply reduce the data dimensionality and to introduce some 
sort of nonlinearity into QSARs [ 21 ]. While the second task is tackled in VLANN by 
means of BPNNs, the first issue is addressed in all three approaches by means of using 
the Kohonen self-orginizing maps. One might suppose that it is the unique property of 
SOMs to reduce drastically the data dimensionality used in these applications. 
Surprisingly, but this appears not to be the case. The number of variables is actually 
reduced in these methods by means of their clustering with the help of SOMs. 
Furthermore, such reduction is performed inefficiently in comparison with the well-
established CoMFA approach, since the number of cells in SOMs is always much 
greater than the number of latent variables in CoMFA PLS analysis. SOMs are known 
to be very effective tools for performing topology analysis of data sets and their neigh-
borhood-conserving mapping onto the graphs of interconnected neurons in the com-
petitive layer. The success in describing data by means of SOMs greatly depends on 
the adequacy of topologies embedded in the SOMs to that of the data being analyzed. 
This immediately poses the question as to whether the toroidal topology with four 
neighbors for each neuron, which is currently adopted in all SOM applications in 
SAR/QSAR studies, is adequate to represent the geometry of molecules and the topol-
ogy of molecular fields around them. Would not the spherical topology of neurons 
be more adequate for self-organizing mapping of molecular fields? Is it so necessary 
to confine such mapping to any topology at all? The main shortcoming of using SOMs 
for representing molecular fields lies in the abstract nonphysical characters of such 
maps, which can hardly be understood by chemists and biologists outside the QSAR 
community. And, finally, is competitive learning needed at all to preprocess data for 
3D-QSAR analysis? Our preliminary computational experiments indicate the feasibil-
ity of various alternative approaches to using ANNs in 3D-QSAR studies [ 110 ]. 

 So, in spite of the existence of a whole series of remarkable applications of 
ANNs in the area of 3D-QSAR analysis, this field is still in its infancy. It waits for 
new ideas to be expressed, new methods to be developed, and new striking applica-
tions to be contributed.  

  2.4.7. Vector-Based and Graph-Based QSAR 

 All QSAR approaches considered in this paper so far are vector-based, since the 
descriptors in them should be represented as vectors of the same size for each of 
the chemical compounds belonging to the same data set. Almost all statistical pro-
cedures and ANNs were vector-based till recently. However, the most natural math-
ematical objects for representing the structures of chemical compounds are 
molecular graphs or the corresponding matrices of  variable size . Since all isomor-
phic molecular graphs correspond to the same chemical compound, any structure-
activity  relationship function  should not depend on the numbering of nodes in 
molecular graphs  (or the permutation of rows and columns in the corresponding 
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connection tables). A traditional approach to building QSAR models consists in 
computing vectors of  molecular descriptors (graph  invariants , whose values do not 
depend on the numbering of nodes in molecular graphs), which are usually chosen 
ad hoc, followed by the  application of a vector-based statistical or ANN technique 
for finding QSAR models. As an obvious shortcoming of the traditional approach, 
the resulting models appear to be too biased and too dependent on the choice of a 
necessary descriptor set. 

 As an alternative to the traditional vector-based QSAR approach, an interesting 
challenge would be to build graph- or matrix-based QSAR models. To address this 
problem, in 1993, we developed a special neural device (NDDSPC) capable of 
constructing graph-based QSPR relationships for alkanes [ 33 ]. An advanced ver-
sion of NDDSPC was used further for constructing a number of graph-based 
QSPRs and QSARs for heterogeneous sets of chemical compounds [ 34 ]. In 1995, 
Kireev proposed the graph-based ChemNet neural network, capable of establishing 
QSPRs [ 111 ]. The next contribution was made by Ivanciuc with his MolNet, which 
can also be used for building QSPR models [ 112 ]. 

 By the end of the 1990s, the necessity of creating machine learning methods 
capable of handling variable-size structured data, such as chemical structures or 
biological sequences, was realized by computer scientists, and this led to impor-
tant developments in this field (the eighth issue of the  Neural Networks  journal in 
2005 completely deals with applications in this currently very hot scientific area). 
Two types of neural networks, probabilistic Bayesian networks and deterministic 
recursive neural networks, were developed to tackle this problem for the case of 
acyclic graphs (see [ 113 ] and references therein). Despite some limitations, such 
networks can be used for conducting QSAR studies for congeneric data sets with 
acyclic substituents. And, indeed, one such network, the recursive cascade correla-
tion neural network (RCCNN), belonging to the aforementioned second type, has 
successfully been used by Micheli et al. for building QSAR models for benzodi-
azepines [ 49 ]. One can expect that, in the future, with further developments in this 
field, graph-based ANNs will be widely accepted in QSAR studies and maybe 
even revolutionize this area.    

  3. Conclusions  

 In this paper, we considered only a part of application fields of ANNs in QSAR stud-
ies. The untouched issues include the unsupervised learning (clustering, data dimen-
sionality reduction, self-organizing maps, alignment optimization), classification 
(special pattern recognition neural network architectures, virtual screening with 
neural classificators, methods of rule extraction and knowledge integration, fuzzy 
neural networks), multiobjective learning, inverse task, QSCAR, and many other 
important topics. The question arises: What is the cause of such unprecedented crea-
tivity of researchers working in this field? Why are ANNs so popular in this research 
domain and their popularity grows from year to year (see  Fig. 8.1 ). 
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 ANNs are not the only “model-free mapping device capable of approximating 
any nonlinear function” [ 63 ] known to QSAR community. Some other machine 
learning approaches, such as the support vector machines, can do the same. In addi-
tion, the nonlinearity is not very important in many QSAR fields, and the  differences 
in performance between ANN and non-ANN approaches are often marginal. The 
answer seems to be as follows. To develop a new statistical approach or, at least, 
deeply understand the related modern mathematical papers, it is necessary to be a 
good mathematician. On the other hand, many chemists and biologists can not only 
understand the structure and operations of neural networks but also be very creative 
in this field. Therefore, the naturalness, simplicity, and clarity of neural networks in 
comparison with many alternative machine learning approaches attracts many sci-
entists to this area and promotes their high creativity in it. That is why one can 
expect that the rule of the linear growth of the number of ANN applications in 
QSAR and related areas, which was uncovered in the beginning of this chapter and 
shown in Fig.  8.1 , will hold true at least in the nearest future.   
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