
Abstract. The published data devoted to the use of the neuralThe published data devoted to the use of the neural
network approach in the simulation of structure ± property rela-network approach in the simulation of structure ± property rela-
tionships for organic compounds are reviewed. The basic princi-tionships for organic compounds are reviewed. The basic princi-
ples of the neural network simulation are discussed along with theples of the neural network simulation are discussed along with the
characteristic features of the neural network approach typical ofcharacteristic features of the neural network approach typical of
the representation and classification of structural chemical data.the representation and classification of structural chemical data.
Brief information on neural networkmodels of spectral character-Brief information on neural networkmodels of spectral character-
istics, reactivities, physicochemical properties and biologicalistics, reactivities, physicochemical properties and biological
activities of organic compounds is presented. The bibliographyactivities of organic compounds is presented. The bibliography
includes 159 referencesincludes 159 references..

I. Introduction

The use of computer technologies in virtually all branches of
science has really acquired a mass character in the past decade.
The wealth of experimental data accumulated by now makes it
possible to focus specific attention on the methods for general-
isation and mathematical processing of diverse parameters of
known compounds aimed at the computer simulation and fore-
casting of properties of novel compounds that have not been
synthesised nor investigated hitherto. This, in turn, opens up
broad opportunities for the solution of one of the central tasks of
chemical science, viz., a purposeful search for novel compounds
and materials with predetermined properties.

Artificial neural networks have become one of the most
popular methods for the construction of various quantitative
relationships. The methodology of artificial neural networks,
which enables the construction of nonlinear models of any degree
of complexity, has found wide application in a search for
quantitative relationships between structures of organic com-
pounds and their physicochemical properties (QSPR) or bio-
logical activities (QSAR).

Among the known architectures of neural networks used for
elucidating structure ± property relationships (hereinafter, the
term `property' relates to both physicochemical properties and
biological activities of organic compounds), multilayered feedfor-
ward backpropagation neural networks come first in popularity.
Their attractiveness is mostly due to the ability of such neural
networks to generalise and approximate data with high accuracy
and to the possibility of processing large arrays of disembodied
data.

A search for neural network structure ± property relationships
may be reduced to sequential execution of the following oper-
ations: (1) description of structures of compounds under study by
special numerical parameters (descriptors); (2) choice of an opti-
mum set of descriptors; (3) classification of the whole set of
experimental data into training and control samples; (4) selection
of the most adequate type, architecture and the method for
training of the neural network; (5) choice of statistic parameters
for estimating the quality of training; (6) training of neural
networks and estimation of training results; (7) the use of neural
network models for forecasting the properties and activities of
hitherto unknown compounds.

The first publications devoted to the application of neural
networks (perceptrons) to the solution of various chemical prob-
lems appeared in the late 1980's.1 The interest of chemists in the
new method has begun to increase sweepingly since that time.

Neural networks, commonly referred to as artificial neural
networks or computing neural networks, represent a simplified
mathematical model for information processing by the human
brain. However, the majority of existing architectures of neural
networks cannot reproduce brain functions exactly and should be
considered as a modification of parallel algorithms.2, 3

Owing to their ability for being trained, combining and
generalising information, neural networks have been successfully
used in chemistry, especially in those cases where the analytical
types of relationships between the structures and properties of
chemical compounds are unknown.4

II. Basic principles of neural network simulation

1. Description of architectures and methods for training of
neural networks used for elucidating structure ± property
relationships
Neural networks consist, as a rule, of a set of relatively simple
computing elements termed neurons; the latter are arranged in
several layers and are linked to one another by numerous
connections. The layers are usually subdivided into three groups,
viz., input, hidden and output (Fig. 1). Each connection between
two neurons is defined by a real number termed connection
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weight. The sum of connection weighting coefficients of interneu-
ral bonds determines the computational capabilities of neural
networks; therefore, training of neural networks is reduced to the
adjustment of their connection weighting coefficients.

The computations within each ith neuron of the nth layer are
performed in two steps (see Fig. 1), viz., computation of the net
input signal Netj by summation of all weighted input signals and
computation of the output signal Outj of this neuron on the basis
of the transfer function:

Netj=
X
j

wijOuti �Yj,

Outj= f (Netj),

where Netj is the net input signal of the neuron j pertaining to the
layer n; Outi is the output signal of the neuron i pertaining to the
layer n71; wij is the weighting coefficient of the connection
between the neurons i and j; Yj is the threshold value for the
neuron j; andOutj is the output signal of the neuron j in the layer n.

The sigmoidal functions (1) are used most commonly as
transfer functions, but threshold (2), linear (3), hyperbolic tan-
gential (4) and some other functions can also be used.5, 6

Outj �
1

1� eÿNetj
, (1)

Outj �
0; Netj < 0

1; Netj 5 0 ;

(
(2)

Outj= kNetj (k=const), (3)

Outj �
eNetj ÿ eÿNetj

eNetj � eÿNetj
. (4)

The so-called bias pseudoneurons 2 with a constant output
signal equal to 1 are usually added to each (except for the output
layer) layer of a neural network instead of the threshold valuesY.

Prior to training, all connection weights are initialised by
random numbers. A correct choice of initialisation boundaries
enables reduction of the training time and improvement of the
quality of the neural network models derived.7, 8 In some cases,
where the training procedures (i.e., the adjustment of connection
weights) do not converge, the training is repeated using another
set of parameters or a different mode of initialisation of con-
nection weights.

The architecture of a neural network is determined by the
connection topology between the neurons. Simulation of struc-
ture ± property relationships usually employs multilayered neural
networks the number of layers in which is determined by a specific
architecture of the neural network.2, 9 Each neuron pertaining to
one layer has the same number of input connections with the
preceding layer. The output signals of the last computing layer of
the network represent computed output values of the whole
network. When neural networks are used for forecasting the
properties of chemical compounds, the values of output signals
of the input neurons are set up with regard for the values of
computed descriptors after normalisation (see below); the signals
identified with the values of predicted properties (also, taking
normalisation into account) are read from the output neurons.

a. Multilayered feedforward neural networks
The majority of publications devoted to the elucidation of
structure ± property relationships deal with multilayered feedfor-
ward neural networks. The main advantages of such networks
include their ability to establish multiparametric nonlinear rela-
tionships with a high interpolation accuracy even in those cases
where experimental data are not representative enough or contain
noises.10

A characteristic feature of feedforward neural networks is a
layer-by-layer transfer of signals from the input of the network to
its output. Classical feedforward neural networks usually possess
several hidden layers (Fig. 2 a) or contain exclusively an input and
an output layer (Fig. 2 b).

The adjustment of weighting coefficients of the connections
during training of multilayered feedforward neural networks is
carried out sequentially starting from the output layer connec-
tions; therefore, themethodology of training of such networks has
got the name of back propagation of errors.11, 12 A brief descrip-
tion of the most popular procedures is given below.
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Figure 1. The structure of a feedforward neural network. The enlarged

fragment depicts the main computational operations performed by the

neuron with a sigmoidal transfer function. Desc is descriptor.
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Figure 2. The classical feedforward neural networks with one hidden

layer (a) and without any hidden layers (b).

630 N MHalberstam, I I Baskin, V A Palyulin, N S Zefirov



b. A generalised delta rule
Training of each layer n out of N layers of a neural network is
carried out in accordance with theWidrow ±Hoff rule or the delta
rule:13, 14

Dwij= Z dj oi ,

where Dwij is the change in the weighting coefficient of the
connection between the neurons i and j; Z is the empirical constant
for the training rate; dj is the computational error for the neuron j
pertaining to the layer n and oi is the output signal of the neuron i
pertaining to the layer n71.

In the case of a generalised delta rule, an additional parameter
termed a `training momentum' and calculated with consideration
of changes in the weighting coefficients in the previous iteration is
introduced in order to avoid oscillations which often take place
where error surface is characterised by a very narrow valley
region:13 ± 15

Dwij
(k+1)= Z dj oi + a Dw�k�ij ,

dj=
f 0�Netj��tj ÿ oj�; n � N

f 0�Netj�
X
m

dmwjm; n 6� N;

8<:
where tj and oj are the experimental and the calculated values of
the property under investigation for the neuron j, respectively; a is
the constant reflecting the influence of the training momentum
and k is the iteration number.

c. The resilient propagation method (RPROP)
If the training is performed with the use of RPROP, the adjust-
ment of connectionweighting coefficients is performed exclusively
on the basis of the data about the signs of partial derivatives of
error functions of the neural networkE usually defined as a sumof
squared errors on the output neurons.16, 17 The changes in the
connection weighting coefficients are calculated in the following
way:

ÿD�t�ij , if
qE�t�

qwij

> 0

Dw�t�ij = �D�t�ij , if
qE�t�

qwij

< 0

qE�t�

qwij

� 0 ,

Z+ .D�tÿ1�ij , if
qE�tÿ1�

qwij

.
qE�t�

qwij

> 0

D�t�ij = Z7 .D�tÿ1�ij , if
qE�tÿ1�

qwij

.
qE�t�

qwij

< 0

qE�tÿ1�

qwij

.
qE�t�

qwij

� 0.

Here,
qE�t�

qwij

is the value of the partial derivative of the error

function of the neural network with respect to the connection
weight wij in the ith iteration, Z+ and Z7 are the empirical
constants for the increase or decrease in the training rate and t is
the iteration number.

d. Quasi-Newtonian training methods
This group of methods is based on the Newtonian principle of
function fitting. A vector all the components of which are taken
equal to the partial derivatives of the error function of the network
with respect to all weighting coefficients is calculated for each
iteration. The Broyden ±Fletcher ±Goldfarb ±Shanno (BFGS)
method is the most efficient in this group.14, 18

2. Other neural network architectures
Neural networks having different architectures are successfully
used for the simulation of structure ± property relationships.
A brief description of some of these architectures is given below.

Feedforward neural networks containing at least one hidden
layer may possess additional direct connections linking the
neurons of the input and output layers 19 ± 21 as well as recursive
bonds between the output and the input of a neuron. 21, 22

Kvasnicka et al.23, 24 have proposed the use of a tree-shaped
neural network for the solution of problems related to classifica-
tion of compounds; the topology of such a network was the most
close to the molecular structures under investigation. The values 0
or 1 were ascribed to the input neurons so as to obtain subgraphs
isomorphous to the structures of the molecules. Later, a similar
approach was realised in the computer programme `ChemNet'.25

An interesting neural network procedure for the description of
chemical compounds has been proposed, which allows elucidation
of structure ± property relationships without computation of
descriptors for molecules as a whole using only atom and bond
descriptors.26, 27 In this method, the presentation of structures is
effected through the use of an additional neural network which
consists of two principal elements, viz., a sensorial area to which
the basic structural information is fed and an `eye' which trans-
forms the data from the sensorial area into a signal invariant to the
renumbering of the atoms in compounds under study. The
structural information thus processed is fed to the input of
ordinary feedforward neural networks in order to obtain struc-
ture ± property relationships.

The Kohonen neural networks (see Refs 28 ± 32) (Fig. 3 a)
widely employed in cluster analysis allow data mapping in such a
way that similar vectors of input values are mapped onto
neighbouring output neurons on the lattice.

Counterpropagation neural networks 33, 34 utilise two differ-
ent types of layers, viz., a hidden Kohonen layer and an output
Grossberg layer (Fig. 3 b). The salient advantages of networks
trained by counterpropagation include a relatively small (of the
order of several hundreds) number of interactions required for the
training of networks 35, 36 and the possibility of finding a global
minimum of the error function for any starting setup of the
weighting coefficients.37, 38 One disadvantage is a weaker approx-
imating capacity of such networks in comparison with other
architectures.

A neural network with a linear transfer function for the
output-layer neurons and hidden neurons which accomplish
radial-basic nonlinear approximation is usually referred to as a
radial-basic neural network. This is also used for elucidating
structure ± property relationships.39 ± 41

The functioning of Fuzzy ARTMAP (Fuzzy Adaptive Reso-
nance Theory for Mapping) neural networks is based on cluster-
isation (categorisation) of training set vectors in accordance with
the adaptive resonance theory (see Ref. 42 and References cited
therein). In this method, categorisation of vectors is performed by
comparing each successive vector to reference vectors describing
previously established categories (clusters). If a successive vector
`resembles' a reference vector in terms of a definite proximity
criterion, it is used for its adjustment. In the opposite case, a vector
becomes a representative of a new data category and is memorised
as a new reference vector. This procedure is implemented in a
neural network consisting of a reference layer, which estimates the
`similarity' of the vectors, a recognising layer where each neuron
describes its own data category (cluster) and several accessory
elements. Such architectures have been termed ART-1 (catego-
risation of binary vectors) and ART-2 (categorisation of real
number vectors). ARTMAP represents a modular neural network
made up of two networks for categorisation of vectors of the ART
type (in QSAR/QSPR studies, these vectors are linked to the
vectors corresponding to descriptors and properties of organic
compounds) and a comparison module responsible for memori-
sation of `associations' between different categories of descriptors
and properties.

Neural networks as a method for elucidating structure ± property relationships for organic compounds 631



A neural network of functional links 43 is made up of two
layers. The outputs of the neurons forming the input layer result
from nonlinear transformations (e.g., squaring, taking a square
root, a sinus, etc.) of the values of a descriptor; each neuron in the
output layer corresponds to a predicted property. It is of note that
this category represents a neural network simulation of a linear
regression analysis based on the use of nonlinearly transformed
descriptors and properties.

Sometimes, in the simulation of structure ± property relation-
ships several neural networks having different architectures are
combined into a hierarchical system.21, 44

Alongside neural networks with static architectures (which
have to be selected prior to training) there are the so-called cascade
networks (Fig. 3 c); their topology is formed during training.45 ± 47

The training is begunwith a neural network containing exclusively
input and output neurons. If the error of the neural network
exceeds the threshold value, one hidden neuron which accumu-
lates signals from all input and previously added hidden neurons is
added after each training cycle. It may therefore be assumed that
each hidden neuron forms a separate layer. After addition of a
successive hidden neuron, the weights of its connections are
determined only once to enable maximisation of covariation of
values of output signals with the error and do not change any
further in the course of training. As far as the output neurons are
concerned, the weights of their connections have to be adjusted
every time in order to diminish the error function of the network.

III. Approaches to structural description of
compounds

The first question arising in connection with the application of
neural networks, especially in the solution of various chemical
problems, is related to the choice of a method for the description
of source data.

The combination of parameters fed to the input of a neural
network is usually presented in the form of a vector. Therefore, a
topological or a three-dimensional molecular structure has to be
described as a unidimensional arraywithout considerable losses of
significant information. The following conditions should be
met:36

(1) the quantity and the type of descriptors are the same for all
the structures to be described;

(2) there is a correspondence between each descriptor and a
particular component in a parameter vector;

(3) different parameter vectors correspond to different mole-
cules.

As a rule, neural network simulation of structure ± property
relationships utilises a set of numeric values (descriptors) 48 for the
description of structures of chemical compounds containing all
relevant information. According to the type of information, all
descriptors are subdivided into fragmental,49 topological,50, 51

quantum-chemical 52 and physicochemical. All of them demand
additional computation prior to construction of neural network
models. Moreover, one should have a clear idea about the nature
of a relationship in order to select an appropriate group and a type
of descriptors for each concrete case.

In the majority of studies devoted to neural network simu-
lation of structure ± property relationships, descriptors are com-
puted with the aid of various software packages, e.g.,
ADAPT.53 ± 55 This usually results in an excessive set of descrip-
tors; the most significant ones are selected for further analysis
using various procedures. Sometimes, it is rather difficult to
explain the physical sense of the descriptors selected and to
establish their relationship to the property under investigation.

The first attempts to use a well-known procedure for the
presentation of chemical structures as modified connectivity
matrices with charges on nuclei of the corresponding atoms on
their diagonals and formal bond orders as non-diagonal elements
were undertaken by Elrod et al. 56 It was proposed to form input
vectors for neural networks by combining the diagonals of the
connectivity matrices with subdiagonal elements taken row-by-
row. These authors recommended using two connectivity matrices
(one for reactants and one for reaction products) for the descrip-
tion of chemical reactions.57 Evidently, the use of this approach is
confined to compounds containing a small number of atoms due
to a great number of elements in the connectivity matrix. In
addition, such a presentation of structures is not invariant with
respect to the renumbering of atoms.
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Figure 3. A schematic representation of architectures of some neural

networks used for the simulation of structure ± property relationships.

(a) The Kohonen neural network, (b) back propagation neural network,

(c) cascade-type neural network.
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The classical approach to the construction of quantitative
structure ± property relationships is used for the description of a
series of structural analogues using substituent constants, e.g.,
Hammett s constants, Taft's Es constants, lipophilic constants p,
parameters L, B1, B2 (STERIMOL), etc. However, if structures
contain topologically equivalent substitution positions, the use of
these parameters is not quite correct. For example, the pyridine
molecule contains two pairs of topologically equivalent positions
of substituents, viz., the a-position for R2 and R6 and the
b-position for R3 and R5. As a consequence, the same compound
will be represented by different sets of descriptors based on the use
of different parameters of substituents, which may result in
ambiguous prognosis.

This problem may be overcome through the introduction into
the source set of copies of compounds with different arrangements
of substituents in topologically equivalent positions,58 possessing
the same activities as the starting compound. Such an enlargement
of the source sample makes prognosis independent in cases of
ambiguous assignment of substituents to topologically equivalent
positions.

An interesting method has been proposed which enables one
to reduce the number of input parameters of neural networks
without any loss of significant information.59 This approach is
based on the computation of the principal components 60 which
represent linear combinations of original descriptors. The values
thus obtained are further used as the input parameters of neural
networks.

1. Normalisation of input parameters of neural networks
Almost all publications devoted to the use of neural networks for
the solution of various chemical problems describe normalisation
of input data. As a rule, input parameters are normalised in such a
way that their values lie in the range between 0 and 1 or are
characterised by unit variance.

2. Selection of the most significant descriptors
Of no less importance is the selection, among all computed
parameters, of only those parameters which make a significant
contribution to the property under study. Such a selection can be
made in advance or in the course of training of neural networks.

Preliminary selection of parameters is performed using inde-
pendent methods, e.g., stepwise multiple regression analysis,61, 62

or neural network algorithms.63 In the latter case, the type of
neural network used for the selection of descriptors does not
usually coincide with the type of main neural network used for the
construction of the model.

A neural network utilising a `genetic' training algorithm can
serve as an example.64 ± 66 The `genetic' algorithm represents a
stochastic optimisation procedure based on evolutionary princi-
ples. Its operation ensures the selection of a description with the
most significant parameters from the whole set of object descrip-
tions over the course of several generations. The significance of
parameters, i.e., the success of genetic combinations, is defined by
a criterion function computed by a neural network as a residual
error for the property under investigation. Diverse methods for
the production of a new generation within the framework of a
`genetic' algorithm have been described. Approximation of the
genetic function 67 and evolutionary programming 68 are the most
popular.

Brinn et al.69 have recommended using the so-called evolu-
tionary approximation for the rejection of insignificant descrip-
tors. Some descriptors randomly selected from a multitude of
computed descriptors are fed to the input of a neural network after
which the root-mean-square error is computed at the output of the

network. Then, one of the input neurons is excluded from the
neural network and the new root-mean-square error is recalcu-
lated. This procedure is repeated for all neurons. The descriptors
are scored according to themagnitude of the change in the error at
the output of the neural network. The neurons are then removed
from the neural network starting from the least significant
descriptors until the change in the error at the output of the
network becomes significant. After replacement of discarded
descriptors by new ones taken from the set of computed descrip-
tors, the calculations are repeated.

In the course of training of neural networks, less significant
descriptors can be discarded using the so-called pruning algo-
rithms. Their main function consists of simplification of neural
network architectures by discarding the connections with less
significant weighting coefficients. If all the connections of input
neurons are insignificant, these neurons are discarded.70, 71 Prun-
ing procedures can be classified into two groups,72 viz., sensitivity
methods based on computation of significance or sensitivity of all
connections followed by elimination of the connections with the
least sensitivity, and `penalty component methods' based on the
introduction of the so-called penalty functions which reduce
weighting coefficients to zero values in the course of training.

Tetko et al.73 have provided a detailed description of five
methods designed for the computation of connection sensitivities.
A method for the selection of the most significant descriptors
based on the calculation of sensitivities of connections and the
contribution of each descriptor to the total error of the neural
network has been developed.74, 75

A reconstructive method based on the forgetting principle,
i.e., a sequential decrease in the absolute values of all weighting
coefficients, has been developed.76 Reiteration of training ± for-
getting cycles enables enhancement of significant or weakening of
less significant connections.

The degeneration algorithm of weighting coefficients is yet
another example of a procedure based on penalty functions.13, 20

In each training step, the values of calculated weighting coeffi-
cients of the connections diminish by a fraction of their previous
values as a result of which insignificant weighting coefficients
decrease to 0 in the course of training.

3. Choice of an optimum training set
The design of training samples is yet another problem related to
the application of neural networks in chemistry. Chemical com-
pounds constituting a training set should be evenly distributed
along the whole range of possible values of input parameters.

The majority of published data deal with random division of
the whole array of compounds under investigation into training
and control sets, but only some of them provide a description of
special procedures for the selection of an optimum training set.
The use of Kohonen neural networks has been described in
Refs 35, 77, 78; a neural network based on the theory of adaptive
resonance (ART 2-A, see above) and intended for preliminary
classification of the whole set of experimental data has been
described.79 The choice of a correct size of training set is yet
another critical factor.

4. Optimisation of the number of hidden neurons
The number of adjustable parameters (weighting coefficients) of
neural networks is determined by the number of hidden neurons.
If the number of hidden neurons is too large and the number of
adjustable parameters is comparable with the number of struc-
tures in the training set, the neural networks will try to `memorise'
the training set (the overdetermination effect). Neural networks
with an insignificant number of hidden neurons are unable to
utilise the whole array of input information for generalisation and
classification.80, 81

The expediency of the introduction of a special parameter r for
the estimation of an optimum number of hidden neurons has been
demonstrated:82 ± 84

N

R4

R3R5

R6 R2
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r � N

P
,

whereN is the number of molecules in the training set and P is the
total number of connections in the neural network.

The optimum values of this parameter lie in the range
1.8< r<2.2. The number of hidden neurons thus calculated
enables the construction of neural networks manifesting the best
forecasting ability.80

5. Effect of `overtraining' of neural networks
The overdetermination of a model (see above) leads to the so-
called `overtraining' of neural networks.85 ± 87

The training of neural networks includes two phases, viz.,
generalisation andmemorisation of information. The first phase is
characterised by a decrease in themean computational error of the
property under study for compounds in both training and control
sets. However, in the next phase, memorisation, the error calcu-
lated for the control set increases in parallel with a constantly
decreasing error of the training set. As a consequence, completely
trained neural networks can reliably forecast the properties of
only those compounds which are included in the training set; for
other compounds, the quality of forecasting is much worse. This
effect is especially pronounced when the first phase of neural
network training is either short-lasting or absent. `Overtraining'
can be avoided by reducing the number of adjustable parameters
of a neural networkmodel either actual (by decreasing the number
of input parameters of the neural network) or effective 86 (by
`regularisation', e.g., Bayesian regularisation 88, 89).

Early termination of training of neural networks at the
moment of phase changes is yet another popular procedure. In
the majority of publications, the forecasting ability of neural
networks was estimated using the same control set as that used
in previous studies for establishing the starting point for `over-
training'. However, in this case the error can be underestimated
(see Ref. 90).

6. Analysis of activities of hidden neurons
An analysis of results obtained with a three-layered neural net-
work used for the simulation of structure ± property relationships
has shown that hidden neurons can be used for cluster analysis of
starting compounds.

Kvasnicka et al.91 have carried out a recurrent cluster analysis
aimed at classification of functional groups. Each functional
group was represented as an output vector of hidden neurons
which was normalised for all compounds under investigation
using standard statistical methods.

An analysis of activities of hidden neurons of a three-layered
associative neural network aimed at classification of data from the
training set was used for the determination of the content of eight
fatty acids in samples of olive oil produced in nine different
regions of Italy.31 The use of this approach has made it possible
to obtain a more precise, in comparison with the Kohonen neural
network, classification of samples with respect to oil-producing
regions.

7. Analysis of derived neural network relationships
The need for reliable interpretation of derived models consistent
with the data available from the corresponding branches of
chemistry, physics or biology is an extremely important aspect
which determines the application of virtually all statistical meth-
ods including neural networks to the construction of structure ±
property models in chemistry (particularly those based on the use
of physicochemical and quantum-chemical descriptors). Very
often, it is this interpretation that represents the most weighty
argument in favour of the validity of the constructed model. The
impossibility of establishing clear-cut relationships between the
properties under study and the input parameters of neural net-
works, viz., the presentation of a neural network as a `black box',

is still the main argument against the application of neural
networks to the solution of various chemical problems.

The majority of papers do not provide any interpretation of
neural network models; however, the possibility of analysis of
neural network relationships has been demonstrated 92, 93 as well
as that of estimation of contributions of input parameters to
neural networkmodels in neural networks with one output neuron
based on analytical formulas for the calculation of partial deriv-
atives of neural network functions.94 ± 96 It was recommended to
supplement a standard sigmoidal transfer function with a param-
eter b which reflects the degree of mixing of linear and nonlinear
functions.

Outj=
b

�1� eÿaNetj � � �1ÿ b�Netj ,

where Outj is the output signal of the neuron j; Netj is the net input
signal of the neuron j; a and b are the coefficients.

The use of specially computed statistical parameters which
characterise the function of a trained neural network has been
proposed.97 These parameters allow interpretation of neural net-
work models by conventional methods similar to those used for
the interpretation of linear regression models. Indeed, the signifi-
cance of one or another parameter of a linear regression equation
is determined by the value and sign of the corresponding numer-
ical coefficient which, in turn, is equal to the value of a partial
derivative of the regression function with respect to this particular
parameter. The coefficients are calculated on the whole set of
experimental data in the course of regression analysis. A similar
interpretation of neural networkmodels demands computation of
partial derivatives of properties under study on all examples in
succession from the training set for all descriptors. This approach
enables computation of a set of statistical functions which allows
estimation of the contribution of all original descriptors to the
derived neural network models.

8. Choice of a function for estimating computational errors
The derived neural network models are usually estimated on the
basis of standard statistical functions by calculation of, e.g., root-
mean-square errors,61, 98 correlation coefficients,36, 99 recognition
coefficients,43, 100 etc.

The forecasting ability of neural network models is often
estimated using a cross-validation procedure (see, e.g., Refs 35,
82, 101).

9. Comparison of a neural network algorithm with standard
statistical methods used for information processing
In many cases, conclusions on the adequacy of the use of neural
network simulation are drawn by comparing models obtained
using neural network algorithms with the models obtained by
other methods.

Thus the results of neural network classification of com-
pounds are compared with the results of the hierarchical cluster
analysis, analysis of the main components,32 the results of PLS
(Partial Least Squares) in the framework of CoMFA (Compara-
tive Molecular Field Analysis),9 chemical expert systems,56 etc.

Neural network models of structure ± property relationships
are most frequently compared with equations obtained by the
multiple linear regression method.77, 102, 103 Most authors con-
clude that the use of neural network methods ensures the best
results in both the description of structure ± property relationships
and forecasting properties of novel compounds. However, a
conclusion 104 about a poor forecasting ability of neural networks
in comparison with multiple linear regression can be explained by
an incorrect choice of parameters for a neural network model.

Some papers 95, 105 point to a relationship between neural
network simulation and multiple regression analysis. It was
shown that the results obtained with neural networks containing
one hidden layer and utilising a linear transfer function for all
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Table 1. Characteristics of neural network models obtained in the simulation of relationships structure ± spectral properties and structure ± retention index in chromatography.

The property Compounds Number Descriptors Architecture of neural networks Training Statistical characteristics Ref.

that is simulated under study of com- results of neural network

pounds number type of training a

of neurons neural

network b

IR spectra monosubstituted 185 topological 32 ± (10610) ± 128 A for different compounds R=0.42 ± 0.94 99

benzenes

aliphatic compounds 200 calculated 254 ± (from 76 B decrement of errors of the PM3 7 108

containing 4 ± 100 IR spectra to 650)71 method for different compounds

carbon atoms (PM3) (from 10% to*1.25%)

13C NMR spectra acyclic alkanes 21 fragmental 12 ± 2 ± 4 ± 6 ± 2 ± 1 C calculated values of chemical 7 24

shifts are close to experimental

values

monosubstituted 20 topological 11 ± 6 ± 4 D satisfactory classification and 7 22

benzenes and physicochemical forecasting of chemical shifts

the same 20 the same 11 ± 6 ± 4 E the same 7 22

heterogeneous set 40 000 fragmental 360 ± (5, 10 or 20) ± 1 D averaged results of training MDt=1.79, SDt= 2.10, 109

of 3 neural networks Rt=0.979;MDp=1.75,

SDp=1.97, Rp=0.981 (ppm)

pyranoses and 55 topological, 11 ± 5 ± 1 D 7 RMSt=1.03, RMScv=0.766, 110

pyranosides electronic, RMSp=1.11 (ppm)

geometrical

furanoses and furanosides 56 the same 8 ± 5 ± 1 D 7 RMSt=1.58, RMScv=0.995, 110

RMSp=0.898 (ppm)

ribonucleosides 17 quantum-chemical 4 ± 2 ± 1 D 7 RMSt=0.69, RMScv=0.47, 111

RMSp=0.39 (ppm)

acyclic alkenes 130 topological 12 ± 4 ± 1 D four networks with different SDt=0.59 ± 0.63, 112

transfer functions SDp=0.89 ± 1.07 (ppm)

NMR spectra amino acids 123 physicochemical hierarchical networks: F 7 Ct=77% for 13Ca 44

52 ± 4 ± 3, 39 ± 4 ± 3 Ct=75.3% for 1Ha

Ct=78.3% for 1HN

Retention indices alkanes, alkenes, 216 types of bonds 29 ± 2 ± 1 D 7 RMSt=14.7, RMSp=23.6 102

in gas chromatography alcohols, esters, ketones

Retention indices in steroids 85 quantum-chemical 11 ± 3 ± 1 D 7 SDp=0.08, SDcv=0.09 113

reversed-phase

chromatography



Table 1 (continued).

The property Compounds Number Descriptors Architecture of neural networks Training Statistical characteristics Ref.

that is simulated under study of com- results of neural network

pounds number type of training a

of neurons neural

network b

Kovats indices substituted 43 molar refraction, 2 ± 3 ± 6 ± 1 A 7 RMSp=1.1 37

phenols dipole moment for the support SE-30

RMSp=2.1

for the support OV-225

RMSp=0.8

for the support NGA

Retention indices in substituted benzoic 22 quantum-chemical 7 ± 4 ± 1 D 7 R=0.973 103

thin-layer chromatography acids

Note. Here and in Tables 2 ± 4, the architectures of neural networks are described by the number of neurons for each neural network layer starting from the input neuron and ending with the output neuron.
a The parameters for assessing neural network training results: R is the correlation coefficient;MD is the mean deviation; RE is the relative error; SD is the standard deviation; RMS,MSE and S are the root-mean-square

errors;C is the recognition coefficient; SE is the standard error;MAE,AAE are the mean absolute errors;RSD is the relative standard deviation;ME is the mean forecasting error;ADD is the standard absolute deviation;

RV is the residual variation and SSO is the sum of squared differences between the calculated and experimental values. The letterings for the subscript indices are as follows: t is the training set; p and v are the control sets;

o designates `for all compounds' and cv is the cross-validation.
bA is the back propagation neural network; B is the feedforward neural network; C is the neural network reproducing the topology of molecules under study; D is the feedforward neural network trained according to the

delta rule; E is the recurrent neural network; F is the feedforward neural network trained by the resilient propagation method; G is the Kohonen neural network; H is the wavelet neural network; I is the feedforward neural

network trained by the Broyden ±Fletcher ±Goldfarb ± Shanno method; J is the radical-basic neural network; K is the fuzzy ARTMAP neural network; L is the feedforward neural network with additional direct bonds

between input and output layer neurons trained by the delta rule; M is the feedforward neural network with additional direct bonds between input and output layer neurons trained by the Broyden ±Fletcher ±

Goldfarb ± Shanno method; N is the feedforward neural network trained by the scaled conjugated gradient method; O is the feedforward neural network trained with the help of Bayesian regularisation; P is the Kohonen

nonlinear distribution neural network; Q is the feedforward functional links neural network.



Table 2. Characteristics of neural network models obtained in the simulation of structure ± reactivity relationships of organic compounds.

The property Compounds Number Descriptors Architecture of neural Training Statistical characteristics Ref.

that is simulated under study of com- networks results of neural network

pounds training a

number type of

of neurons neural

network a

Cleavage of the C7C bond carbonyl 32 fragmental 8 ± (969) G clear-cut separation of the starting 7 28

between the a- and b-atoms compounds array of compounds into four clusters

relative to the carbonyl group according to bond cleavage type

Heterolytic bond cleavage aliphatic 29 physicochemical 7 ± (116 11) G correct classification of reactions 7 2

compounds according to bond cleavage type

the same 29 " 7 ± 3 ± 1 D for both the training and control

sets

Ratio of isomers upon monosubstituted 45 quantum-chemical 6 ± 10 ± 2 D 7 RMSt=5.2%, RMSp=19.8% 2, 56

electrophilic substitution benzenes

the same 45 tables of bonds 25 ± 5 ± 2 D 7 RMSt=0.3%, RMSp=12.1% 2, 56

of substituents

Yield of m-isomers upon " 31 fragmental 9 ± 4 ± 4 ± 1 D good correlation with experimental 7 23

nitration " 31 " 9 ± 5 ± 5 ± 1 I data for the training set; for the

" 31 " 9 ± 6 ± 6 ± 1 I control set the result is at

`semiquantitative level'

The Markownikoff addition alkenes 25 connectivity 36 ± 8 ± 8 ± 28 D correct recognition of the 7 57

of hydrogen halides matrix addition site for the training

and control sets

Direct and retro Diels ±Alder cycloalkenes 36 the same 120 ± 36 ± 36 ± 105 D correct classification into forward 7 57

reactions and retro reactions and identification

of the main product of the forward

reaction for training and control sets

Elimination of hydrogen halides alkenes 83 " 66 ± 24 ± 24 ± 55 D correct identification of the main 7 57

according to the Zaitsev rule reaction product for the training

and control sets

Constants of complex formation substituted 24 physicochemical 3 ± 3 ± 3 ± 3 ± 1 D 7 R=0.97, SDt=0.22 (lnKa) 114

with a-cyclodextrin benzenes

Constants of complex formation mono- and 40 " 6 ± 6 ± 1 H 7 R=0.992, SDt=0.089 (lnKa) 115

with b-cyclodextrin 1,4-disubstituted

benzenes

Heats of formation of dihydropyridines 71 22 ± 4 ± 1 D 7 R=0.92, SDt=0.298, 116

aromatic salts and related hetero- SDp=1.80 kcal mol71

cyclic compounds



Table 2 (continued).

The property Compounds Number Descriptors Architecture of neural Training Statistical characteristics Ref.

that is simulated under study of com- networks results of neural network

pounds training a

number type of

of neurons neural

network a

Addition rate constants unsaturated 191 quantum-chemical 6 ± 4 ± 1 D 7 RMSt=0.381, RMSp=0.496 53

of the methyl radical compounds of

various types

the same 191 " 7 ± 3 ± 1 D 7 RMSt=0.424, RMSp=0.409 53

(log k)

Reaction with tetrazolium cortisone and 40 " 6 ± 4 ± 2 D 7 SEt=3.47%, SEp=4.12% for 117

blue, composition of hydrocortisone cortisone;

a multicomponent mixture mixtures SEt=5.12%, SEp=5.25% for

hydrocortisone

aDesignations as in Table 1.



Table 3. Characteristics of neural network models obtained in the simulation of structure ± physicochemical property relationships of organic compounds.

The property Compounds Number Descriptors Architecture of Statistical characteristics Ref.

that is simulated under study of com- neural networks of neural network

pounds training a

number type of

of neurons neural

network a

Boiling temperature alkyl halides C1 ±C4 171 topological 7 ± 14 ± 1 D R=0.995 118

acyclic ethers, peroxides, 185 fragmental 20 ± 5 ± 1 D R=0.998, SEt= 2.9 8C, SEp=5.1 8C 82

acetals and their sulfur

analogues

the same 185 topological 3 ± 20 ± 1 J R=0.990, SEt= 4.9 8C, SEp=5.9 8C 39

tetrahydrofurans, thiophenes, 299 topological and electronic 16 ± 3 ± 1 D RMScv=8.49 8C 119

furans, pyrans

pyridines 291 the same 7 ± 3 ± 1 D RMScv=15.8 8C 119

heterogeneous set 298 electrotopological 19 ± 5 ± 1 D R=0.9975,MAEt=3.86 8C,MAEp=4.57 8C 120

fluoro-substituted ethanes 31 topological 8 ± 6 ± 1 D MAEt=4.7 8C 121

and propanes

alkenes 82 " 5 ± 5 ± 1 D RSDt=4.88%, RSDcv=3.5% 122

alkanes 140 topological and 7 ± 4 ± 1 D AAEt=1.65 8C, AAEp=1.73 8C, AAEo=1.54 8C 42

physicochemical

" 140 the same 7 ± 4 ± 1 K AAEt=0.81 8C, AAEp=1.30 8C 42

alkenes 144 " 7 ± 10 ± 1 D AAEt=6.79 8C, AAEp=6.45 8C, AAEo=4.42 8C 42

" 144 " 7 ± 10 ± 1 K AAEt=0.73 8C, AAEo=0.95 8C 42

alkanes, alkenes and alkynes 327 " 7 ± 9 ± 1 D AAEt=6.09 8C, AAEp=4.68 8C, AAEo=4.85 8C 42

the same 327 " 7 ± 9 ± 1 K AAEt=1.15 8C, AAEo=1.35 8C 42

heterogeneous set 298 topological, electronic 8 ± 3 ± 1 I RMSt=7.75 8C, RMScv=7.17 8C, 123

and mixed RMSp=8.69 8C
the same 400 topological 26 ± 36 ± 2 J AAEt=11 8C, AAEp=14 8C 40

hydrocarbons 134 " 7 ± 8 ± 6 D MEp=1.19% 101

heterogeneous set 421 the presence of functional 36 ± 3 ± 4 L ADDp=2.9% 19

groups

Critical temperature the same 165 electrotopological 19 ± 4 ± 1 D R=0.9965,MAEt=4.39 8C,MAEp=5.59 8C 120

fluoro-substituted ethanes 38 topological and 9 ± 4 ± 1 D MAEt=5.9 8C 121

and propanes boiling temperature

heterogeneous set 421 the presence of functional 36 ± 3 ± 4 L ADDp=3.1% 19

groups

alkanes 69 topological 12 ± 5 ± 6 D R=0.994, St=3.80, Sv=3.94 124

" 69 fragmental 14 ± 6 ± 6 D R=0.995, St=3.37, Sv=3.58 124

Self-ignition temperature acyclic hydrocarbons with 47 topological and 5 ± 3 ± 1 I RMSt=8.77 8C, RMScv=6.88 8C, 125

low self-ignition temperature quantum-chemical RMSp=5.11 8C
acyclic hydrocarbons with 51 the same 6 ± 2 ± 1 I RMSt=18.5 8C, RMScv=17.0 8C, 125

high self-ignition temperature RMSp=15.7 8C



Table 3 (continued).

The property Compounds Number Descriptors Architecture of Statistical characteristics Ref.

that is simulated under study of com- neural networks of neural network

pounds training a

number type of

of neurons neural

network a

Self-ignition temperature nitrogen-containing 40 topological and 6 ± 2 ± 1 I RMSt=34.9 8C, RMScv=23.6 8C, 125

organic compounds quantum-chemical RMSp=28.2 8C
organic compounds containing 132 the same 7 ± 5 ± 1 I RMSt=30.8 8C, RMScv=29.7 8C, 125

oxygen or sulfur atoms RMSp=32.5 8C

Ignition temperature heterogeneous set 400 topological 26 ± 36 ± 2 J AAEt=10 8C, AAEp=12 8C 40

Heat of evaporation fluoro-substituted ethanes 38 " 8 ± 4 ± 1 D MAEt=1.1 kJ mol71 121

and propanes

alkanes 69 " 12 ± 5 ± 6 D R=0.994, St=0.44, Sv=0.51 124

" 69 fragmental 14 ± 6 ± 6 D R=0.996, St=0.44, Sv=0.56 124

Thermal capacity hydrocarbons 134 topological 7 ± 8 ± 6 D MEp=0.87% 101

Density " 134 " 7 ± 8 ± 6 D MEp=0.60% 101

fluoro-substituted ethanes 38 " 8 ± 4 ± 1 D MAEt=0.03 g cm73 121

and propanes

alkenes 82 " 5 ± 5 ± 1 D RSDt=0.43%, RSDcv=0.4% 122

Refraction index hydrocarbons 134 " 7 ± 8 ± 6 D MEp=0.19% 101

alkenes 82 " 5 ± 5 ± 1 D RSDt=0.13%, RSDcv=0.14% 122

The Gibbs energy hydrocarbons 134 " 7 ± 8 ± 6 D MEp=1.36% 101

Enthalpy " 134 " 7 ± 8 ± 6 D MEp=1.42% 101

Critical volume heterogeneous set 421 the presence of functional 36 ± 3 ± 4 L ADDp=3.4% 19

groups

Acentric factor the same 421 the same 36 ± 3 ± 4 L ADDp=9.1% 19

Molar volume alkanes 69 topological 12 ± 5 ± 6 D R=0.999, St=0.84, Sv=0.89 124

" 69 fragmental 14 ± 6 ± 6 D R=0.999, St=0.88, Sv=1.10 124

Molar refraction " 69 topological 12 ± 5 ± 6 D R=1.000, St=0.15, Sv=0.18 124

" 69 fragmental 14 ± 6 ± 6 D R=0.999, St=0.20, Sv=0.18 124

Critical pressure " 69 topological 12 ± 5 ± 6 D R=0.984, St=0.46, Sv=0.39 124

" 69 fragmental 14 ± 6 ± 6 D R=0.986, St=0.44, Sv=0.23 124

heterogeneous set 421 boiling temperature, 3 ± 3 ± 1 L ADDp=6.4% 19

critical temperature,

critical volume

Surface tension alkanes 69 topological 12 ± 5 ± 6 D R=0.996, St=0.18, Sv=0.28 124

" 69 fragmental 14 ± 6 ± 6 D R=0.996, St=0.17, Sv=0.17 124



Table 3 (continued).

The property Compounds Number Descriptors Architecture of Statistical characteristics Ref.

that is simulated under study of com- neural networks of neural network

pounds training a

number type of

of neurons neural

network a

Saturated vapour pressure compounds with heteroatoms 420 topological 8 ± 3 ± 1 I RMSt=0.26, RMSp=0.37, 54

[logVP (Pa)] RMScv=0.29

the same 420 " 10 ± 4 ± 1 I RMSt=0.19, RMSp=0.33, 54

RMScv=0.24

hydrocarbons and 352 topological, geometrical 7 ± 3 ± 1 I RMSt=0.163, RMScv=0.163, 126

halogenohydrocarbons and electronic RMSp=0.209

Viscosity [logM (mPa s)] heterogeneous set 361 experimental physico- 9 ± 3 ± 1 D R=0.958, RMSt= 0.118, RMSp=0.161 127

chemical values

Solubility in water the same 350 quantum-chemical 17 ± 18 ± 1 D SDt=0.23, SDp=0.43 128

[logS (mol litre71)] " 332 topological, electronic 9 ± 6 ± 1 I RMSt=0.394, RMScv=0.358, RMSp=0.343 129

and geometrical

heterogeneous set of drugs 211 electrotopological and 23 ± 5 ± 1 D R2
t = 0.90, SEt=0.46, R2

p =0.86, SEp=0.53 130

topological

heterogeneous set 136 topological, electronic, 9 ± 3 ± 1 I RMSt=0.145, RMScv=0.151, RMSp=0.166 131

geometrical and mixed

Solubility in carbon dioxide in the same 58 topological and 7 ± 2 ± 1 I RMSt=0.65, RMScv=0.68, RMSp=0.64 132

a supercritical state quantum-chemical

[logS (mol litre71)]

Activity coefficient at infinite " 325 the same 12 ± 6 ± 1 I RMSt=0.472, RMScv=0.538, RMSp=0.484 133

dilution (log g?)

Lipophilicity (logP) b " 250 quantum-chemical 8 ± 5 ± 1 D R=0.923, SEp=0.379 134

" 250 " 13 ± 6 ± 1 D R=0.952, SEp=0.300 134

" 1870 molecular weight and 39 ± 5 ± 1 D R2
t = 0.90, RMSt=0.46, R2

p =0.94, RMSp=0.4 135

electrotopological

" 323 quantum-chemical 6 ± 7 ± 1 I SEp=0.30 136

" 323 " 11 ± 3 ± 1 D SDt=0.31, SDp=0.29, SDcv=0.32 113

compounds with heteroatoms 7719 topologo-physicochemical 35 ± 32 ± 1 D Rt=0.97, RMSt=0.37, Rp=0.98, RMSp=0.39 137

Phase-transition nematic liquid-crystalline 17383 fragmental 205 ± 100 ± 1 D SDt=3.8, SDp=16.4 138,

temperature (8C) compounds 139

the same 6304 " 205 ± 10 ± 1 D SDp=18.8 138,

139

Solvatochromic polarity ± heterogeneous set 333 topological, electrostatic, 16 ± 7 ± 1 D R2=0.980 77

polarisability index quantum-chemical,

structural

Molar adsorption (log e) asymmetric phosphobisazo 43 topological 4 ± 4 ± 3 ± 1 I RMSt=0.05669, RMSp=0.09621 61

derivatives



Table 3 (continued).

The property Compounds Number Descriptors Architecture of Statistical characteristics Ref.

that is simulated under study of com- neural networks of neural network

pounds training a

number type of

of neurons neural

network a

Impact sensitivity (logH50%) c nitro compounds 204 topological, quantum- 11 ± 2 ± 1 D R=0.941, SEp=0.154 62

chemical

" 204 the same 13 ± 2 ± 1 D R=0.937, SEp=0.159 62

" 204 " 13 ± 3 ± 1 D R=0.95, SEp=0.13 140

Position of the long-wave symmetrical cyanine 398 quantum-chemical, 8 ± 10 ± 1 D Rs=0.9928, St=10.6 nm, Sv=7.0 nm 141

absorption band dyes indicators of the presence

of substituents

Interatomic distances compounds containing 2615 geometrical 78 ± 8 ± 1 D Ct=80%, Cp=80% for remote atoms; 100

two heteroatoms Ct=66% for adjacent atoms

Odour aliphatic alcohols 99 topological 6 ± 3 ± 1 D Ct=100%, Cp=85% 142

Total energy of p-electrons unsubstituted polycyclic 265 " 3 ± 3 ± 1 D SDt=0.06, SDcv=0.27 143

hydrocarbons

Inductive and resonance monovalent functional 37 " 14 ± 8 ± 2 D 7 144

constants of substituents groups d

aDesignations as in Table 1.
b logP is the common logarithm of the distribution coeficient in the n-octanol ±water system.
cH50% is the height for which the explosion occurs with 50% probability.
d For compounds under study, the result of neural network training is a correct classification of substituents and a good estimation of the values of substituent constants for both training and control sets.



Table 4. Some characteristics of neural network models obtained in the simulation of structure ± biological activity relationships of organic compounds.

The property that is Num- Compounds under study Descriptors Architecture of neural Training results Statistical characteristics Ref.

simulated ber of networks of neural network

com- training a

pounds number of type of

neurons neural

network a

Affinity to transport 31 corticosteroids and physicochemical 32 ± (10610) G clear-cut separation of steroids 7 99

proteins (globulins) testosterones into three clusters (strong,

medium and weak affinity)

the same map of atomic 9 ± (767) G separation of steroids into two 7 29

cooordinates clusters (strong and weak affinity)

" map of atomic 9 ± (767) G clear-cut separation according to 7 30

coordinates and charges the type of receptors for training

and control sets

Affinity to estrogen 22 disubstituted hexestrol topological and 2 ± 6 ± 1 D 7 RMSt=0.09131 145

receptors derivatives physicochemical (log RBA) b

16 hexestrol ethers topological 1 ± 4 ± 2 ± 1 D 7 RMSt=0.018219 145

(log RBA)

16 deoxyhexestrols " 1 ± 4 ± 2 ± 1 D 7 RMSt=0.018219 145

(logRBA)

Affinity to progesterone 55 androst-4-en-3-one physicochemical 6 ± 2 ± 1 M 7 R=0.96, RMSt=0.30, 20

receptors derivatives RMSp=1.32 (log IC50) c

Affinity to benzodi- 57 1,4-benzodiazepin-3-ones " 10 ± 3 ± 1 N 7 Rt=0.954, SDt=0.007, 146

azepine receptors Rcv=0.901 (log IC50)

GABAA 6 ± 2 ± 1 N 7 SDcv=0.009, Rcv=0.938 146

Inhibition of reverse 44 derivatives of AZT d, topological 4 ± 3 ± 2 D 7 Ct=100%, Cp=86% 74, 75

transcriptase of the TIBO e and related

human immuno- compounds

deficiency virus

107 1-[(2-hydroxyethoxy)- quantum-chemical 6 ± 6 ± 1 D 7 MSEt= 0.073, 147

methyl]-6-(phenylthio)- MSEp=0.372 (log 1/C) f

thymine derivatives

Inhibition of protein 105 substituted flavonoids physicochemical con- 6 ± (10610) ± 1 A 7 R2=0.92, SDp=0.55 35

tyrokinase p56lck stants of substituents (log 1/IC50)

quantum-chemical 3 ± (10610) ± 1 A 7 R2=0.96, SDp=0.40 35

(log 1/IC50)

Inhibition of 5-lip- 68 arylhydroxamic acids physicochemical 1 ± 4 ± 1 D 7 RMSt=0.09043 (log 1/K) g 145

oxygenase in vitro

Inhibition of dihydro- 157 3,4-diamino-6,6-dimethyl- " 6 ± 4 ± 1 D 7 R=0.922, SDt=0.374 80

folate reductase 5-phenyldihydrotriazines (log IC50)



Table 4 (continued).

The property that is Num- Compounds under study Descriptors Architecture of neural Training results Statistical characteristics Ref.

simulated ber of networks of neural network

com- training a

pounds number of type of

neurons neural

network a

Inhibition of dihydro- 61 symmetrical 1-aryl-4,6- physicochemical 3 ± 1 ± 1 M 7 R=0.87, SDt=0.27 20

folate reductase diamino-2,2-dimethyl-1,2-

dihydrotriazines

68 2,4-diamino-(5R)-benzyl- " 4 ± 7 ± 1 D 7 R=0.97, RVt=0.0126, 83

pyrimidines RVp=0.323

Inhibition of acyl- 157 aminosulfonyl-, hydroxy- topological, geometrical 8 ± 3 ± 1 I 7 RMSt=0.226, 55

cholesterol-O-acyl sulfonyl- and (2,6-diisopro- and electronic RMScv=0.208,

transferase pylphenoxy)carbonates, RMSp=0.242 (log IC50)

aminosulfonyl- and hydr-

oxysulfonylureas

Inhibition of [3H]diaze- 245 benzodiazepines topological 50 ± 4 ± 1 O 7 R2=0.63, SEp=0.14 88, 89

pam binding (log IC50)

Antifungal activity 103 (3R)-1-(3,5-dichlorophenyl)- physicochemical para- 5 ± (565) O clear-cut separation of starting 7 78

pyrrolidine-2,5-diones meters of substituents compounds into groups

Antihelminthic activity 31 2-hydroxyphenylamides physicochemical 3 ± 3 ± 1 D 7 R=0.919, RMSt= 0.322 64

" " 53 ± (868) G clear-cut separation into groups 7 32

possessing different activities

Hypotensive activity 24 (3R)-phenylthiopropyl- " 6 ± 3 ± 1 D 7 SDcv=11.6% 148

substituted heterocycles

29 arylacryloylpiperazines " 7 ± 14 ± 4 D 7 Ct=19/21, Cp=6/8 149

Anticonvulsant activity 60 benzodiazepine derivatives " 14± 15 ±57± 1 A 7 RMSt=0.16 38

" 14 ± 28 ± 1 D 7 SDt=0.33 10, 38

" 5 ± 6 ± 1 D 7 R=0.887 2, 43

" 5 ± 1 Q 7 R=0.876, RMSt= 0.369 43

Antitumour activity 39 2,5-bis(1-aziridinyl)-p- " 6 ± 7 ± 37 ± 1 A 7 RMSt=0.08 38

(minimum effective benzoquinones " 12 ± 13 ± 37 ± 1 A 7 RMSt=0.06 38

dose for multiple " 7 ± 12 ± 1 D 7 RMSt=0.21 2, 10, 38

injections) " 13 ± 26 ± 1 D 7 RMSt=0.21 10, 38

Antitumour activity 39 " 6 ± 7 ± 37 ± 1 A 7 RMSt=0.04 38

(minimum effective " 12 ± 13 ± 37 ± 1 A 7 RMSt=0.20 38

dose for single injection) " 7 ± 12 ± 1 D 7 RMSt=0.25 2, 10, 38

" 13 ± 26 ± 1 D 7 RMSt=0.24 2, 10, 38

Antitumour activity 39 " 6 ± 7 ± 37 ± 1 A 7 RMSt=0.02 38

(optimum dose for " 12 ± 13 ± 37 ± 1 A 7 RMSt=0.05 38

multiple injections) " 7 ± 12 ± 1 D 7 RMSt=0.19 2, 10, 38



Table 4 (continued).

The property that is Num- Compounds under study Descriptors Architecture of neural Training results Statistical characteristics Ref.

simulated ber of networks of neural network

com- training a

pounds number of type of

neurons neural

network a

Antitumour activity 39 physicochemical 13 ± 26 ± 1 D 7 RMSt=0.18 2, 10, 38

(optimum dose for " 4 ± 13 ± 1 D 7 R=0.960 43

multiple injections) " 4 ± 1 Q 7 R=0.951, RMSt= 0.169 43

Antitumour activity 39 " 6 ± 7 ± 37 ± 1 A 7 RMSt=0.08 38

(optimum dose for " 12 ± 13 ± 37 ± 1 A 7 RMSt=0.05 38

single injection) " 7 ± 12 ± 1 D 7 RMSt=0.20 2, 10, 38

" 13 ± 26 ± 1 D 7 RMSt=0.17 2, 10, 38

Inhibition of metho- 61 3-substituted triazines " 3 ± 3 ± 1 M 7 R=0.86, SDt=0.25 20

trexate-sensitive

tumour cells

Inhibition of metho- 62 " 3 ± 1 M 7 R=0.58, SDt=0.53 20

trexate-resistant

tumour cells

Mechanisms of anti- 141 drugs activities with respect 60 ± 7 ± 6 D 7 Cp=129/141 150

tumour activity to different tumour cells

Toxicity 91 benzothiazolium salts fragmental 30 ± 2 ± 1 D 7 SSOt=0.017, 151

SSOp=0.850

Anticarcinogenic 16 carboquinones physicochemical 7 ± 12 ± 5 D 7 Ct=100%, Cp=3/5 84, 94,

activity 149

7 ± 4 ± 5 D 7 Ct=100%, Cp=3/5 84

Carcinogenic activity 45 mono- and polysub- topological 90 ± 100 ± 100 ± 1 A 7 Rt=0.95, Rp=0.70 36

stituted benzenes topological and 90 ± 100 ± 100 ± 1 A 7 Rt=0.98, Rp=0.72 36

quantum-chemical

quantum-chemical 90 ± 100 ± 100 ± 1 A 7 Rt=1.00, Rp=0.63 36

11 polycyclic aromatic 13C NMR spectra 10 ± 3 ± 1 D clear-cut separation 7 76

hydrocarbons into active and inactive

compounds

81 aromatic compounds with quantum-chemical 6 ± 12 ± 2 D 7 Ct=84.6%, Cp& 80% 152

104 nitrogen-containing topological, physico- 12 ± 4 ± 1 D 7 R2
cv =0.691,MSEcv=0.0416 153

substituents chemical and [log (MW . 1000/ID50)] h, i

quantum-chemical

Mutagenic activity 197 aromatic and hetero- physicochemical 2 ± 4 ± 2 ± 1 D 7 RMSt=0.14331 (log TA98) j 145

aromatic compounds " 4 ± 8 ± 4 ± 1 D 7 RMSt=0.11515, RMSp=0.1216 145

" 4 ± 4 ± 1 D 7 Rt=0.919, SDt=0.789, Rp= 154

0.853, SDp=1.049 (log TA98)



Table 4 (continued).

The property that is Num- Compounds under study Descriptors Architecture of neural Training results Statistical characteristics Ref.

simulated ber of networks of neural network

com- training a

pounds number of type of

neurons neural

network a

Mutagenic activity 488 heterogeneous set fragmental 100 ± 10 ± 2 D good separation into clusters 7 69, 155

according to size and activity

54 heterocyclic analogues energy of LUMO, 3 ± 2 ± 1 D 7 R=0.87, St=1.03, Sv=1.47 156

of pyrene and phenanthrene, lipophilicity, presence (lnNhis+) k

fluorenes, biphenyls of a nitro group in

the p-position

Inhibition of intracellular 113 benzoylguanidine topological, geometrical, 5 ± 4 ± 1 D 7 R2
t = 0.812, RMSt=0.278, 157

ion exchange Na+/H+ derivatives electronic and combined R2
p =0.697, RMSp=0.362 (log IC50)

Hallucinogenic activity 64 phenylalkylamines fragmental 15 ± (33633) G clear-cut separation of 7 28

compounds into clusters

according to activity

35 " constants of substituents, 7 ± 2 ± 1 D 7 R=0.932, St=0.55, Sv=0.47 58

indicators of the (lnMU) l,m

presence of substituents R=0.820, St=0.89, Sv=0.54 58

(lnMU) n

Blocking of Ca2+ 46 1,4-dihydropyridines constants of substituents 5 ± 2 ± 1 D 7 R=0.832, St=0.79, Sv=0.71 58

channels (log 1/EC50) m, o

D 7 R=0.870, St=0.70, Sv=1.59 58

(log 1/EC50) n

Adsorption by human 86 drugs quantum-chemical and 6 ± 4 ± 1 D 7 RMSt=9.4%, RMScv=19.7%, 158

gastric mucosa topological RMSp=16.0%

Antibacterial 111 fluoroquinolones topological 62 ± 2 ± 1 D 7
activity p

MIC4 0.05 Ct=100%, Cp=93.88% 159

MIC4 0.10 Ct=97.28%, Cp=82.36%

MIC4 0.20 Ct=99.53%, Cp=87.99%

aDesignations as in Table 1; bRBA is the affinity for the receptor; c IC50 is the concentration causing 50% inhibition; dAZT is azidothymidine; e TIBO is 4,5,6,7-tetrahydroimidazo[4,5,1-j,k] [1,4]benzodiazepin-2(1H)-one;
fC is the concentration of a compound causing a certain biological response; gK is the inhibition constant; hMW is the molecular weight; i ID50 is the dose causing 50% inhibition; jTA98 is the number of revertants in the

Ames testTA98 ; kNhis
+ is the number of revertants in the Ames testTA1538 ; lMU are themuscarine units; m the initial set of compounds was supplemented with topologically equivalent structures; n without multiplication

of the initial set of compounds; oEC50 is the effective concentration; pMIC is the minimum inhibiting concentration /mg ml71.



neurons are identical with the results obtained by multiple linear
regression analysis.

If the neurons of the hidden layer of a three-layered neural
network are described by a nonlinear (most commonly, sigmoidal)
transfer function and the neuron of the output layer is described
by a linear function, the resulting neural network (termed MR
neural network) will function similarly to a nonlinear multiple
regression.96, 106, 107

IV. The use of neural network algorithms for
elucidating structure ± property relationships

The neural network approach can successfully be employed for
elucidating both qualitative and quantitative structure ± property
relationships. Some brief information about the use of neural
network models for the simulation of spectral characteristics,
reactivities, physicochemical properties and biological activities of
organic compounds is given in Tables 1 ± 4.

The information contained in the IR 99, 108 and NMR spec-
tra 22, 24, 44, 109 ± 112 as well as chromatographic retention indi-
ces 37, 102, 103, 113 is closely related to the structures of organic
molecules. In the studies cited in Table 1, the neural network
algorithm for processing of such information was successfully
used for the solution of miscellaneous practical problems related
to the search for relationships between molecular structures and
spectral properties, classification and forecasting of structural
data and refinement of molecular structures on the basis of
spectral information.

In one pioneering study, neural network methods were used
for the classification of reactions of organic compounds, viz.,
according to the cleaved bond type,2, 28 regiochemistry of the
addition reaction,57 isomer ratios,2, 23, 56 main reaction prod-
ucts,57 etc. (Table 2). In these studies, connectivity matrices of
organic compounds were used as input information for neural
network models, since they do not require additional calculations
at the preceding steps. Neural network methods can be used for
quantitative estimation of reactivities of organic compounds and
simulation of complex kinetic processes in the course of chemical
transformations.

The publications devoted to the analysis of various physico-
chemical properties of chemical compounds using neural net-
works are rather numerous; the most popular characteristics of
organic compounds include boiling tempera-
ture 19, 39, 40, 42, 82, 101, 118 ± 123 (predominantly with the use of topo-
logical indices), density,101, 121, 122 solubility in water, 128 ± 131

lipophilicity 134 ± 137, etc. (Table 3).
Today, simulation of biological activities of organic com-

pounds presents considerable practical interest: the overwhelming
majority of publications devoted to the use of artificial neural
networks for elucidating structure ± property relationships are
related to this particular area (Table 4).31 Some publications
describe the results of successful quantitative neural network
simulation of affinities of organic compounds to various recep-
tors 20, 145, 146 and transport proteins,29, 30, 99 simulation of inhib-
ition constants of enzymes,20, 35, 55, 74, 75, 80, 83, 145, 147

antitumour,20, 38, 43, 105, 150 carcinogenic,36, 76, 152, 153 muta-
genic 69, 145, 154 ± 156 and antibacterial activities,159 etc.

* * *

Artificial neural networks represent a potent comprehensive
computational tool for the solution of miscellaneous problems
related to processing of chemical information, particularly classi-
fication and simulation of disembodied experimental data. The
number of publications on the subject is increasing annually,
which testifies to the unrelenting interest of chemists in the
simulation of structure ± property relationships using artificial
neural networks.
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