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In spite of the rapid development of quantum-chem-
ical molecular simulation methods, the central place in
the prediction of the majority of physicochemical prop-
erties is occupied by empirical approaches based on the
use of different molecular structure descriptors [1]. One
of the first empirical approaches for the approximation
of physicochemical properties was based on linear
additive schemes where the numbers of the simplest
fragments in the molecule were used as descriptors [2–
4]. However, in many cases the dependence of physic-
ochemical properties on descriptors is substantially
nonlinear, and, commonly, its general form is not
known in advance. In this case, the use of the artificial
neural network technique provides an efficient solution
to the problem of predicting properties of organic com-
pounds [5–7].

Previously [8], we demonstrated that any molecular
graph invariant (any property of a chemical compound)
can be unambiguously represented as a linear combina-
tion of the number of occurrence of some structure
fragments (connected or disconnected) or as a polyno-
mial of the number of occurrence of some connected
substructures. According to the Kolmogorov–Arnold
theorem [9], any continuous function (including any
polynomial) can be approximated using a three-layer
neural network; therefore, any of the properties that are
rather insensitive to stereoisomerism (which include
the majority of physicochemical properties) can be
approximated by output values of a multilayer neural
network that employs the numbers of occurrence of

connected fragments in the molecular graph as input
values. These concepts formed the basis of the
approach to predicting physicochemical properties of
organic compounds considered in this work.

In this paper, we demonstrate that the combined use
of substructure descriptors and artificial neural net-
works can be considered as a powerful tool for predict-
ing physicochemical properties of organic compounds.

Within this approach, substructure descriptors are
chains of atoms containing 1 to 15 vertices (denoted by
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), 3- to 15-membered cycles (
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), branched
fragments containing 4 to 6 vertices (
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), bicycles
containing 6 to 15 vertices (
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), and tricycles con-
taining 12 to 15 vertices (

 

t
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).
In addition, within this method a special internal

hierarchical classification of atomic types was devel-
oped. Three symbols are used for coding an atom cor-
responding to some element. The most comprehensive
classification (including valence, hybridization type,
and atomic charge) was proposed for organogenic ele-
ments (H, C, N, O, S, Se, P, As, Si, F, Cl, Br, and I; see
Table 1).

The classification is based on the following princi-
ple: each subsequent symbol refines the previous. Thus,
there are several generalization levels, which can be
demonstrated with an example of the carbon atom in
the methyl group. Classification levels are presented
below (generalization level decreases from left to
right):

Level no. Level 1 Level 2 Level 3 Level 4

Atomic type • C –CH3

Designation of atomic type ––– C__ CA_ CA1

C
sp

3

 

In addition, special types including several different
classes of either the same atoms or atoms of one sub-
group are additionally formed if necessary. The first
classification level corresponds to the “generalized”

atomic type; types of chemical elements are included at
the second level. The third and fourth classification lev-
els additionally include the character of hybridization,
bond environment of the atom, its formal charge, and
the number of hydrogen neighbors. The most detailed
classification of atoms corresponding to the fourth level
is presented in Table 1. Note that the classification for
the Se atom is similar to that for the S atom; for As, it is
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similar to that for P; and for Br and I, it is similar to that
for Cl. Alkali and alkaline earth elements are denoted
by M** (three generalization levels). All other elements
can be denoted by ** using only two generalization lev-
els: particular element and any atom.

The proposed scheme of fragment classification was
implemented in the computer program Fragment
(developed using the Delphi programming language),
which provides the determination of the number of
occurrences of each of the substructures in each of the
structures of the studied series of compounds in the pre-
diction of physical properties and biological activity.

The possibilities of this approach can be demon-
strated in problems of predicting formation enthalpy,

polarizability, refraction index, boiling point, density,
viscosity, and saturated vapor pressure for different
organic compounds. The three former properties are
rather adequately predicted using additive schemes;
therefore, here we dealt with the four latter properties.
In all cases, studies were performed by the following
scheme. At the first step, for all compounds from the
database including information on the structures of
chemical compounds and their properties, fragment
descriptors (numbers of occurrences of structure frag-
ments in the chemical structure) were calculated; the
maximum size of fragments was varied from 1 to
10 atoms. Next, three or four nonlinear modifications
(square, square root, logarithm, and ratio to the number
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  * In six-membered aromatic cycles or heterocycles.
  ** In five-membered aromatic cycles or heterocycles.
*** The formal designation of the nitrogen atom in the nitro group (independently of its structural representation in databases).
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of non-hydrogen atoms) were calculated for each
descriptor. After this, the database was divided into
three sets: training set (80% of compounds), validation
set (10% of compounds), and a set for estimating the
predictive ability of the model (10% of compounds).
Partitioning was performed in 10 different ways, so that
each compound from the database occurred once in
each of the two latter sets. Next, for each initial set of
descriptors (differing in the maximum size of frag-
ments) and each partitioning of the database, descrip-
tors were selected using the stepwise multiple linear
regression procedure. After this, the optimal descriptor
set was selected among 10 initial sets according to the
average prediction error on validation sets, and selected
descriptor sets were further used in the study using mul-
tilayer neural networks with back propagation of errors.
Next, for each partitioning of the database, five neural-
network models with different numbers of hidden neu-
rons (varied from 2 to 8) were constructed; learning
was performed using the generalized 

 

δ

 

-rule (rate
parameter 0.25, momentum 0.9) until the minimum
prediction error on the validation set was attained. After
this, the optimal number of hidden neurons providing
the smallest errors on validation sets was determined,
and prediction results of a half of the best (i.e, provid-
ing the smallest error on the validation set) models for
all compounds were averaged. As a result, for each
property, we obtained the following four parameters:
the average correlation coefficient 

 

R

 

av

 

 for training sets
and root-mean-square errors on all three types of sets.
Because information from the third set was involved
neither in the construction of models nor in their selec-
tion, it was the root-mean-square error on this set that
served as an adequate estimate of the predictive ability

of constructed models. Table 2 presents parameters of
obtained regression and neural-network models for the
above physicochemical properties.

From Table 2, it is easily seen that the predictive
ability of neural-network models (which is most cor-
rectly estimated by the value of RMS

 

predict

 

, i.e., by the
root-mean-square error on the set for estimating the
predictive ability) is higher than the analogous charac-
teristics of regression models. In addition, constructed
neural-network models in some characteristics are
superior to the best model published previously. In par-
ticular, the accuracy of the prediction of boiling tem-
perature for a nonuniform set was the best among the
published models of this series (see [13]). Results of the
prediction of the density of liquids for compounds of
different types were close to the best among the pub-
lished models (see [14]); however, our model was con-
structed based on a much more representative set. The
model for predicting the viscosity of liquid organic
compounds constructed in this work is superior to the
best published models in all characteristics (see [11,
15]. The accuracy of the prediction of saturated vapor
pressure by our model was comparable to that for the
Jurs model [12] and significantly higher than the accu-
racy for the other published models [14].

REFERENCES

 

1. Pogliani, L., 

 

Chem. Rev.

 

, 2000, vol. 100, no. 10,
pp. 3827–3858.

2. Bernstein, H.J., 

 

J. Chem. Phys.

 

, 1952, vol. 20, no. 2,
pp. 263–269.

3. Benson, S.W., Cruickshank, F.R., Golden, D.M., 

 

et al.

 

,

 

Chem. Rev.

 

, 1969, vol. 69, no. 3, pp. 279–324.

 

Table 2.

 

  Parameters of neural-network and linear-regression models

Parameters of models Boiling
point, 

 

°

 

C [10]
Viscosity,

log

 

η

 

 [Pa s] [11] Density, g/cm

 

3

 

 [10] Saturated vapor pressure, 
log(

 

VP

 

) [Pa] [12]

Number of compounds 510 367 803 349

Number of descriptors 4–71 21–62 19–90 18–62

Neural-network model
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21.21 0.212 0.067 0.276

Types of fragments

 

p

 

1, 

 

p

 

2, 

 

p

 

3

 

p

 

1, 

 

p

 

2, 

 

p

 

3

 

p

 

1, 

 

p

 

2, 

 

p

 

3, 

 

p

 

4, 

 

p

 

5,

 

c

 

4, 

 

c

 

5, 

 

s

 

4, 

 

s

 

5
p1, p2, p3, p4,

p5, p6, c5

Note: MLR is multiple linear regression; Rav is the correlation coefficient; RMStrain, RMSvalid, and RMSpredict are the root-mean-square
errors on the training set, validation set, and set for estimating the predictive ability, respectively.
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