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A scheme of a neural device intended for searching direct correlations between structures and properties of
organic compoundwithout preliminary computation of molecular descript@ifsat are invariant with respect

to renumbering atoms in a molecule) is suggested. The invariance of a property with respect to renumbering
atoms in a molecule is ensured by the architecture of the neural device, which is constructed by analogy
with biological vision systems. A model software of the neural device was tested on several examples.
The descriptive and predictive performances of the device are shown to be comparable and even overcome
the performances of using molecular descriptors, such as topological indexes and substructural descriptors,
especially for analyzing heterogeneous data sets including inorganic compounds. The neural device can be
advantageously used in the cases when more traditional approaches fail to work or “good” molecular
descriptors have not been devised yet.

INTRODUCTION These ideas have led us to the development of an
_ _ . alternative approacto perform QSAR/QSPR studies based
Nowadays, the search for quantitative relationships be- o, anay7ing dependence of a property directly upon the
tween structures :_and properties of organic c_omp(_)unds 'Selements of molecular graph connection table (known to
:)na(figgulfr araCOHrl;ssl(ljjiLazlse tgxzﬁgt ic?aﬂ iﬁzg‘)?e;nvir;rgbsm?f uniquely describe a chemical structure) or, in general, upon
chemical c%argcteristics nuFr)nbe?s or indicatc;rg of somethe eler_nent_s Of. any r_natrix describing properties of atoms
L . and their pairs (including bonds)In other words, we have
structural fragments in a molecule, etc. The important . : o N )
decided to realize a “one-step” scheme: structurneroperty.

common feature of all those descriptors is the independenceWe have chosen artificial neural networks (see refd®

of their numerical values on renumbering atoms in a chemical .

structure. Obviously, a property of a chemical compound for(tjheory and refs 1#‘(;8 ]for appl:jcatu_)ns to QEAR/ Qsle .

must not be changed with a chemist’s decision to introduce stu |_es_) as a met od for con uctmg_ such an analysis
(preliminary communicatiod), because in the framework

his own numbering of vertexes in a molecular graph : _ ) X .
corresponding to the chemical structure. In order to perform ©f this technique one can perceive relations between variables
without having to specify their generic forms expliciti/!

quantitative “structureactivity” and “structure-property”
(QSAR/QSPR) studies correctly, chemists have had to design Some related approaches deserve to be mentioned. Elrod,
a variety of molecular graph invariantst In other words, Maggiora, and Trenafy have used Ugi-Dugudji's BE-
the common QSAR/QSPR practice realizes a “two-step” matrixX® to represent a chemical structure in their studies of
scheme: structure> graph invariants— property. the reactivity of organic compounds. An extended form of
In general, there exists an infinite number of such the same matrix has also been used in West's studig® of
invariants, and a choice of a finite subset of them for chemical shift$? Kvasnita® has used a special neural
conducting a QSAR/QSPR study is to some extent arbitrary. network that reflects the topology of molecules in his studies
Thus the invariants chosen in such a manner appear notof *C chemical shifts. A similar net has also been used by
always to be effective for predicting a given property. West in predicting phosphorus NMR chemical shiftsin
Various statistical methods can provide, at the best, the all these studies only local propertiése(, those that can be
selection of some more or less good subset of the initial setassigned to a single atom) have been considered, and the
of invariants, which, in turn, is also chosen in an arbitrary methods applied could hardly be extrapolated on the general
way, by taking into account intuition and the availability of case. A net for evaluating local atomic properties, ChemNet,
corresponding computer programs. in which each neuron corresponds to some atom in a
A possible way out would be to use a limited set of some chemical structure, has also been put forward by Kir€ev,
“basic” invariants, so that all other invariants could be Who, assuming that “the atomic invariant represents a
expanded in terms of them. And indeed, such a set hasmolecular invariant as well”, correlated molecular properties
recently been founet.” In spite of its theoretical importance,  with local invariant calculated for some arbitrarily chosen
this set, unfortunately, seems to be too large to be used inatom. However the correlations reported in ref 35 are worse

practical QSAR/QSPR studies. than the results obtained for analogous data sets using linear
regression analysis with topological indexes or substructural
® Abstract published if\dvance ACS Abstractdday 1, 1997. descriptors.
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DESCRIPTION OF THE NEURAL DEVICE PREDICTED PROPERTIES

The goal of this paper is to suggest a scheme of the neural
device specially suited for conducting the search for relation-
ships between chemical structures and their properties OUTPUT LAYER
without a need for a definite series of molecular graphs’ T T T T T
invariants to be precomputed. Instead of molecular descrip-
tors that are invariants with respect to renumbering atoms,

HIDDEN LAYER

we apply magnitudes corresponding to some atomic char- T ZF § —
acteristics. In our approach, the invariance of properties with |™®" [-coLLecTor" | | oo Q:WE '
respect to renumbering atoms is reached due to some RECEPTOR"
peculiarities in the architecture of the neural device but not ><
because of preliminary reduction of a molecular graph |{[outPuT LaYER . |
connection table into a set of invariants.
Being a neural network, the device consists of a set of [ HIDDEN LAYER | | |

processing elements, called neurons, and a net of their 7 HT \_ |
connections, called synapses, through which they send signals N\
to each other. Each connection is characterized by a real | "SENSOR FIELDY ) X \\ .
number, called connection weight, by which a signal gets ( %
multiplied on passing through it. Each neuron performs two 1 oo O I
principal operations: (i) sums up all incoming signals and "SENSORS"
(i) forms an output signal through functional transformation
of this sum 2 o oo - =

o =f(—6,+ JZOiW‘i) (1) i - - ooo o
whereo—the output signal of th&éh neurono—the output
signal of thejth neuron,w;—weight of the synapse (con- ) H = = pnpe
nection weight), through which thi¢h neuron transmits its

output signal to thgth neuron,i—activation threshold of
the ith neuronf—a transfer function usually taken to be a Figure 1. Architecture of the neural device.

sigmoid one . .
guantum number for the corresponding chemical element,

f(x) = 1/(1 + exp(—Xx)) (2) number of valence electrons, a charge on the atom, the
number of hydrogen atoms attached to it, the value of its

The training of a neural network consists in finding such electronegativity, etc. Sensor neurons situated at the inter-
values of connetion weights and activation threshold that after section of theéth row and thgth column { = j) form signals
imposing on it input signals describing a chemcial structure characterizing relations between fitie and thgth atoms in
the output signals corresponding to predicted values of the chemical structure, such as the bond order (if the atoms
properties should be formed. are linked), interatomic distance, and some others.

One neural device consists of three principal functional Each “eye” consists of (1) one or severalllectorsand
blocks: (1) a brain’, (2) a set of ‘eye$, and (3) one (2) a set of identical receptors. The important point is
commonsensor field“retina”) (see Figure 1). The sensor that all receptors have identical values of all connection
field perceives primary information about a chemical struc- weights and activation thresholdsg., all receptors within
ture. The eyes receive all relevant information from the an eye can be considered as copies of one receptor. Each
sensor field, process it, and form signals, which numerical receptor is a feed-forward neural network, which processes
values no more depend on the way atoms are numbered irsignals accepted from its rather smalteptve field the latter
a moleculej.e., such signals can be considered as invariants being defined as a part of the sensor field containing only a
of a molecular graph. The brain gets signals from the eyes,few atoms and bonds. Inside an eye, each receptor can be
processes them, and forms output signals corresponding tauniquely identified with one ordered vectan{vy,... vi,...n),
the properties being predicted. Hence, an intermediate setwheren is the number of atoms in the receptive field and
of molecular graphs invariants gets formed, which is is the ordinary number of the corresponding atom in a
constructed during the training rather than computed in molecule. Such a vector will be referred to aseaeptor
advance, as in traditional approaches. identifier. In general, the number of receptors inside an eye

Consider more closely some parts of the neural device. should be equal to the number of ways the vectors could be
The sensor field contains the description of a chemical constructed:N!/(N — n)!, whereN is the number of non-
structure. It is a squared matrix, the number of rows and hydrogen atoms in a chemical structundyeing the number
columns in which is equal to the number of atoms in a of atoms within a receptive field (such receptors will be
chemical structure. Sensor neurons located on the diagonatalledn-atomiq. For example, a three-atomic molecule can
of the matrix (atomic sensors) at the intersection ofithe be analyzed with three one-atomic receptors with identifiers
row and thdth column form signals corresponding to some (1), (2), and (3), with six two-atomic receptors with identi-
characteristics of théh atom in the chemical structure. A fiers (1,2), (2,1), (1,3), (3,1), (2,3), and (3,2), or with six
set of possible atomic characteristics includes principal three-atomic receptors with identifiers (1,2,3), (1,3,2), (2,1,3),
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(2,3,1), (3,1,2), and (3,2,1). A whole neural device, with
all receptors needed for analyzing a given molecule, com-
prises itsconfigurationfor the molecule. Configuration with

only one receptor per each eye, which contains only mutually /Q>\
independent adjustable parameters, will be caffedimal
Minimal configuration does not correspond to any particular @j\ /\CD

molecule, but it rather serves as a template for the deduction —

of the relevant configuration for any given molecule through [ =
multiplication of receptors within eyes. It should be /CD/ \GD\

mentioned that the notion of the minimal configuration plays | 2 0.2 a0 :
a key role in emulating the work of the neural device on an

ordinary computer since only the minimal configuration of @/ @ @ \@
the net with a relatively small and fixed number of neurons \ [

/ A [\ / \
and synapses should reside in computer memory. When 1 @ @ @ @ /@

training, once any adjustable parameter (connection weight - .
or activation threshold) within a receptor takes a new value, \ / M
the corresponding parameters in all other receptors within
the same eye assume the same value. Because of this !
training can be conceived of a minimization of an error
function in the space of adjustable parameters belonging to
the minimal configuration. Therefore, the minimal config-
uration will suffice to store all adjustable parameters of the
neural device and to reproduce the whole neural device in
each of its configurations.

For practical purposes, the number of receptors in an eye _ _
can be considerably reduced by imposing some additionalF'9ure 2. Neural device applied to the ethane molecule.
conditions on the use of receptors. For example, one can

assume that a receptor accepts signals only in the presence, . . .
of a substructure within its receptive field. This enlarges h_|s signal 1S expected to com_esppnd to one c.)f the properties
the number of possible eyes but considerably reduces thebemg pred_lcted. The trqnsmlgs!on of the S|gnal§ over t_he
number of receptors in each of them. neural device as WeII_ as its training can bg described using
The signals from all the receptors inside an eye are the same mathematical expressions as in the case of an

accumulated in collectors, which are defined as neurons thatOrdlnary feed-forward neural network with backpropagation

3
sum up and transform signals received from all the receptorsOf He(rerrc])é(sa. the structural information is processed in the neural
in the eye. Hence, the whole sensor field appears to be ’ P

“ " - ; device in four stages: (1) the primary signals that correspond
seen” by an eye. Upon an arbitrary renumbering of atoms, 9 ;
whenever atoni acquires a new numbe@(i), an identifier to the chara.ctenstlcs of atoms and bonds are formed |n_the
: sensor field; (2) all the signals gathered from a receptive
(03,0... 2-...2n) 1S turned 10 B(ea),P(va),... Plvi),... P(vn)). field are processed by the corresponding receptor; (3) signals
When receptors with all possible identifiers, which could be P y X 9 ptor, 9

obtained in such a manner, are present in an eye, then ever)shat are invariant with respect to an arbitrary renumbering

renumbering results in a permutation of receptors inside theg:ea;?nrgﬁ arfo?é?;% Iirrlm ?ﬁgeggirr?; (éi)eﬂ;? E‘r\éag';mt signals
eye. Since the result of the summation being made in It shou){dpbe mentioned that the idea (?f usin : receptive
collectors over all signals received from the receptors do not 9 P

change on their permutation, then the identity of all receptors gﬁg?u:{ﬁg Wrégzszrégiry ;njgggagggtv;’;uégsbgf gnaetﬂgﬁg to
inside the eye results in the invariance of the signals being P y q y

formed in the collectors with respect to the numbering of fsoirr,?a|?Vfg'einffrr;omggag?}??Ie trca:)ns;ﬁrr(r)nag?;dsi (r)r:aﬁl‘? put
atoms in a molecule. gnais, theocognitrorp gma;

As it was mentioned above, each receptor isafeed—forwardwhiCh Is designed_ in cpmplian(_:e \.Nith neuroph_ysiolog_ical
neural network (see, for example, ref 8), which consists of concegés on how visual information is processed in the visual
one hidden layer and one output layer. The number of cortex:
hidden neuronsif., belonging to the hidden layer) is
unrestricted, while the number of output neurons is equal to AN EXAMPLE OF THE NEURAL DEVICE
the number of collectors in the eye. Each hidden neuron Consider an example of a neural device consisting of a
accepts signals from the sensors located within the corre-brain and two eyes (named &4 andE2). Take a simple
sponding receptive field, processes them, and passes thaensor field, which contains only atomic sensors (naiidy
result on to every output neuron. In turn, each output neuron each of which forms only one signal corresponding to the
also processes its input signals and transmits its output signahumber of hydrogens attached to that atom. Each of the
to the corresponding collector. receptors inside the eyl receives signals from only one

The brain is also a feed-forward neural network with one atomic receptor. On the contrary, each of the receptors
hidden and one output layer. In this net, each hidden neuroninside the eyd=2 accepts signals from two atomic receptors
receives the signals sent by every collector and after corresponding to atoms that form a bond in a chemical
processing passes its output signal on every output neuronstructure. Nondiagonal elements are ignored for simplicity.
Analogously, each output neuron receives the signals fromEach receptor in both eyes contains two hidden and one

18

e hidden layer, processes them, and forms its output signal.
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Figure 3. Neural device applied to the propane molecule.
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Figure 4. Minimal configuration of the neural device.

prediction of boiling points of alkanes, so far as by using
this example it is possible to make comparison with results
reached by authors of numerous publications. Neural
networks have also been applied by several auth#g> 38

for studying this problem. A set consisting of 74 alkafies

output neuron. In correspondence with the number of output C,—Cy was divided into two partsa training set (67
neurons, each eye contains a single collector, whose outputcompounds) and a validation set (seven compounds). A

signal is transmitted to the brain.
A configuration of the neural device for the ethane
molecule is shown on Figure 2. In this case, invariance of

neural network with architecture described in the foregoing
example was used in this study. A “generalized delta-rule”
procedur® in the aforementioned modification was used for

the predicted properties with respect to renumbering atomstraining. We used a value of 0.05 for the learning rate and

is provided by the following restrictions imposed on the
values of connection weights' and activation thresholds
0': wis = Wi7 We10= W712 W11 = W713 W58 = W5g;
w814 = W9y 16 W15 = W9 17, W10,18= W1219 W11,18= W13 19
014,18= 16,18 W14,19= W16,18 W15,18= W17,16 W1519= W17,18

06 = 07, 05 = Oy, 010 = 012, 011 = 013, 014 = O1¢; 015 = 017.

In a similar manner, a configuration of the neural device
for the propane molecule is given on Figure 3. The
invariance of the predicted properties with respect to
renumbering atoms is ensured by the following restrictions
imposed on the values of connection weigh#§ and
activation threshold®": wis = wi7 = wis w13 = W7 15
= Wg17; WE14= W716= W8 18 W13.27= W1528= W1728 W1427
= W1628= W1g29 W59 = W510= W511= W5 12 W919= 1021
= W11,23= W1225 W20 = W1022 = W11,24= W26 Wle27=
w5128 = W328 = W2528 W1g928 = W2127 = W2329 = W3528
50,27 = W22,28 = W24,28= W36,29 (V20,28 = W22,27= 24,20 =
w3e28 05 = 07 = 0O, 05 = 010 = 071 = 012, 013 = 015 = 017,

014 = 016 = 01, 019 = 071 = 033 = 035 050 = 03, = 034 =
0%.

All these configurations can be deduced from the minimal

one presented on Figure 4 by multiplication of receptors.

RESULTS AND DISCUSSION
Boiling Points of Alkanes. In our first experiment with

0.9 for the momentum parameter (see ref 57). Training was
interrupted on reaching the value of the correlation coefficient
between predicted and observed boiling points of 0.994. This
value is better than any correlation coefficient of the same
property for the same data set with a single topological index
and is comparable to the correlation coefficients that could
be reached for multiple regression models including several
topological indexes. The same conclusions could also be
drawn by considering root-mean-square (RMS) errors on
both sets (5.2 degrees on the training set and 5.1 degrees on
the test set). However this result appeared to be worse than
that obtained by using simple feed-forward neural networks
for correlating the same properties with topological indexes
or occurrence numbers of several substructtifeln addi-

tion, the time needed for the training appeared to be too long
(up to several hours on PC). This result was reported in
our preliminary communcatioH.

To address the above-mentioned problems, we have
examined the influence of the architecture of the neural
device on its performance. The number of collectors within
eyes has appeared to have a drastic effect on the time needed
for learning (few minutes instead of hours on Pentium-100)
as well as on the quality of learning. The same architecture
of the neural device but with fire collectors within each of
its two eyes gives an excellent value of the correlation

a program emulator of the neural device, we have chosencoefficient, 0.9994, and very small RMS errors of 1.6 degrees
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on the training set and 2.4 degree on the validation set. Suchreceiving signals from three atoms linked with two bonds.
performance is comparable with best results reported for To discriminate between heteroatoms, besitdd, one
predicting boiling points of alkanes. Nonetheless, further additional type of atomic sensors, which detects principal
increase in the number of collectors deteriorates results. quantum numbeRQN, was used. The brain of the neural
One further enhancement that affects the learning of the device and all receptors were chosen to contain three hidden
neural device involves the use of separate values of learningneurons. Furthermore, three collectors were placed in each
factors for eyes and brain. For stable learning, we used theof three eyes. After 10 000 epochs of learning, the value of
value of the learning factor for eyes 10 times less than for the correlation coefficient amounted to 0.990, while the RMS
the brain. As regards absolute values of the learning factorerror on the training set became 1.77 kJ/mol and on the
for the brain, its starting value of 0.25 and 0.05 at the end validation set 2.46 kJ/mol. Since, as it was shown in a
of learning appeared to be optimal. previous articlé? commonly used topological indexes were
Viscosity of Hydrocarbons. In the following example, incapable of giving strong correlations with the heat of
a more diverse set of 81 hydrocarb&iGs—C,,, cyclic and solvatation, a special “solvation index” was desigiied
acyclic, saturated and unsaturated, aromatic and aliphatic,be used in linear regressioR & 0.985 ands = 2.1 kJ/mol
was used in evaluating their viscosity at 40. Again, as for the same data set). This example shows that the neural
in the previous example, it was split into a training set (65 device can compete with using specially designed molecular
compounds) and a validation set (16 compounds). A neuraldescriptors.
device containing a brain with two hidden neurons and only  Polarizability of Different Molecules. The following
one eyeE2 with three hidden neurons in each receptor and example involves diverse data ®etontaining organic
five collectors was chosen for this study. After 1100 epochs compounds (up to 26 non-hydrogen atoms per molecule)
of training the correlation coefficient became 0.996, and belonging to different classes as well as inorganic com-
RMS error for the training set was 0.15 centipoises and for pounds, e.g., bD, SQ, H,S, G, N, NH3, Clp, etc. The
the validation set 0.18 centipoises. data set was split at random into a training set (235
Heat of Evaporation of Hydrocarbons. In the following compounds) and a validation set (58 compounds). An
example, a set of 267 hydrocarb®h€&€,—Cy, also, as in architecture of the neural device was chosen to contain a
the previous example, cyclic and acyclic, saturated and brain with three hidden neurons and only one &fewith
unsaturated, aromatic and aliphatic, was used for trainingthree hidden neurons in each receptor and five collectors.
the neural device to predict heat of formation. From this Three types of atomic sensors were usbii, AR andNE.
set, 54 compounds were randomly selected as a validationSensorNH forms signals corresponding to the number of
set, while remaining 213 compounds formed a training set. hydrogen atoms attached to a given atom, signals of sensor
A neural device containing a brain with three hidden neurons AR correspond to atomic radius, send®E gives signals
and two eyesE1l and E2, each containing three hidden corresponding to the number of electrons in the atom. The
neurons in each receptor and three collectors, was used irvalue of the correlation coefficient after 2000 epochs of
the study. Again, as in all previous examples, only sensorslearning became 0.995, and the RMS error on the training
which form signals corresponding to the number of hydro- set was 0.86 cfhand 0.71 crfion the validation set. This
gens attached to a given atom were included in the sensoresult is significantly better than all models we managed to
field. There was no “overtraining”, so the learning was build using a set of commonly used topological indexes in
interrupted after 2600 epochs with a correlation coefficient the framework of either multiple linear regression methodol-
of 0.996 and RMS error on the training set was 1.44 kJ/mol ogy or neural networks with simple architectures. Although
and 1.26 kJ/mol on the validation set. In this case, the neuralgroup additivity methods can also be applied in this ¢8se,
device outperforms results obtained for the same Hata. their usage is however confined to molecules containing only
Density of Hydrocarbons. The following example deals  those groups that are sufficiently represented in the training
with predicting density of liquid hydrocarbons. A setof 141 set, while this neural device does not require this precondition
hydrocarbon® Cs—Cg (saturated and unsaturated, cyclic and to be satisfied.
acyclic, aromatic and aliphatic) was divided into a training  Anesthetic Pressure of GasesThe last example in this
set with 133 compounds and a validation set with 28 study illustrates the ability of the neural device to predict
compounds. A neural device containing a brain with five biological activity. A data base consisting of hydrocarbons,
hidden neurons and two eyds] andE2, each containing  halogenhydrocarbons, and some inorganic gases, such as all
five hidden neurons in each receptor and five collectors, wasnoble gases, molecular nitrogen,sS&nd NO, was taken
used in the study. The sensors chosen were the same as ifrom the reviewt? As in all previous examples, the data
all previous examples. After 1700 cycles of training the base was split into a training set (24 compounds) and a
value of the correlation coefficient reached 0.971, the RMS validation set (six compounds). A neural network with a
error for the training set became 0.018 gf@nd 0.019 g/crh brain, which contained three hidden neurons, and one eye
for the validation set. E1, in which each receptor “sees” only one atom, with three
Heat of Solvation in Cyclohexane. Unlike all previous hidden neurons in each receptor and five collectors was
cases, compounds of the following ¥dtelong to different constructed. Three types of atomic sensors were ulsiét):
classes of organic compounds. In accordance with resultsPQN, and VE. The first two sensorsNH and PQN, are
of preliminary studies, one compound, perfluorobenzene, wasdescribed above; sens®E detects number of valence
excluded as an outlier, while another 140 compounds wereelectrons in an atom. After 4000 epochs of learning the value
divided into a training set (112 compounds) and a validation of the correlation coefficient became 0.990, and the RMS
set (28 compounds). A neural device with three eys, error on the training set was 0.18 log units (logj)l/and
E2, andE3, was constructed. Eydsl andE2 are the same  0.26 log units on the validation set. For this example, we
as described above, whil&3 contains receptors each failed to find any significant correlation of the anesthetic
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pressure either with topological indexes or using group (11) Maggiora, G. M.; Elrod, D. W.; Trenary, R. G. Computational Neural
contribution method Networks as Model-Free Mapping Deviced. Chem Inf. Comput
: Sci 1992 32, 732-741.
(12) (a) Gasteiger, J.; Zupan, J. Neural Networks in Chemisftrggew
CONCLUSIONS Chem, Int. Ed. Engl. 1993 32, 503-527. (b) Zupan, J.; Gasteiger,
J. Neural Networks for ChemistsAn Introduction; VCH Publishers:

Our aim was to demonstrate the possibility of constructing w3 }3993- 1 A Whitesides. G. M. Feedf 4 Newral N i
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a neural _deV|ce f_or cor_relatlng prOpe.rtleS of organlc com Chemistry: Mathematical Systems for Classification and Pattern
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f . . .y OUZUKI, Y.; IChikawa, H. Neural Networks Applied to structdre
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numbering and hence can be viewed as some molecular Pharmaceutical Problems. 1ll. Neural Networks Applied to Quantita-

. tive Structure-Activity Relationship (QSAR) AnalysisJ. Med Chem
descriptors, the whole neural network can also be regarded 199 33 2583-2590. (d) Aoyama, T., Ichikawa, H. Neural Networks
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when sufficiently good molecular descriptors are still not
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