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A scheme of a neural device intended for searching direct correlations between structures and properties of
organic compoundswithout preliminary computation of molecular descriptors(that are invariant with respect
to renumbering atoms in a molecule) is suggested. The invariance of a property with respect to renumbering
atoms in a molecule is ensured by the architecture of the neural device, which is constructed by analogy
with biological vision systems. A model software of the neural device was tested on several examples.
The descriptive and predictive performances of the device are shown to be comparable and even overcome
the performances of using molecular descriptors, such as topological indexes and substructural descriptors,
especially for analyzing heterogeneous data sets including inorganic compounds. The neural device can be
advantageously used in the cases when more traditional approaches fail to work or “good” molecular
descriptors have not been devised yet.

INTRODUCTION

Nowadays, the search for quantitative relationships be-
tween structures and properties of organic compounds is
based to a considerable extent on using invariants of
molecular graphs1 such as topological indexes, quantum-
chemical characteristics, numbers or indicators of some
structural fragments in a molecule, etc. The important
common feature of all those descriptors is the independence
of their numerical values on renumbering atoms in a chemical
structure. Obviously, a property of a chemical compound
must not be changed with a chemist’s decision to introduce
his own numbering of vertexes in a molecular graph
corresponding to the chemical structure. In order to perform
quantitative “structure-activity” and “structure-property”
(QSAR/QSPR) studies correctly, chemists have had to design
a variety of molecular graph invariants.1-4 In other words,
the common QSAR/QSPR practice realizes a “two-step”
scheme: structuref graph invariantsf property.

In general, there exists an infinite number of such
invariants, and a choice of a finite subset of them for
conducting a QSAR/QSPR study is to some extent arbitrary.
Thus the invariants chosen in such a manner appear not
always to be effective for predicting a given property.
Various statistical methods can provide, at the best, the
selection of some more or less good subset of the initial set
of invariants, which, in turn, is also chosen in an arbitrary
way, by taking into account intuition and the availability of
corresponding computer programs.

A possible way out would be to use a limited set of some
“basic” invariants, so that all other invariants could be
expanded in terms of them. And indeed, such a set has
recently been found.5-7 In spite of its theoretical importance,
this set, unfortunately, seems to be too large to be used in
practical QSAR/QSPR studies.

These ideas have led us to the development of an
alternative approachto perform QSAR/QSPR studies based
on analyzing dependence of a property directly upon the
elements of molecular graph connection table (known to
uniquely describe a chemical structure) or, in general, upon
the elements of any matrix describing properties of atoms
and their pairs (including bonds). In other words, we have
decided to realize a “one-step” scheme: structuref property.
We have chosen artificial neural networks (see refs 8-10
for theory and refs 11-48 for applications to QSAR/QSPR
studies) as a method for conducting such an analysis
(preliminary communication19), because in the framework
of this technique one can perceive relations between variables
without having to specify their generic forms explicitly.10,11

Some related approaches deserve to be mentioned. Elrod,
Maggiora, and Trenary49 have used Ugi-Dugudji’s BE-
matrix50 to represent a chemical structure in their studies of
the reactivity of organic compounds. An extended form of
the same matrix has also been used in West’s studies of31P
chemical shifts.51 Kvasnička52 has used a special neural
network that reflects the topology of molecules in his studies
of 13C chemical shifts. A similar net has also been used by
West in predicting phosphorus NMR chemical shifts.53 In
all these studies only local properties (i.e., those that can be
assigned to a single atom) have been considered, and the
methods applied could hardly be extrapolated on the general
case. A net for evaluating local atomic properties, ChemNet,
in which each neuron corresponds to some atom in a
chemical structure, has also been put forward by Kireev,35

who, assuming that “the atomic invariant represents a
molecular invariant as well”, correlated molecular properties
with local invariant calculated for some arbitrarily chosen
atom. However the correlations reported in ref 35 are worse
than the results obtained for analogous data sets using linear
regression analysis with topological indexes or substructural
descriptors.X Abstract published inAdVance ACS Abstracts,May 1, 1997.
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DESCRIPTION OF THE NEURAL DEVICE

The goal of this paper is to suggest a scheme of the neural
device specially suited for conducting the search for relation-
ships between chemical structures and their properties
without a need for a definite series of molecular graphs’
invariants to be precomputed. Instead of molecular descrip-
tors that are invariants with respect to renumbering atoms,
we apply magnitudes corresponding to some atomic char-
acteristics. In our approach, the invariance of properties with
respect to renumbering atoms is reached due to some
peculiarities in the architecture of the neural device but not
because of preliminary reduction of a molecular graph
connection table into a set of invariants.
Being a neural network, the device consists of a set of

processing elements, called neurons, and a net of their
connections, called synapses, through which they send signals
to each other. Each connection is characterized by a real
number, called connection weight, by which a signal gets
multiplied on passing through it. Each neuron performs two
principal operations: (i) sums up all incoming signals and
(ii) forms an output signal through functional transformation
of this sum

whereoisthe output signal of theith neuron,ojsthe output
signal of thejth neuron,wijsweight of the synapse (con-
nection weight), through which theith neuron transmits its
output signal to thejth neuron,θisactivation threshold of
the ith neuron,fsa transfer function usually taken to be a
sigmoid one

The training of a neural network consists in finding such
values of connetion weights and activation threshold that after
imposing on it input signals describing a chemcial structure
the output signals corresponding to predicted values of
properties should be formed.
One neural device consists of three principal functional

blocks: (1) a “brain”, (2) a set of “eyes”, and (3) one
commonsensor field(“retina”) (see Figure 1). The sensor
field perceives primary information about a chemical struc-
ture. The eyes receive all relevant information from the
sensor field, process it, and form signals, which numerical
values no more depend on the way atoms are numbered in
a molecule,i.e., such signals can be considered as invariants
of a molecular graph. The brain gets signals from the eyes,
processes them, and forms output signals corresponding to
the properties being predicted. Hence, an intermediate set
of molecular graphs invariants gets formed, which is
constructed during the training rather than computed in
advance, as in traditional approaches.
Consider more closely some parts of the neural device.

The sensor field contains the description of a chemical
structure. It is a squared matrix, the number of rows and
columns in which is equal to the number of atoms in a
chemical structure. Sensor neurons located on the diagonal
of the matrix (atomic sensors) at the intersection of theith
row and theith column form signals corresponding to some
characteristics of theith atom in the chemical structure. A
set of possible atomic characteristics includes principal

quantum number for the corresponding chemical element,
number of valence electrons, a charge on the atom, the
number of hydrogen atoms attached to it, the value of its
electronegativity, etc. Sensor neurons situated at the inter-
section of theith row and thejth column (i * j) form signals
characterizing relations between theith and thejth atoms in
the chemical structure, such as the bond order (if the atoms
are linked), interatomic distance, and some others.
Each “eye” consists of (1) one or severalcollectorsand

(2) a set of identical “receptors”. The important point is
that all receptors have identical values of all connection
weights and activation thresholds,i.e., all receptors within
an eye can be considered as copies of one receptor. Each
receptor is a feed-forward neural network, which processes
signals accepted from its rather smallreceptiVe field, the latter
being defined as a part of the sensor field containing only a
few atoms and bonds. Inside an eye, each receptor can be
uniquely identified with one ordered vector (V1,V2,...,Vi,...Vn),
wheren is the number of atoms in the receptive field andVi
is the ordinary number of the corresponding atom in a
molecule. Such a vector will be referred to as areceptor
identifier. In general, the number of receptors inside an eye
should be equal to the number of ways the vectors could be
constructed:N!/(N - n)!, whereN is the number of non-
hydrogen atoms in a chemical structure,n being the number
of atoms within a receptive field (such receptors will be
calledn-atomic). For example, a three-atomic molecule can
be analyzed with three one-atomic receptors with identifiers
(1), (2), and (3), with six two-atomic receptors with identi-
fiers (1,2), (2,1), (1,3), (3,1), (2,3), and (3,2), or with six
three-atomic receptors with identifiers (1,2,3), (1,3,2), (2,1,3),

oi ) f(-θi + ∑
j

ojwij) (1)

f(x) ) 1/(1+ exp(-x)) (2)

Figure 1. Architecture of the neural device.

716 J. Chem. Inf. Comput. Sci., Vol. 37, No. 4, 1997 BASKIN ET AL.



(2,3,1), (3,1,2), and (3,2,1). A whole neural device, with
all receptors needed for analyzing a given molecule, com-
prises itsconfigurationfor the molecule. Configuration with
only one receptor per each eye, which contains only mutually
independent adjustable parameters, will be calledminimal.
Minimal configuration does not correspond to any particular
molecule, but it rather serves as a template for the deduction
of the relevant configuration for any given molecule through
multiplication of receptors within eyes. It should be
mentioned that the notion of the minimal configuration plays
a key role in emulating the work of the neural device on an
ordinary computer since only the minimal configuration of
the net with a relatively small and fixed number of neurons
and synapses should reside in computer memory. When
training, once any adjustable parameter (connection weight
or activation threshold) within a receptor takes a new value,
the corresponding parameters in all other receptors within
the same eye assume the same value. Because of this,
training can be conceived of a minimization of an error
function in the space of adjustable parameters belonging to
the minimal configuration. Therefore, the minimal config-
uration will suffice to store all adjustable parameters of the
neural device and to reproduce the whole neural device in
each of its configurations.
For practical purposes, the number of receptors in an eye

can be considerably reduced by imposing some additional
conditions on the use of receptors. For example, one can
assume that a receptor accepts signals only in the presence
of a substructure within its receptive field. This enlarges
the number of possible eyes but considerably reduces the
number of receptors in each of them.
The signals from all the receptors inside an eye are

accumulated in collectors, which are defined as neurons that
sum up and transform signals received from all the receptors
in the eye. Hence, the whole sensor field appears to be
“seen” by an eye. Upon an arbitrary renumbering of atoms,
whenever atomi acquires a new numberP(i), an identifier
(V1,V2,...,Vi,...,Vn) is turned to (P(V1),P(V2),...,P(Vi),...,P(Vn)).
When receptors with all possible identifiers, which could be
obtained in such a manner, are present in an eye, then every
renumbering results in a permutation of receptors inside the
eye. Since the result of the summation being made in
collectors over all signals received from the receptors do not
change on their permutation, then the identity of all receptors
inside the eye results in the invariance of the signals being
formed in the collectors with respect to the numbering of
atoms in a molecule.
As it was mentioned above, each receptor is a feed-forward

neural network (see, for example, ref 8), which consists of
one hidden layer and one output layer. The number of
hidden neurons (i.e., belonging to the hidden layer) is
unrestricted, while the number of output neurons is equal to
the number of collectors in the eye. Each hidden neuron
accepts signals from the sensors located within the corre-
sponding receptive field, processes them, and passes the
result on to every output neuron. In turn, each output neuron
also processes its input signals and transmits its output signal
to the corresponding collector.
The brain is also a feed-forward neural network with one

hidden and one output layer. In this net, each hidden neuron
receives the signals sent by every collector and after
processing passes its output signal on every output neuron.
Analogously, each output neuron receives the signals from

the hidden layer, processes them, and forms its output signal.
This signal is expected to correspond to one of the properties
being predicted. The transmission of the signals over the
neural device as well as its training can be described using
the same mathematical expressions as in the case of an
ordinary feed-forward neural network with backpropagation
of errors.8

Hence, the structural information is processed in the neural
device in four stages: (1) the primary signals that correspond
to the characteristics of atoms and bonds are formed in the
sensor field; (2) all the signals gathered from a receptive
field are processed by the corresponding receptor; (3) signals
that are invariant with respect to an arbitrary renumbering
of atoms are formed in collectors; (4) the invariant signals
are finally processed in the brain (see Figure 1).
It should be mentioned that the idea of using receptive

fields, from which primary information would be gathered
and further processed by subsequent layers of neurons to
form invariants toward possible transformations of input
signals, does form the basis for theneocognitronparadigma,54

which is designed in compliance with neurophysiological
concepts on how visual information is processed in the visual
cortex.55

AN EXAMPLE OF THE NEURAL DEVICE

Consider an example of a neural device consisting of a
brain and two eyes (named asE1 andE2). Take a simple
sensor field, which contains only atomic sensors (namedNH),
each of which forms only one signal corresponding to the
number of hydrogens attached to that atom. Each of the
receptors inside the eyeE1 receives signals from only one
atomic receptor. On the contrary, each of the receptors
inside the eyeE2accepts signals from two atomic receptors
corresponding to atoms that form a bond in a chemical
structure. Nondiagonal elements are ignored for simplicity.
Each receptor in both eyes contains two hidden and one

Figure 2. Neural device applied to the ethane molecule.
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output neuron. In correspondence with the number of output
neurons, each eye contains a single collector, whose output
signal is transmitted to the brain.
A configuration of the neural device for the ethane

molecule is shown on Figure 2. In this case, invariance of
the predicted properties with respect to renumbering atoms
is provided by the following restrictions imposed on the
values of connection weightsω′ and activation thresholds
θ′: ω′4,6 ) ω′4,7; ω′6,10 ) ω′7,12; ω′6,11 ) ω′7,13; ω′5,8 ) ω′5,9;
ω′8,14 ) ω′9,16; ω′8,15 ) ω′9,17; ω′10,18 ) ω′12,19; ω′11,18 ) ω′13,19;
ω′14,18) ω′16,19; ω′14,19) ω′16,18; ω′15,18) ω′17,19; ω′15,19) ω′17,18;
θ′6 ) θ′7; θ′8 ) θ′9; θ′10 ) θ′12; θ′11 ) θ′13; θ′14 ) θ′16; θ′15 ) θ′17.
In a similar manner, a configuration of the neural device

for the propane molecule is given on Figure 3. The
invariance of the predicted properties with respect to
renumbering atoms is ensured by the following restrictions
imposed on the values of connection weightsω′′ and
activation thresholdsθ′′: ω′′4,6 ) ω′′4,7 ) ω′′4,8; ω′′6,13 ) ω′′7,15
) ω′′8,17; ω′′6,14) ω′′7,16) ω′′8,18; ω′′13,27) ω′′15,28) ω′′17,29; ω′′14,27
) ω′′16,28) ω′′18,29; ω′′5,9 ) ω′′5,10) ω′′5,11) ω′′5,12; ω′′9,19) ω′′10,21
) ω′′11,23) ω′′12,25; ω′′9,20 ) ω′′10,22) ω′′11,24) ω′′12,26; ω′′19,27)
ω′′21,28 ) ω′′23,28 ) ω′′25,29; ω′′19,28 ) ω′′21,27 ) ω′′23,29 ) ω′′25,28;
ω′′20,27) ω′′22,28) ω′′24,28) ω′′26,29; ω′′20,28) ω′′22,27) ω′′24,29)
ω′′26,28; θ′′6 ) θ′′7 ) θ′′8; θ′′9 ) θ′′10 ) θ′′11 ) θ′′12; θ′′13 ) θ′′15 ) θ′′17;
θ′′14 ) θ′′16 ) θ′′18; θ′′19 ) θ′′21 ) θ′′23 ) θ′′25; θ′′20 ) θ′′22 ) θ′′24 )
θ′′26.
All these configurations can be deduced from the minimal

one presented on Figure 4 by multiplication of receptors.

RESULTS AND DISCUSSION

Boiling Points of Alkanes. In our first experiment with
a program emulator of the neural device, we have chosen

prediction of boiling points of alkanes, so far as by using
this example it is possible to make comparison with results
reached by authors of numerous publications. Neural
networks have also been applied by several authors18,30,35,38

for studying this problem. A set consisting of 74 alkanes56

C2-C9 was divided into two partssa training set (67
compounds) and a validation set (seven compounds). A
neural network with architecture described in the foregoing
example was used in this study. A “generalized delta-rule”
procedure57 in the aforementioned modification was used for
training. We used a value of 0.05 for the learning rate and
0.9 for the momentum parameter (see ref 57). Training was
interrupted on reaching the value of the correlation coefficient
between predicted and observed boiling points of 0.994. This
value is better than any correlation coefficient of the same
property for the same data set with a single topological index
and is comparable to the correlation coefficients that could
be reached for multiple regression models including several
topological indexes. The same conclusions could also be
drawn by considering root-mean-square (RMS) errors on
both sets (5.2 degrees on the training set and 5.1 degrees on
the test set). However this result appeared to be worse than
that obtained by using simple feed-forward neural networks
for correlating the same properties with topological indexes
or occurrence numbers of several substructures.18 In addi-
tion, the time needed for the training appeared to be too long
(up to several hours on PC). This result was reported in
our preliminary communcation.19

To address the above-mentioned problems, we have
examined the influence of the architecture of the neural
device on its performance. The number of collectors within
eyes has appeared to have a drastic effect on the time needed
for learning (few minutes instead of hours on Pentium-100)
as well as on the quality of learning. The same architecture
of the neural device but with fire collectors within each of
its two eyes gives an excellent value of the correlation
coefficient, 0.9994, and very small RMS errors of 1.6 degrees

Figure 3. Neural device applied to the propane molecule.

Figure 4. Minimal configuration of the neural device.
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on the training set and 2.4 degree on the validation set. Such
performance is comparable with best results reported for
predicting boiling points of alkanes. Nonetheless, further
increase in the number of collectors deteriorates results.
One further enhancement that affects the learning of the

neural device involves the use of separate values of learning
factors for eyes and brain. For stable learning, we used the
value of the learning factor for eyes 10 times less than for
the brain. As regards absolute values of the learning factor
for the brain, its starting value of 0.25 and 0.05 at the end
of learning appeared to be optimal.
Viscosity of Hydrocarbons. In the following example,

a more diverse set of 81 hydrocarbons58 C6-C21, cyclic and
acyclic, saturated and unsaturated, aromatic and aliphatic,
was used in evaluating their viscosity at 40°C. Again, as
in the previous example, it was split into a training set (65
compounds) and a validation set (16 compounds). A neural
device containing a brain with two hidden neurons and only
one eyeE2with three hidden neurons in each receptor and
five collectors was chosen for this study. After 1100 epochs
of training the correlation coefficient became 0.996, and
RMS error for the training set was 0.15 centipoises and for
the validation set 0.18 centipoises.
Heat of Evaporation of Hydrocarbons. In the following

example, a set of 267 hydrocarbons59 C4-C26, also, as in
the previous example, cyclic and acyclic, saturated and
unsaturated, aromatic and aliphatic, was used for training
the neural device to predict heat of formation. From this
set, 54 compounds were randomly selected as a validation
set, while remaining 213 compounds formed a training set.
A neural device containing a brain with three hidden neurons
and two eyes,E1 and E2, each containing three hidden
neurons in each receptor and three collectors, was used in
the study. Again, as in all previous examples, only sensors
which form signals corresponding to the number of hydro-
gens attached to a given atom were included in the sensor
field. There was no “overtraining”, so the learning was
interrupted after 2600 epochs with a correlation coefficient
of 0.996 and RMS error on the training set was 1.44 kJ/mol
and 1.26 kJ/mol on the validation set. In this case, the neural
device outperforms results obtained for the same data.59

Density of Hydrocarbons. The following example deals
with predicting density of liquid hydrocarbons. A set of 141
hydrocarbons58C5-C8 (saturated and unsaturated, cyclic and
acyclic, aromatic and aliphatic) was divided into a training
set with 133 compounds and a validation set with 28
compounds. A neural device containing a brain with five
hidden neurons and two eyes,E1 andE2, each containing
five hidden neurons in each receptor and five collectors, was
used in the study. The sensors chosen were the same as in
all previous examples. After 1700 cycles of training the
value of the correlation coefficient reached 0.971, the RMS
error for the training set became 0.018 g/cm3 and 0.019 g/cm3

for the validation set.
Heat of Solvation in Cyclohexane.Unlike all previous

cases, compounds of the following set59 belong to different
classes of organic compounds. In accordance with results
of preliminary studies, one compound, perfluorobenzene, was
excluded as an outlier, while another 140 compounds were
divided into a training set (112 compounds) and a validation
set (28 compounds). A neural device with three eyes,E1,
E2, andE3, was constructed. EyesE1andE2are the same
as described above, whileE3 contains receptors each

receiving signals from three atoms linked with two bonds.
To discriminate between heteroatoms, besidesNH, one
additional type of atomic sensors, which detects principal
quantum number,PQN, was used. The brain of the neural
device and all receptors were chosen to contain three hidden
neurons. Furthermore, three collectors were placed in each
of three eyes. After 10 000 epochs of learning, the value of
the correlation coefficient amounted to 0.990, while the RMS
error on the training set became 1.77 kJ/mol and on the
validation set 2.46 kJ/mol. Since, as it was shown in a
previous article,59 commonly used topological indexes were
incapable of giving strong correlations with the heat of
solvatation, a special “solvation index” was designed59 to
be used in linear regression (R) 0.985 ands) 2.1 kJ/mol
for the same data set). This example shows that the neural
device can compete with using specially designed molecular
descriptors.
Polarizability of Different Molecules. The following

example involves diverse data set60 containing organic
compounds (up to 26 non-hydrogen atoms per molecule)
belonging to different classes as well as inorganic com-
pounds, e.g., N2O, SO2, H2S, O2, N2, NH3, Cl2, etc. The
data set was split at random into a training set (235
compounds) and a validation set (58 compounds). An
architecture of the neural device was chosen to contain a
brain with three hidden neurons and only one eyeE1 with
three hidden neurons in each receptor and five collectors.
Three types of atomic sensors were used:NH, AR, andNE.
SensorNH forms signals corresponding to the number of
hydrogen atoms attached to a given atom, signals of sensor
AR correspond to atomic radius, sensorNE gives signals
corresponding to the number of electrons in the atom. The
value of the correlation coefficient after 2000 epochs of
learning became 0.995, and the RMS error on the training
set was 0.86 cm3 and 0.71 cm3 on the validation set. This
result is significantly better than all models we managed to
build using a set of commonly used topological indexes in
the framework of either multiple linear regression methodol-
ogy or neural networks with simple architectures. Although
group additivity methods can also be applied in this case,60

their usage is however confined to molecules containing only
those groups that are sufficiently represented in the training
set, while this neural device does not require this precondition
to be satisfied.
Anesthetic Pressure of Gases.The last example in this

study illustrates the ability of the neural device to predict
biological activity. A data base consisting of hydrocarbons,
halogenhydrocarbons, and some inorganic gases, such as all
noble gases, molecular nitrogen, SF6, and N2O, was taken
from the review.61 As in all previous examples, the data
base was split into a training set (24 compounds) and a
validation set (six compounds). A neural network with a
brain, which contained three hidden neurons, and one eye
E1, in which each receptor “sees” only one atom, with three
hidden neurons in each receptor and five collectors was
constructed. Three types of atomic sensors were used:NH,
PQN, andVE. The first two sensors,NH and PQN, are
described above; sensorVE detects number of valence
electrons in an atom. After 4000 epochs of learning the value
of the correlation coefficient became 0.990, and the RMS
error on the training set was 0.18 log units (log(1/p)) and
0.26 log units on the validation set. For this example, we
failed to find any significant correlation of the anesthetic

CORRELATIONS BETWEENSTRUCTURES/PROPERTIES OFCOMPOUNDS J. Chem. Inf. Comput. Sci., Vol. 37, No. 4, 1997719



pressure either with topological indexes or using group
contribution method.

CONCLUSIONS

Our aim was to demonstrate the possibility of constructing
a neural device for correlating properties of organic com-
pounds directly with their structures without having to select
and compute topological indexes or any other molecular
descriptors in advance. Instead, we use descriptors applied
to individual atoms and bonds in molecules. In other words,
this methodology constitutes an alternative to the use of
molecular descriptors in QSAR/QSPR studies. From the
other hand, this approach can easily incorporate the use of
molecular descriptors if the latter are proved to be especially
useful for solving some particular problem: this can be done
by feeding the brain of the neural device with additional
signals corresponding to values of molecular descriptors.
Since the output signals of the neural device as well as

output signals of all its collectors do not depend upon atomic
numbering and hence can be viewed as some molecular
descriptors, the whole neural network can also be regarded
as a tool for designing new molecular descriptors which
would as close as possible fit molecular properties. When
learning, the neural device is trying to find a way how local
atomic and interatomic properties can be combined to give
molecular descriptors capable of correlating with a given
molecular property. Clearly there is no need to invent new
descriptors if such or even better descriptors are already
known. Therefore the use of the neural device in the cases
when sufficiently good molecular descriptors are still not
known would be worthwhile.
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