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ABSTRACT

Mean densities of major and dwarf planets are possible to calculate by 
the values  of  the planets’  distance  to  the Sun,  the  mean densities  of 
massive  natural  satellites  of  planets  are  computable  by  the  satellite’s 
distance to the Sun and the primary. The article hypothesizes that the 
mean density of a body was affected by the gravitational field during the 
body formation in the formation point, and the gravity was influenced by 
the  Sun  and  a  hypothetical  supermassive  belt  in  the  region  beyond 
Neptune, and by the primary also, in case of the natural satellites. The 
mean  densities  obtained  by  the  traditional  methods  and  through  the 
newly proposed approach characterize different life stages of celestial 
bodies, and the comparative analysis of these mean density values can 
be a useful tool in studying migration of the bodies in the Solar System 
and in other planetary systems. 

Subject headings: Density: planets, satellites, asteroids, TNOs — density: detection 
—  gravitational potencial — supermassive belt —  new method: numerical
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1. Introduction 

Harmony features the structure of the Solar System. This is proved by Kepler’s laws 
that describe regular geometry of orbits and the ordered coordination of celestial bodies in 
space and in time.  Major planets  move in the same direction, in  approximately the same 
plane,  and  some  other  celestial  objects  behave  in  the  same  manner.  The  harmony  is 
contributed to by orbital resonances and by spin-orbital resonances. With that, these well-
known relationships only characterize mutual position and motion of the celestial  bodies, 
while changes in their physical characteristics, which are far poorly studied, could not be 
judged accidental in the balanced and coordinated universe. Any body has mass, size, shape, 
as well as magnetic and other properties. One of the properties of a body is its mean density, 
which is considered as a source of information and is used in determining compositions and 
structures of objects. 

Over several decades, many researchers have been studying mean densities of celestial 
bodies. The enormous work has resulted in the gravitational and non-gravitational methods 
to estimate the mean densities, as well as in numerous estimates and analyses of the mean 
densities of a variety of objects: major planets, dwarf planets, natural satellites, and small 
Solar System bodies (SSSBs), inclusive of asteroids, trans-Neptunian objects and cometary 
nuclei.  The  present  article  uses  generally  the  recently  obtained  estimates  of  the  mean 
densities of the Solar System bodies.

Here  we  tried  to  use  the  most  recent  data.  Eight  major  planets  are  grouped  as  4 
terrestrial  planets  with  relatively  high  values  of  their  mean  densities  (Strom,  2007; 
Weissman,  2007), and 4 gas giant planets with low mean densities (Jacobson et al., 2006; 
Marley and Fortney, 2007). Currently there are five dwarf planets, among which Ceres lies 
in the main asteroid belt, and the rest dwarf planets are TNOs. Baer et al. (2011) determined 
the mean density of Ceres; Tholen et al. (2008) – Pluto; Levi and Podolak (2011) – Haumea; 
Sicardy et al. (2011) – Eris. The mean density of the fifth dwarf planet Makemake has not 
yet been determined.

The mean densities of seven TNOs have also been analyzed. Lacerda and Jewitt (2007) 
determined the mean density of Varuna; Fraser and Brown (2010) – Quaoar; Grundy et al. 
(2007) – Ceto; Brown et al. (2010) – Orcus; Stansberry et al. (2006) - 1999 TC36; Dotto et 
al. (2008) - 2000 GN171; Orly and Re'em (2010) - 2001 QG298.

Asteroids constitute more than a half amount of objects with the known mean densities. 
Baer et al. (2011) calculated the mean densities for asteroids, numbers 2-4, 6-11, 13-21, 29, 
31, 39, 47-49, 52, 65, 87, 88, 90, 121, 130, 243, 253, 283, 379, 444, 451, 511, 704, 804,  
185851, 276049, 2000 UG11. Fienga et al. (2009) determined the mean densities of twelve 
asteroids,  numbers  12,  23,  41,  89,  128,  129,  139,  173,  192,  354,  409,  532.  The  mean 
densities of a few asteroids were estimated in the works by Marchis et al. (2008a), numbers 
22, 45, 107, 762; Baer and Chesley (2008), number 24; Chesley et. al. (2010), number 189; 
Descamps et al.  (2011), number 216; Yeomans et al.  (2000), number  433;  Mueller et al. 
(2010), number 617; Rojo and Margot (2011), number 702; Marchis et al. (2008b), number 
3749; Abe et al. (2006), number 25143; Ostro et al. (2006), number 66391; Brooks (2007), 
number 164121. 

Sosa and Fernández (2009) determined the mean densities for nuclei of comets Halley, 
Encke,  d'Arrest,  Tempel  1,  Tempel  2,  Borrelly,  Kopff,  Honda-Mrkos-Pajdusakova, 
Wirtanen, Churyumov-Gerasimenko, Wild 2. 
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The data on the mean densities are available for three satellites of terrestrial planets, for 
Pluto’s satellite, and for 27 satellites of large planets. Wieczorek et al. (2006) high-accuracy 
calculated  the  Moon’s  mean  density;  Andert  et  al.  (2010)  produced  the  mean  density 
estimate for Phobos; Smith et al. (1995) – Deimos; Person et al. (2006) – Charon. The mean 
densities of 5 Jupiter’s satellites are known. Lopes (2007) determined the mean density of Io; 
Greenberg  (2010)  -  Europa,  Ganymede,  Callisto,  Amalthea.   The  mean  densities  of  16 
Saturnian  moons  are  known.  Thomas  (2010)  determined  the  mean  densities  of  Mimas, 
Enceladus,  Tethys,  Dione,  Rhea,  Hyperion,  Iapetus,  Phoebe,  Janus,  Epimetheus,  Atlas, 
Prometheus, Pandora, Pan, Daphnis; Jacobson et al. (2006) – Titan. Jacobson et al. (1992) 
determined  the  mean  densities  of  Uranian  satellites  Miranda,  Ariel,  Umbriel,  Titania, 
Oberon; Person et al. (2006) – Neptune’s satellite Triton. Thus and so, the present article 
analysis includes data on the known mean densities of 131 objects of the Solar System. The 
article treats a body’s mean density as a principal and self-sufficient, rather than subsidiary, 
characteristic of the Solar System bodies. 

2. Gravitational field and the mean densities of bodies in the Solar System 

This  study is  aimed  at  analyzing  spatial  distribution  of  mean densities  of  celestial 
bodies in the Solar System. Density is defined as mass per unit volume; mean density is the 
object’s mass divided by volume. Mass, as a physical value, determines gravity of bodies; 
therefore, mass and, hence, density relate to the gravitational field. According to present-day 
beliefs, bodies of the Solar System formed under the dominant gravitational influence. That 
is,  on the one hand, every macro- or microscopic body’s mass affected the gravitational 
field;  on the other  hand,  the  gravitational  fields  of  existent  bodies  had influence  on the 
forming bodies, including their densities.  Inasmuch as the gravitational field in the Solar 
System was nonuniform, the nonuniformity could show itself in discrepancy of the mean 
densities of the forming bodies. 

The mean densities of more than 130 bodies in the Solar System are determined to 
date. These bodies are the Sun, major planets, dwarf planets, moons of the major and dwarf 
planets, comets, main belt asteroids, Kuiper belt and other trans-Neptunian objects (TNOs). 
Unlike other physical properties,  for instance,  a mass or a volume, the determined mean 
densities of the Solar System bodies have relatively close value range, within one-two orders 
of magnitude. The lowermost values of densities belong to nuclei of comets; the uppermost 
values  belong to terrestrial  planets  and a few asteroids.  Spatial  distribution  of  the mean 
densities is reasonable to consider relative to the Solar System barycenter, or relative to the 
Sun, which is almost one and the same. The present study used semimajor axis of orbit of 
celestial  bodies  as  a  spatial parameter. Orbital parameters of the all objects taken from JPL 
http://ssd.jpl.nasa.gov/

Though the bodies in the Solar System always had and have now the gravitational 
effect on each other, this effect is possible to neglect, as it is low due to the relatively small 
masses of most bodies and owing to the large distances between them. The same is valid for 
the  influence  that  moons  have  on  the  densities  of  their  primaries.  For  another  thing, 
primaries formed before moons, and, consequently, a primary influences its moon’s density, 
rather than vice versa.

The  mean  density  of  a  celestial  body  cannot  be  measured  directly,  but  is  always 
calculated, and the methods of the mean density determination do not differ fundamentally in 
this aspect, including the new approach proposed in the given article. However, to avoid 

http://ssd.jpl.nasa.gov/
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uncertainty  in  terminology and mathematical  notations,  all  values  of the mean densities, 
obtained using traditional gravitational and non-gravitational methods, are referred to as the 
“observed” mean density and are denoted as ρo; the calculated values of the mean densities, 
by the method proposed in the given article, are referred to as the “calculated” mean density 
and are denoted as ρc.

3. Spatial distribution of the mean densities of major planets 

Major planets are the largest and the most massive bodies in the Solar System along 
with the Sun, and therefore variation in their mean densities is to be considered first of all. 
The present article focuses on spatial distribution of the mean densities of celestial objects 
rather than on the mean density values as such. The spatial distribution of the mean densities 
of major planets is shown in Fig. 1. 

Fig. 1. The mean densities of major planets in the Solar System.

On looking at Fig. 1, non-randomness of the pattern salutes the eye. Instead of the 
chaotic  character  distribution  of  the mean densities,  which should seem to happen,  it  is 
clearly  seen in  Fig.  1  that  the  mean densities  change successively.  The planets,  namely 
Mercury, Venus and Earth, occurring at the nearest distances to the Sun, have the maximal 
mean densities. The planets Earth, Mars, Jupiter and Saturn have asymptotically decreasing 
values  of  the  mean  densities.  The  planets  Saturn,  Uranus  and  Neptune  have  the 
monotonously increasing mean densities. On this basis, it is assumable that distribution of 
the mean densities of the Solar System’s bodies follows a certain regular pattern. 

The first three planets, closest to the Sun, have almost equal mean densities (Fig. 1), 
and the change in the mean density of a planet versus the planet’s distance to the Sun can 
only be described for the planets from Earth to Neptune. It is certainly imprecise to draw any 
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adequate conclusion based on the analysis of the six bodies; however a provisional analysis 
is possible, considering the high accuracy of the mean densities of these planets. 

The mean density of a planet can be expressed as a function of the planet’s distance to 
the Sun: 

ρi
c=f ( Ri )+q (1)

where ρi
c  is the “calculated” mean density of the i-th planet; Ri is the semimajor axis of the 

i-th planet orbit; q is a certain coefficient. 

The observed change in the mean densities can be assumed as the result of influence of 
two additive factors, and can be presented as two differently directed curves (Fig. 1). In this 
case, each planet’s mean density has two components, and grouping of the planets into two 
divisions  is  based on which  of  the  components  governs  the  dominant  part  of  the  mean 
density  value.  Each  curve  only  characterizes  a  part  of  the  body’s  mean  density; 
consequently,  each  curve  should  be  plotted  below the  mean  density  points.  In  the  first 
approximation, the “descending” curve can be described by the inverse proportion to R; and 
the “ascending” curve — by the direct proportion to R. Let coefficient q be zero, then Eq. (1) 
transforms into: 

ρi
c( Ri )=

k1

Ri

+k 2 Ri (2)

Empirical coefficients are k1 ≈ 5.6 AUg/sm3 = 8.4×1014  кг/м2,   k2 ≈ 0.05 g/AUsm3 = 
3.3×10-10 кг/м4.

The change in the mean densities of the planets according to the ratio 1/R suggests that 
this  change depends on the gravitational  (or inertial)  potential,  since the latter  obeys the 
same ratio in case of the point sources. Thus, formation of the mean density of a body at a  
certain point of the Solar System could be conditioned by the value of the gravitational 
potential at that point. Inasmuch as the mean densities of the planets change as the functions 
of the planets distance to the Sun and considering that the Sun is the most massive object in 
the Solar System, it is possible to state that the mean densities of the planets were mainly 
affected by the Sun’s gravitational  field.  But there are two members in Eq. (2) and two 
curves (Fig.  1).  This implies  that  the mean densities  could form under influence  of two 
gravitating objects. This possibility will be discussed in Section 6.

4. Spatial distribution of the mean densities for major planets, dwarf planets, natural 
satellites and small Solar System objects

The relationship expressed by Eq. (2) should not only be valid for major planets, but it 
should hold true for other objects in the Solar System. This means that Eq. (2) should allow 
calculating the mean densities for dwarf planets and SSSBs for which is as well assumable 
that the Sun is the main gravitating object. 

The situation is more complex in case of a planet’s moons. Logically, the mean density 
of a moon formed under the gravitational influence of the Sun and the primary. The primary 
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and  its  moons  occur,  upon  average,  at  the  same  distance  to  the  Sun,  so,  the  Sun’s 
gravitational field contributes equally to the mean densities both of an i-th planet, and each 
moon of this planet,  ρi. Since quantities are assumed additive, the mean density of an n-th 
satellite of an i-th planet, ρsin, is found from the equation: 

ρsin=ρi +ρin (3)

where ρin is the contribution of the primary to the density of the n-th satellite. Accordingly, a 
part  of  the mean density,  which formed under  influence  of  the  primary,  is  equal  to  the 
difference  between  the  planet’s  satellite  mean  density  and  the  planet’s  mean  density: 
ρin =ρsin− ρi .  This  inference  can  apparently  be  related  to  both  the  “observed”  and 

“calculated” mean densities, i.e. 

ρsin
o =ρi

o+ρin
o (4)

ρsin
c =ρi

c +ρin
c

(5)

The integrated analysis of the densities of all celestial bodies supposes studying the 
effect of the central gravitating object. This means estimation of influence exerted by the 
Sun  on  major  planets,  dwarf  planets  and  small  Solar  System bodies,  and  the  influence 
exerted by primaries on their natural satellites. Consequently, the primary-affected part of 
the mean density of a satellite, ρin, should only be considered. Inasmuch as it is supposed that 
gravitational influence, conditioned by gravitational potential, is governed by the mass of the 
central body for the planets and the planet satellites, then the effect of the Sun on all celestial 
bodies and the effect of a planet on its moons are proportional to the ratio of masses of the 
Sun and that planet. Assuming the mean density formation law uniform, Eq. (2) should keep 
its  form,  but  the  coefficients  k1 and  k2 for  a  planet  should  change  in  proportion  to  the 
mentioned ratio: k1 should decrease and k2 should increase. On the other hand, each term in 
Eq.  (2)  includes  R to  the  first  power.  This  allows  a  conditional  assumption  that  the 
coefficients  k1 and  k2 remain unaltered for all gravitating objects, but the distance scale is 
what  changed;  then  in  the  distance  scale,  the  mean  distance  between  a  planet  and  its 
satellites, Rin, may be given as rin in relative astronomical units (rAU); i.e.: rin = Rin × M/mi, 
where M is the solar mass, mi is the mass of i–th planet.  

The relationship between the “observed” values of the mean densities of the major 
planets,  dwarf planets and SSSBs  ρi

o ,  planet’s  satellites  ρin
o ,  and their  distances  to the 

central body (Ri or rin) is depicted in Fig. 2. 

The picture shows the mean densities of several kinds of objects: there are 8 major 
planets, 4 dwarf planets, 31 natural planet satellites, as well as small Solar System bodies, 
including 70 asteroids, 7 TNOs and 11 comet nuclei. The dwarf planets are represented by 
Ceres, located in the main asteroid belt, and three trans-Neptunian objects: Pluto, Haumea 
and Eris. Asteroids make up most of the SSSBs; these are 7 near-Earth asteroids, one Trojan 
asteroid Patroclus and the rest  are the main belt  asteroids.  There are 16 Saturn’s natural 
satellites, 5 Jupiter’s satellites, 5 satellites of the Uranus. Besides, the Earth, Neptune and 
Pluto  have  one satellite  each.  All  in  all,  the mean densities  of  131 celestial  objects  are 
presented in the Fig. 2. 
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Fig. 2. Spatial Distribution of the Mean Densities for the Solar System bodies.

The mean densities of all objects, shown in Fig. 2, do not provide a clear picture of 
change in the mean density value versus the object’s distance to the Sun, though there are a 
few partial dependences. 

The three dwarf planets in the trans-Neptunian region follow an upward trend in the 
mean density value with the distance to the Sun in compliance with the “ascending” curve of 
the mean densities of the major planets in Fig. 1. The other trans-Neptunian objects weakly 
exhibit the said trend. 

The main belt asteroids are concentrated within a relatively narrow value range of the 
distances to the Sun (Fig. 2); therefore their mean density trend is subtle. We allocate the 
asteroids  into  two groups,  according to  the values  of  the  mean density.  The first  group 
includes a few asteroids with their mean densities higher than 4 g/cm3. The mean densities of 
these asteroids show the upward trend with the distance to the Sun, though that inference is 
rather weak inasmuch as there are few objects to make the sampling sufficient. The second 
group consists of the asteroids with their mean densities below the value of 4 g/cm3, and 
these asteroids show the downward trend with the distance to the Sun. The latter trend is 
weak, and is  smoothed by a logarithmic  scale,  but  it  includes  nearly 60 asteroids.  Most 
comets exhibit the same relationship. 

More than 10 natural satellites at a distance from their primaries, ranged from 3 to 100 
relative astronomical units, have the downward trend in the mean density as the semimajor 
axis of the orbit grows (Fig. 2). Pluto’s moon Charon, shown here as a terrestrial  planet 
satellite, above 10,000 rAU apart, as if extends the trend, but its mean density is a negative 
value. Less than 3 relative astronomical units off the Sun, the mentioned trend shows itself 
clearly,  and there  are  two alternatives  of  the  trend.  The first  alternative  is  the intensive 
increase  in  the  mean  density  value  on  approach  to  the  Sun,  which  is  a  sort  of  the 
“descending” curve in Fig. 1. The second alternative suggests that these natural satellites 
make a united group with the near-Earth asteroids; in the latter case, the mean densities of 
the bodies grow on approach to the Sun, too, but less intensively. 
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A group  of  the  natural  satellites  of  the  terrestrial  planets,  i.e.  Moon,  Phobos  and 
Deimos, have very low, negative mean densities — nearly -2 g/cm3 (Fig. 2). Some other 
satellites are also characterized by the negative mean densities. Evidently,  these negative 
values of the mean densities are the result of the calculation, have no physical sense and 
require an individual analysis. Probably, a few of the negative values, which are slightly 
below  zero,  may  be  the  result  of  the  calculation  inaccuracy,  while  anomalously  low, 
negative-valued  mean  densities  have  another  source  to  ensue  from.  An  explanatory 
suggestion will be given in Section 6 of this article. 

To sum up the discussion of Fig. 2, there is no a well-defined dependence of the mean 
densities of bodies and the distances of the bodies to the Sun. 

5. Spatial distribution of the mean densities of massive bodies in the Solar System 

The above analysis shows that there is a regular pattern in the spatial distribution of the 
mean  densities  of  major  planets  (Fig.  1)  and  there  is  no  regular  pattern  in  the  spatial 
distribution of the mean densities for the entire set of celestial objects (Fig. 2). Thus, Eq. (2) 
and Eq. (4) are only usable to characterize a part of the objects that are supposedly the most 
massive bodies in the Solar System. These are major planets, dwarf planets and the most 
massive  planet  satellites.  Spatial  distribution  of  the  mean  densities  of  the  said  celestial 
objects is shown in Fig. 3. 

Fig. 3. Spatial distribution of the mean densities of massive objects in the Solar System.

Figure 3 displays the same two trends in the mean density distribution of the bodies as 
in Fig. 1. The first trend is the gradual decrease in the mean densities with the increasing 
distance to the Sun or the primary; the second trend is the gradual increase. The first trend 
characterized by the “descending” curve describes the mean densities of the planets from 
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Earth to  Saturn,  and includes  the dwarf planet  Ceres as well  as 12 big moons of major 
planets.  Ceres, Io,  Europa,  Ganymede, Dione complement  the curve,  and Callisto,  Rhea, 
Iapetus,  Ariel,  Umbriel,  Titania,  Oberon,  and  Triton  extend  it.  The  second  trend 
characterized by the “ascending”  curve illustrates the increase in the mean densities of the 
bodies in the direction off the Sun. These are the mean densities of the planets from Saturn to 
Neptune and of three dwarf planers. Pluto’s mean density quite fits the curve. The other 
massive dwarf planers, namely, Haumea and Eris, have high values of the mean density, 
which reckons them among the bodies belonging to the second curve; however these mean 
densities largely deviate from this curve. 

Three massive natural satellites seem abnormal:  these are the  Earth's satellite Moon 
and  Pluto's satellite Charon (Fig.  2), and  Saturn's satellite  Titan (Fig. 3). The Moon and 
Charon have  negative-valued mean densities.  They are not  shown in  Fig.  3  as  they are 
situated  very  far  from their  primaries.  Titan  stands  out  of  the  relationship  obtained  for 
satellites, and is more like inclined to the ascending curve. 

It is interesting to obtain the lower estimate of the planetary mass range, at which the 
mean density of a planet fits the revealed relationship. The least massive object with its mean 
density being in accord with the obtained relationship is dwarf planet Ceres. The largest 
objects, though their masses are, evidently, insufficient to satisfy the relationship, are TNOs 
Orcus and Varuna and Saturn’s satellite Tethys. The comparison of the masses of Orcus 
(Brown et al., 2010), Varuna (Lacerda et al., 2007), Tethys (Thomas, 2010), on the one hand, 
and Ceres (Baer et al., 2011), on the other, allows judging that the lower estimate of the mass 
for the objects, to be in agreement with the revealed relationship, is within 7-9 × 1020 kg. The 
objects with the masses above the indicated estimate will be referred to as “massive”. 

The “observed” mean densities of major and dwarf planets, and TNOs, ρi
o , as well as 

the  “observed”  mean  densities  of  satellites,  ρsin
o ,  are  determined  by  the  traditional 

gravitational and non-gravitational methods. The respective “calculated” mean densities ρi
c  

and  ρsin
c  are determined using the method proposed in the given article. The “calculated” 

mean density value includes two components that differ in the estimates for planets and for 
satellites. These components for major and dwarf planets and for TNOs correspond to the 
terms in Eq. (2). The components for satellites follow from Eq. (5). Table 1 presents the 
difference of the “observed” and “calculated” values of the mean densities, while the root-
mean-square deviation (RMSD) of them is given in Table 2.

Table  2  shows  the  root-mean-square  deviation  of  the  “calculated”  mean  densities 
relative to the “observed” mean densities of six major planets equals approximately 0.20 
g/cm2. For the analyzed set of 26 bodies, the RMSD makes up 0.68 g/cm3. We have already 
noticed earlier that the mean densities of Mercury and Venus, calculated by Eq. (2), are off 
the actual values, the negative mean density of the Moon is anomalous as well. In addition, 
the  mean  densities  of  Quaoar,  Eris  and  Titan  should  most  probably  be  assumed  as 
anomalous. A substantial deviation features the mean density values of Europa and Charon. 
Thus, we have that at least 6-8 in 28 massive bodies in the Solar System, or one fourth of the 
total amount that has been analyzed, have an abnormal (divergent) mean density value; the 
RMSD for the rest of the bodies is approximately 0.22 g/cm3. 
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Table 1
The difference between the “observed” and “calculated” mean densities of massive bodies in 
the Solar System.

Name Difference (g/sm3) Name Difference (g/sm3)

Mercury* — Io -0.30

Venus* — Europa* -0.46

Earth 0.13 Ganymede 0.14

Mars -0.18 Callisto -0.07

Jupiter 0.01 Dione 0.22

Saturn 0.38 Rhea 0.28

Uranus -0.02 Titan* -0.62

Neptune 0.05 Iapetus 0.04

Ceres 0.07 Ariel -0.22

Pluto 0.05 Umbriel 0.00

Haumea -0.32 Titania -0.37

Quaoar* -1.91 Oberon -0.32

Eris* 0.97 Triton -0.25

Moon* 2.31 Charon* 0.48

* "Anomalous" object

Table 2

The root-mean-square deviation between the “observed” and “calculated” mean densities of 
massive bodies in the Solar System.

Quantity of bodies Deviation (g/sm3)

6 Major Planets ±0.20

26 Bodies ±0.68

20 Bodies ±0.22

Let us determine an average error of assessing the mean densities of celestial bodies by 
the gravitational and non-gravitational methods. It will be observed that the mean density 
accuracy is very different for different bodies. For the most massive objects, such as the 
major planets and the biggest natural satellites, the mean densities are estimated accurate 
within four or five significant digits, while small or remote objects have their mean densities 
assessed to the accuracy of two or one significant digits. Figure 4 presents the mean density 
errors for the bodies in the Solar System.
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Fig. 4.  The error histogram for estimates of the mean densities of the bodies in the Solar 
System.

The histogram shows that more than a half of the mean density errors fall within 0.1-
1.0 g/cm3, with a modal value about 0.3 g/cm3. Table 2 above in the article shows the RMSD 
in  estimating  the  mean densities  by  the  newly proposed method,  as  compared  with  the 
traditionally  determined values, equals approximately 0.2 g/cm3 for the many of massive 
bodies. Hence it appears that the estimates of the mean densities by the traditional methods 
and the new approach exhibit quite comparable accuracy. Thus, it is reputed that the mean 
densities  of  the  majority  of  massive  bodies  in  the  Solar  System are  possible  to  highly 
accurately calculate only using the data on their distances to the Sun, or, for satellites, the 
distances to the Sun and the primary. 

6. Discussion and hypotheses 

According to the discussed analysis, the mean densities of major and dwarf planets, as 
well as of massive natural satellites are governed by the location of these objects in the Solar 
System.  So,  based  on  Eq.  (2),  the  mean  densities  of  the  Solar  System  bodies  form  a 
continuum where each point corresponds to a certain density. This allows a supposition on 
the  existing  spatial  distribution  of  the  mean  densities  of  the  Solar  System  bodies. 
Consequently, the bodies, that are thousand times and million times different in mass and 
size, with different internal structures and chemical compositions, have mean densities that 
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depend on the body’s distance to the Sun, or in case of natural satellites—on the satellite’s 
distance to its primary, as well. Based on that, we deduce an inference on the existence of the 
natural  regulatory mechanisms for the mean densities of celestial  bodies,  independent  of 
other physical and chemical characteristics of the bodies. Moreover, it is possible to assume 
some of these characteristics secondary relative to the mean density; that is, the mean density 
value  governs  these  characteristics  rather  than  vice  versa.  For  example,  a  planet  with  a 
definite mass could not have an “arbitrary” volume, as the volume is governed by the density 
that suits the gravitational potential at the given point of the Solar System. What has been 
said seems extraordinary, and yet, the revealed relationship is hard to explain elsewise.

A question arises: why is this relationship rather clearly evident for the massive objects 
only? To all  appearance,  the bodies, which obey the revealed mechanism, must be well-
shaped and have sufficient mass to  achieve hydrostatic equilibrium, which shows itself in 
their spherical form. However, not all of the bodies abide by the revealed relationship; for 
some massive bodies, the mean densities obtained by the traditional methods differ greatly 
from the mean densities found using the new proposed method (Table 1). Naturally,  the 
deviation  may ensue from the determination  uncertainty  of both the traditional  and new 
approaches. At the same time, another fact is more important: it is always meant that any 
error is determined relative to a true value. But in our case, some, and even most of deviation 
between  ”observation”  and “calculation”  mean  density  values  are  probably  governed by 
natural reasons, rather than by the calculation and determination uncertainties; therefore the 
deviation in the values cannot be assumed “errors”. We may hypothesize that while a body is 
forming,  the  body’s  mean  density  value  is  fixated  and never  changes  appreciably  if  no 
disastrous events (giant impacts) take place. Consequently, this article offers the method to 
determine a body’s mean density value coincident with the moment of the body formation 
and with the formation conditions. In addition, the determined mean density shows the initial 
position of a body in the Solar System. In case that a body did not form in situ but was 
transferred to the given position after it had formed, the body’s mean density value will not 
match the value calculated by Eq. (2). The transference means the change in parameters of 
the body’s orbit rather than in the orbital motion. In other words, the bodies that changed 
their distance to the Sun as well as the natural satellites that changed their distance to the 
primary have other mean density values as are calculated by (2).  And, as we have already 
said, a disastrous event can change the mean density of a body. In both cases, the calculated 
density will appear as an outlier. 

It is an interesting fact that most satellites of large planets have higher mean densities 
as compared to their primaries, while satellites of terrestrial planets and Pluto’s satellite have 
lower mean densities as compared to their primaries. This is well seen in Fig. 2 where the 
illustrated mean densities of satellites,  ro

in, are the results of the calculation by Eq. (3). The 
values shown in Fig. 2 represent the difference between the mean densities of the primary 
and its satellite; therefore, the positive valued mean densities of majority of the satellites 
imply the satellites possess the higher mean densities than their primaries. Alongside with 
that, the mean densities of the terrestrial  planets’ satellites and Pluto’s satellite,  ro

in, have 
negative values. A straightway hypothesis is that large planets have low and easy-to-overtop 
mean densities, and the terrestrial planets have high and difficult-to-surpass mean densities. 
Although tenable for the terrestrial planets, this hypothesis is unadoptable for giant planets 
such as Jupiter,  Saturn,  Uranus or Neptune.  The huge gravitation of giant planets in the 
course of their formation should result in that heavy elements were attracted and merged into 
the giants rather than were left in circumplanetary discs which became the source for the 
satellites of these giant planets to be formed later on. For another thing, pressure inside a 
planet, dependent on the planet’s mass, should be higher than the pressure inside the planet’s 
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satellites, which also should contribute to the higher mean density of the planet as against the 
planet’s satellites. 

It is worthy of mentioning that most major planets have the higher mean density values 
than the Sun, which implies an analogous relationship of the massive center and its satellites 
in the framework of the entire Solar System. And this highlights once again the existence of 
the specific natural mechanisms of the mean density formation. 

Using the described concepts of the mean density formation as the basis, it is possible 
to  get  an insight  into  causes  of  the  revealed  discrepancies  and to  give a  reason for  the 
abnormal mean densities of the concrete objects. So, all terrestrial planets’ satellites, Moon, 
Phobos and Deimos, as well Pluto’s satellite, Charon, possess lower value mean densities as 
against the mean densities of their primaries (Fig. 2). 

Two  of  the  listed  satellites,  Moon  and  Charon,  are  massive  and  should  obey  the 
revealed relationship, one would think. In this context, it gets into the field of attention that 
the listed satellites occur much farther from their primaries as compared to the other major 
and dwarf planets, SSSBs and natural satellites of large planets (Fig. 2); or, to put it more 
exactly, the listed satellites fall in the area of the appreciably lower gravitational potential. 
This makes it allowably to hypothesize that the primaries captured these natural satellites. 
The most adequate current hypothesis suggests the impact origin of the Moon (Cameron and 
Ward,  1976;  Benz et  al.,  1986;  Cameron,  1997;  Canup,  2004;  Canup  and  Barr,  2010), 
Charon (Tholen and Buie, 1997; Canup, 2005, 2011), Phobos and Deimos (Craddock, 2011). 

One way or another, the thing is that the Moon and Charon had not formed under the 
influence of gravity fields of their primaries, which is an explanation of their abnormality, in 
a sense. Almost every object of the main asteroid belt dissatisfies the evolutionary formation 
condition, as these objects, except for Ceres and Vesta, are not assumed as the independently 
formed bodies but the fragments of larger bodies (Murray and Dermott, 1999). What has 
been said above relates  to most of the Kuiper Belt  objects,  the impact  history of which 
throws back, thus, it is possible to regard them victims of disastrous events that changed 
their mean densities (Davis and Farinella, 1997, Fraser, 2009, O’Brien et al., 2005, Charnoz, 
2010). For instance, Haumea is, apparently, a fragment of a larger predecessor (Levison et 
al., 2008). In addition, many Kuiper Belt objects could be displaced after formation, either 
due to collisions or under the influence of a hypothetical planet that migrated afterwards 
(Emel`yanenko, 2010). 

Another exception is Saturn’s moon, Titan, the only one to exhibit abnormality among 
12  massive  moons  of  major  planets.  The  discrepancy  between  the  “observed”  and 
“calculated” values of Titan’s mean density is impossible to explain by the specific character 
of Saturn, since the other massive moons of this planet, including remote Iapetus, satisfy the 
discussed relationship. An opinion on Titan to be formed otherwhere and then to be trapped 
by Saturn is advanced by Prentice (2007), which is a rather rare idea, as Titan has a nearly 
circular orbit, and such orbit is, as a rule, assumed the satisfactory argument in favor of the 
in situ formation of the satellite. At the same time, if we took the value of Titan’s mean 
density  and  calculated  initial  position  of  Titan  by  Eq.  (2),  the  result  would  not  seam 
arbitrary. To a high precision (0.04 AU), the calculated initial position of Titan would fit a 
2:1 resonance with Jupiter, and Titan would lie at outer boundary of the main asteroid belt in 
relation to the Sun. Formation of Titan in the to-be Kirkwood gap could destabilize the orbit, 
and, as a consequence, Titan could be thrown to Saturn orbit. In the described scenario of 
Titan’s initial position, the size and mass of Titan would allow assuming it the 9th, more 
properly, the 5th major planet. It is also worth saying that Titan is the only satellite in the 
Solar System to possess the stable atmosphere (Niemann et al., 2005, Owen and Niemann, 
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2009,  Dorofeeva  and  Ruskol,  2010) and,  probably,  life  (Strobel,  2010).  Both  facts  are 
atypical for a satellite. 

As for  Mercury and Venus,  it  is  suitable  to  suppose  that  the  mean density  values 
undergo natural constraints in the Solar System. The calculated mean densities of Venus and 
Mercury  by  Eq.  (2)  are  7.7  and  14.4  g/cm3,  respectively.  It  is  probable  that  the 
protoplanetary disk lacked the sufficient amount of heavy elements, and the gravity forces 
failed  to  ensure the required internal  pressure,  and the formed body did not  acquire  the 
“desired”  mean  density.  The  existing  specific  physicochemical  conditions  governed  the 
mean  density  limit  in  the  given  area  of  the  Solar  System,  and  that  predefined  the 
impossibility for the mean density value to overcome the local limit of 5.2-5.5 g/cm3. As like 
as not, this explanation may be valid for the natural satellites of Earth and Pluto. 

Massive bodies are certainly less movable under collisions or resonance alignments of 
positions in space. According to Table 1, the “anomalous” bodies make up one fourth of the 
total set of the massive bodies in the Solar System. This means that orbital distances of the 
most massive objects have not changed, which enables a definitively reliable estimate of the 
mean densities of massive TNOs by Eq. (2). For example, Pluto’s mean density values found 
by the traditional approach and the proposed method are nearly equal (Table 1). The mean 
densities of Haumea and Quaoar could make up 2.24-2.25 g/cm3. Let us estimate the mean 
densities of the bodies, the mean densities of which have not been determined yet: dwarf 
planet Makemake should have the mean density approximately 2.35 g/cm3; dwarf planet Eris 
and object 2007 OR10—nearly 3.4 g/cm3. It is though not known for sure so far if Eq. (2) is 
applicable  to  extrapolation  to  the  distances  where  the  latter  objects  are,  since  the  said 
equation can be imprecise.

The first term of Eq. (2) shows an inverse proportionality between the mean density of 
a planet, and the planet’s distance to the Sun. This can be assumed an accurate value as most 
objects, which are discussed in this article, can be taken as points. The second term of Eq. 
(2) keeps us guessing why the values of mean densities of some objects increase with the 
increasing distance to the Sun. Accordingly, a precise mathematic formula of this term is 
impossible to derive.  

Let  us  compare  the  Sun—planets  system  and  the  planets—satellites  system.  The 
distribution  of the mean density  in the former system is  vitally  different  from the mean 
density  distribution  in  the  latter,  which  is  illustrated  by  the  two  curves  in  Fig.  3.  The 
ascending mean density curve does only exist in the system of the Sun and major and dwarf 
planets, and is absent in the systems of planets and their satellites. The term k2R of Eq. (2) 
shows itself in the Solar System and does not occur in the planets-satellites system. It seems 
the most reasonable to explain the increment in the mean densities of the remote planets in 
the Sun—planets system by the presence of a hypothetical object as an additional source of 
gravity.  According to the new hypothesis that is discussed in the given article,  the mean 
density of an object  is  governed by the gravitational  potential  that is conditioned by the 
gravitating masses; accordingly,  the values of the mean densities on the ascending curve 
indicate that a hypothetical object has immense mass, commensurable with the mass of the 
Sun. 

On the other hand, the ascending curve describes the central symmetry of the system. 
This means the distribution of the mean densities is conditioned by the Solar System bodies 
rather than by remote objects. For instance, the Galaxy Center would equally contribute to 
the mean densities of all objects of the Solar System. Moreover, considering the direction of 
increment in the mean density values, that hypothetical object should occur in the periphery 
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of the Solar System rather than in its center. Consequently, a hypothetical object possesses 
the following characteristics: 

1. It is the object of the Solar System;

2. It has huge mass;

3. It is symmetric relative to the center of the Solar System;

4. It occurs in the region beyond Neptune. 

Based on the assembly of the listed characteristics, such object could be a gravitating 
sphere  or  a  gravitating  belt  in  the  trans-Neptunian  Solar  System.  However,  physically, 
neither  a  sphere nor  a  belt  in  the ecliptic  plane can be such an object  since their  inner 
gravitational field is equipotential.  This object may be, for instance,  a belt situated at an 
angle to the ecliptic and, possibly, orthogonally to it. That belt could contain a variety of 
relatively  small  bodies.  But  in  order  to  possess  a  sufficient  gravitational  potential,  this 
hypothetical belt, even if situated at a distance at which the current Kuiper belt is, should 
have a great mass. Most probably, such object existed during the period of formation of 
planets and had lost its mass by now. For instance, Stern and Colwell (1997) determined a 
big mass of the primordial Edgeworth-Kuiper belt. The deficit and inaccuracy of definitions 
existing for the mean densities of the known remote TNOs makes it difficult to determine 
possible location and characteristics of this hypothetical belt. 

The traditional methods, on the one hand, and the proposed approach, on the other 
hand, enable independent estimates of one and same property of celestial objects, namely, 
the mean density, but at different life stages. The comparative analysis of the data obtained 
by different  methods  is  suitable  to  use  in  researching  migration  of  objects  in  the  Solar 
System and in other planetary systems.
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