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Abstract. We show that the power of supercompilation can be in-
creased by constructing a hierarchy of supercompilers, in which a lower-
level supercompiler is used by a higher-level one for proving improvement
lemmas. The lemmas thus obtained are used to transform expressions
labeling nodes in process trees, in order to avoid premature generaliza-
tions. Such kind of supercompilation, based on a combination of sev-
eral metalevels, is called higher-level supercompilation (to differentiate
it from higher-order supercompilation related to transforming higher-
order functions). Higher-level supercompilation may be considered as an
application of a more general principle of metasystem transition.

1 Introduction

The concept of metasystem transition was introduced by V.F.Turchin in his
1977 book The Phenomenon of Science [26]. In the context of computer science,
Turchin gives the following (somewhat simplified) formulation of the main idea
of metasystem transition [28]:

Consider a system S of any kind. Suppose that there is a way to make
some number of copies of it, possibly with variations. Suppose that these
systems are united into a new system S′ which has the systems of the S
type as its subsystems, and includes also an additional mechanism which
somehow examines, controls, modifies and reproduces the S-subsystems.
Then we call S′ a metasystem with respect to S, and the creation of S′ a
metasystem transition. As a result of consecutive metasystem transitions
a multilevel hierarchy of control arises, which exhibits complicated forms
of behavior.

Futamura projections [6] may serve as a good example of metasystem tran-
sition. Let p be a program, i an interpreter, and s a program specializer. Then
s(i, p) may be regarded as a compiled program (the “first projection”), s(s, i) as a
compiler (the “second projection”) and s(s, s) as a compiler generator (the “third
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projection”). (The second Futamura projection is also referred to by Ershov as
“Turchin’s theorem of double driving” [5].)

In the second projection the evaluation of s(s, i) involves two copies of the
specializer s, the second copy “examining and controlling” the first one. In the
third projection, there are 3 copies of s, the third one “controlling” the second one
“controlling” the first one. Moreover, as shown by Glück [7], there may be con-
sidered the “fourth” Futamura projection, corresponding to the next metasystem
transition!

Futamura projections, however, are not the only possible way of exploiting
the idea of metasystem transition by combining program transformers. In the
present paper we consider another technique of constructing a multilevel hierar-
chy of control using supercompilers as its building blocks.

A supercompiler is a program transformer based on supercompilation [27],
a program transformation technique bearing close relation to the fold/unfold
method by Burstall and Darlington [4]. Unfortunately, “pure” supercompilation
is known not to be very good at transforming non-linear (i.e. containing repeated
variables) expressions and functions with accumulating parameters.

We argue, however, that the power of supercompilation can be increased by
combining several copies of a “classic” supercompiler and making them control
each other. Such kind of supercompilation, based on a combination of several
metalevels will be called higher-level supercompilation (to differentiate it from
higher-order supercompilation related to transforming higher-order functions).

The technique suggested in the paper is (conceptually) simple and modular,
and is based on the use of improvement lemmas [20,21], which are automatically
generated by lower-level supercompilers for a higher-level supercompiler.

2 Higher-Level Supercompilation

2.1 What is a “zero-level” supercompiler?

The descriptions of supercompilation given in the literature differ in some sec-
ondary details, irrelevant to the main idea of higher-level supercompilation. We
follow the terminology and notation used by Sørensen and Glück [24,23,25].

All program transformation examples considered in the paper have been car-
ried out by HOSC [13,14], a higher-order supercompiler whose general structure
is shown in Fig. 1.

2.2 Accumulating parameter: “zero-level” supercompilation

Let us try to apply the supercompiler HOSC [13] to the program shown in Fig. 2.
At the beginning, a few steps of driving produce the process tree shown in Fig. 3.

At this point the whistle signals that there is a node b embedding a previously
encountered node a, but b is not an instance of a:

case double x Z of {Z → True; S y → odd y);}
Ec case double n (S (S Z)) of {Z → True; S m → odd m;}



def scp(tree)
b = unprocessed_leaf(tree)
if b == null
return makeProgram(tree)

if trivial(b)
return scp(drive(b, tree))

a = ancestor(tree, b, renaming)
if a != null
return scp(fold(tree, a, b))

a = ancestor(tree, b, instance)
if a != null
return scp(abstract(tree, b, a))

a = ancestor(tree, b, whistle)
if a == null
return scp(drive(b, tree))

return scp(abstract(tree, a, b))

– unprocessed_leaf(tree) returns an unprocessed leaf b in the process tree.
– trivial(b) checks whether the leaf b is “trivial”. (A leaf is trivial if driving it does

not result in unfolding a function call or applying a substitution to a variable.)
– drive(b,tree) performs a driving step for a node b and returns the modified tree.
– ancestor(tree,b,renaming) returns a node a such that b is a renaming of a.
– ancestor(tree,b,instance) returns a node a such that b is an instance of a.
– ancestor(tree,b,whistle) returns a node a such that a is homeomorphically

embedded in b by coupling.
– fold(t,a,b) makes a cycle in the process tree from b to a.
– abstract(tree,a,b) generalizes a to b.

Fig. 1. “Zero-level” supercompilation algorithm

data Bool = True | False;
data Nat = Z | S Nat;

even (double x Z) where

even = λx → case x of { Z → True; S x1 → odd x1;};
odd = λx → case x of { Z → False; S x1 → even x1;};

double = λx y → case x of { Z → y; S x1 → double x1 (S (S y));};

Fig. 2. even (double x Z): source program

Hence, HOSC has to throw away the whole subtree under a and “generalize” a
by replacing a with a new node a′, such that a and b are instances of a′. Then
the supercompilation continues to produce the residual program shown in Fig. 4.

This result is correct, but it is not especially exciting! In the goal expression
even (double x Z) the inner function double multiplies its argument by 2, and
the outer function even checks whether this number is even. Hence, the whole
expression never returns False. But this can not be immediately seen from the
residual program, the program text still containing False.



even (double x Z)

case (double x Z) of {Z → True; S y → odd y;}

case case x of {Z→Z; S z→double z (S (S Z));}
of {Z->True; S y->odd y;}

True
x = Z

case (double n (S (S Z))) of {Z → True; S m → odd m;}

x = S n

Fig. 3. even (double x Z): driving

letrec
f=λw2 λp2→
case w2 of {
Z →
letrec g=λr2→
case r2 of {
S r → case r of {Z → False; S z2 → g z2;};
Z → True;}

in g p2;
S z → f z (S (S p2));

}
in f x Z

Fig. 4. The result of “zero-level” supercompilation

2.3 Accumulating parameter: applying a lemma

As was pointed out by Burstall and Darlington [4], the power of a program
transformation system can be increased by enabling it to use “laws” or “lemmas”
(such as the associativity and commutativity of addition and multiplication). In
terms of supercompilation it amounts to replacing a node in the process tree
with an “equivalent” one.

Let us return to the tree in Fig. 3. The result of supercompilation was not
good enough, because HOSC had to generalize a node, and a generalization
resulted in a “loss of precision”. But we can avoid generalization by making use
of the following (mysterious) equivalence

case double n (S (S Z)) of {Z → True; S m → odd m;} ∼=
∼= even (double n Z)

Since the node even (double n Z) is a renaming of an upper one, the super-
compiler can now form a cycle to produce the program shown in Fig. 5. Note that
this time there is no occurrences of False, hence the supercompiler succeeded
in proving that False can never be returned by the program.



letrec f=λt→
case t of {Z → True; S s → f s;}

in f x

Fig. 5. The result of applying a lemma

def scp(tree, n)
b = unprocessed_leaf(tree)
if b == null
return makeProgram(tree)

if trivial(b)
return scp(drive(b, tree), n)

a = ancestor(tree, b, renaming)
if a != null
return scp(fold(t, a, b), n)

a = ancestor(tree, b, instance)
if a != null
return scp(abstract(tree, b, a))

a = ancestor(tree, b, whistle)
if a == null
return scp(drive(b, tree), n)

if n > 0
e = findEqExpr(b.expr, n)
if e != null
return scp(replace(tree, b, e), n)

return scp(abstract(tree, a, b))

def findEqExpr(e1, n)
e = scp(e1, n-1)
cands = candidates(e1, n)
for cand <- cands
if equivalent(

scp(cand, n-1), e)
return cand

return null

def candidates(e1, n)
. . .

. . .

Fig. 6. “Multi-level" supercompilation algorithm

Hence, there are good reasons to believe that lemmas are a good thing, but
there appear two questions: (1) how to prove lemmas, and (2) how to find useful
lemmas.

2.4 Proving lemmas by supercompilation

In [15] we have shown that the supercompiler HOSC [13] may be used for prov-
ing interesting equivalences of higher-order expressions. The technique is quite
straightforward. Let e1 and e2 be expressions appearing in a program p. Let e′1
and e′2 be the results of supercompiling e1 and e2 with respect to p. Then, if
e′1 and e′2 are the same (modulo alpha-renaming), then the original expressions
e1 and e2 are equivalent (provided that the supercompiler strictly preserves the
equivalence of programs). Since e1 and e2 may contain free variables, the use
of a higher-order supercompiler enables us to prove equalities with universal
quantification over functions and infinite data types by using a higher-order
supercompiler.



def scp(tree, n)
b = unprocessed_leaf(tree)
if b == null
return [makeProgram(tree)]

if trivial(b)
return scp(drive(b, tree), n)

a = ancestor(tree, b, renaming)
if a != null
return scp(fold(t, a, b), n)

a = ancestor(tree, b, instance)
if a != null
return scp(abstract(tree, b, a))

a = ancestor(tree, b, whistle)
if a == null
return scp(drive(b, tree), n)

progs = scp(abstract(tree, a, b))
if n > 0
for e <- findEqExpr(b.expr, n)
progs ++= scp(replace(tree, b, e), n)

return progs

def findEqExpr(e1, n)
es = scp(e1, n-1)
cands = candidates(e1, n)
exps = []
for cand <- cands
if not_disjoint(

scp(cand, n-1), es)
exps = exps + cand

return exps

def candidates(e1, n)
. . .

. . .

Fig. 7. “Multi-level" supercompilation algorithm: multiple residual programs

Thus the reasoning about operational equivalence (∼=) of programs can be
reduced to a trivial check of the syntactic equality of supercompiled programs.
Since all residual programs produced by HOSC are expressions (that may contain
letrec-subexpressions), checking the equality of residual programs boils down to
a syntactical comparison of expressions.

Generally speaking, the idea of proving equivalence by normalization is a well-
known one, being a standard technique in such fields as computer algebra. The
idea of using supercompilation for normalization is due to Lisitsa and Webster
[17], who have successfully applied supercompilation for proving the equivalence
of programs written in a first-order functional language, on condition that the
programs deal with finite input data and are guaranteed to terminate. Later it
has been found [15,13] that these restrictions can be lifted in cases where the
supercompiler deals with programs in a lazy functional language and preserves
the termination properties of programs.

2.5 Stacking supercompilers, jumping to higher-level
supercompilation

As we have seen the power of supercompilation can be increased by using lem-
mas (i.e. replacing some expressions with equivalent ones). On the other hand,
supercompilers can be used for checking the equality of expressions. Hence, re-
calling the principle of metasystem transition [26,28], we come to the following
idea: let us construct a tower of supercompilers, the higher-level ones running
the lower-level ones in order to obtain useful lemmas.



This can be done by adding to the function scp(tree) shown in Fig. 1 an
additional parameter n, the “level” the supercompiler is invoked at. The modified
supercompilation algorithm is shown in Fig. 6.

Note that for n = 0 the algorithm degrades to the “classic” supercom-
pilation. But in cases where n > 0 the supercompiler calls the function
findEqExpr(b.expr,n) passing to it the expression in the node b and the cur-
rent level. The function tries to produce an expression equivalent to b.expr by
generating a set of candidate expressions and selecting an expression equiva-
lent to b.expr. The check for equivalence is performed by invoking the same
supercompiler at the lower level n - 1.

2.6 Generating sets of residual programs

The algorithm in Fig. 6 assumes that there is a single result of supercompilation.
However, there are certain points in the process of supercompilation, where the
supercompiler has an opportunity to make a choice among several options, so
that, given a source program, several (equivalent) residual programs may be
generated.

This may be used for increasing the power of the supercompilation-based
equality check. Suppose we have to check for equivalence two expressions e1
and e2. Then, instead of generating and comparing just two residual expressions
e′1 and e′2, we can supercompile e1 and e2 to produce two sets of residual ex-
pressions and try to find a residual expression common to both sets (modulo
alpha-renaming).

To implement this idea we need a version of a supercompilation algorithm
producing a set of residual programs (see Fig. 7). This version, instead of choos-
ing an arbitrary acceptable expression from the set of candidate expressions,
returns the set of all acceptable expressions. Note that for any n the set of resid-
ual programs produced by the algorithm includes the result returned by the
zero-level supercompiler.

2.7 A few open questions

Fig. 6 and Fig. 7 present the general idea of higher-level supercompilation, but
there still remains a few open questions.

Correctness At the first glance, replacing an expression with an equivalent
one looks as a “natural” and “safe-by-construction” operation. And yet, as shown
by Sands [20,21], the unrestricted use of equivalences may lead to incorrect
transformations that do not preserve the meaning of programs.

How to generate candidate expressions Supercompilation can be used
for checking the equivalence of expressions, but it does not help us in finding
candidate expressions that are worth being checked for equivalence.



3 Correctness = equivalence + improvement

3.1 Notation

It is clear that the meaning of expressions may depend on the context. Thus,
to avoid making our notation unnecessarily cumbersome, when speaking about
the equivalence of expressions, we will assume that the expressions are evaluated
and supercompiled in the context of the same program.

We use SC[[e]] to denote the expression produced by supercompiling the ex-
pression e by a “classic”, “zero-level” supercompiler, and e ≡ e′ to denote the fact
that e is the same as e′ (modulo alpha-renaming).

3.2 Operational equivalence

Definition 1 (Operational approximation). An expression e operationally
approximates e′, e@˜e′, if for all contexts C such that C[e], C[e′] are closed, if
the evaluation of C[e] terminates then so does the evaluation of C[e′].

Definition 2 (Operational equivalence). An expression e is operationally
equivalent to e′, e ∼= e′ if e@˜e′ and e′@˜e.

In the following we assume the supercompilers to preserve operational equiv-
alence, i.e. that e′ = SC[[e]] implies e′ ∼= SC[[e]] (which is true of the supercompiler
HOSC [13]).

3.3 Improvement

The replacement of an expression e with an equivalent expression e′, followed by
a fold, may result in producing an incorrect residual program (some examples
can be found in [21]).

Definition 3 (Improvement). An expression e is improved by e′, e .˜ e′, if
for all contexts C such that C[e] and C[e′] are closed, if the computation of C[e]
terminates using n function calls, then the computation of C[e′] also terminates,
and uses no more than n function calls.

As has been shown by Sands [21], the replacement of an expression e1 with an
expression e2 will not violate the correctness of transformation if the following
conditions are met: e1 ∼= e2 and e1 .˜ e2.
Definition 4 (Improvement lemma). A pair (e1, e2) is an improvement
lemma if e1 ∼= e2 and e1 .˜ e2.



m ≥ n ∀i : ei .∗˜ e′i
mφ(e1, . . . , ek) .

∗˜ nφ(e′1, . . . , e
′
k)

SC[[e1]] ∼= SC[[e2]] SC[[e1]] .∗˜ SC[[e2]]
e1 .˜ e2

Fig. 8. Estimation of improvement based on annotated supercompiled expressions

3.4 Checking the improvement relation by supercompilation

Let e1 and e2 be expressions whose equivalence has been proven by supercom-
pilation. Does it mean that one of the expressions is an improvement over the
other one? Not at all!

Supercompiling the following two expressions with respect to the program
shown in Fig. 10 proves them to be operationally equivalent:

or (even n) (odd n)
∼= case (even n) of {True → True; False → odd (S (S n));}

However, neither is an improvement over another one. Indeed, if n = Z, the
evaluation of the expressions involves 2 and 1 function calls, respectively. But, if
n = S Z, the evaluation involves 5 and 6 function calls. Therefore, this lemma
is unsafe to be used in program transformation.

Fortunately, the check that e1 .˜ e2 holds for two expressions e1 and e2, such
that e1 ∼= e2, can also be performed by supercompilation! And this can be done
almost for free in the following way.

In order to check e1 and e2 for equivalence, we have to supercompile them to
e′1 and e′2. The check for equivalence succeeds if e′1 and e′2 are the same (modulo
alpha-renaming). Therefore, e′1 and e′2 contain insufficient information to make
any conclusions about e2 being an improvement over e1. However, the process
trees produced by supercompiling e1 and e2 contain more information than the
residual expressions.

Namely, let us examine the process trees and mark with a star (*) the edges
corresponding to an unfolding (a function call). For example, supercompiling
the expressions considered above produces the process trees shown in Fig. 12
and Fig. 14 (the subtrees for odd x are omitted for brevity). Now the starred
edges provide some information that can be used for checking that an expression
improves another one. But this information is not accessible from outside. But,
in the case of HOSC [13], this information can be made visible by modifying the
algorithm that converts process trees into residual expression.

The modified algorithm converts starred edges into annotations in residual
expressions. When traversing a starred edge, the residual expression produced
by traversing the (single) child node is annotated with a star (*). In this way the
information about unfolds is recorded in residual expressions, so that a lower-
level supercompiler can be used as a “black box”.

For example, Fig. 13 and Fig. 16 show the annotated programs produced
from the process trees in Fig. 12 and Fig. 14.

Now, let .∗˜ denote a binary relation on expressions such that e .∗˜ e′ iff (1)
e and e′ differ only in their annotations, and (2) e can be transformed into e′



by erasing some stars in e. See Fig. 8 for a more formal definition, where nφ
denotes a functor φ prefixed with n stars. (It is curious to note that .∗˜ can be
considered as a special case of homeomorphic embedding relation.)

Theorem 1. Let e′1 = SC[[e1]] and e′2 = SC[[e1]]. If e′1 ≡ e′2 and e′1 .
∗˜ e′2, then

e1 .˜ e2.
Proof. Since e′1 ≡ e′2, e′1 is the same as e′2 (modulo annotations and a bound
variable renaming). Therefore, if we put the expressions in the same context
C and try to evaluate C[e′1] and C[e′2] (disregarding the annotations), this will
result in two sequences of reduction steps, differing only in the number of stars
encountered during computation. Since e′1 .∗˜ e′2, after any number of reduction
steps, the number of stars encountered in the evaluation of C[e′2] cannot be
greater that the number of stars encountered in the evaluation of C[e′1], and
the stars correspond to unfoldings in the original expressions e1 and e2. So,
by evaluating C[e′1] and C[e′2] and counting stars we can count the number of
unfolds in the evaluation of C[e1] and C[e2]. Hence, the number of unfolds in the
evaluation of C[e2] is no more than in the evaluation of C[e1]. Therefore e1 .˜ e2.

Thus, by examining annotated supercompiled expressions, we can check the
improvement relation for the original expressions. For example, consider the
annotated supercompiled expressions for

or (even n) (odd n)

and

case (even n) of {True → True; False → odd (S (S n));}

shown in Fig. 13 and Fig. 16. Since the supercompiled expressions are not related
by .∗˜ , we cannot make the conclusion that the original expressions are related
by .˜.
4 A proof-of-concept implementation

Although, the general idea of higher-level supercompilation is conceptually sim-
ple, there are a number of problems to be solved in a practical implementation.

– Which “zero-level” supercompiler to use as the basic for implementing higher-
level supercompilation?

– How to guarantee the correctness of transformations?
– How to generate useful lemmas?
– How to ensure the termination of higher-level supercompilation?

To show the feasibility of higher-level supercompilation we have implemented
a simple “proof-of-concept” higher-level supercompiler HLSC by modifying the
supercompiler HOSC [13,15]. HOSC has been chosen because it (1) preserves
the meaning of programs (including their termination properties), (2) is able to
prove lemmas with universal quantification over functions and infinite data types,



(3) generates residual programs in the form of expressions, which enables the
program equivalence checking to be reduced to expression equivalence checking.

The correctness of the transformations is guaranteed, since HLSC uses lem-
mas that are improvement ones. Note, however, that the check for improvement
is based on “zero-level” supercompilation, for which reason HLSC currently im-
plements only a two-level hierarchy of supercompilers, rather than a multi-level
one, consisting of the “top” and “bottom” supercompilers.

The least elaborated points are the search for useful lemmas and ensuring
the termination of higher-level supercompilation.

S[[v]] = 1
S[[c ei]] = 1 +

∑
i S[[ei]]

S[[λv → e]] = 1 + S[[e]]
S[[case e0 of {ci vik → ei;}]] = 1 + S[[e0]] +

∑
i S[[ei]]

S[[e1 e2]] = S[[e1]] + S[[e2]]

Fig. 9. The size of expression

Presently the generation of candidate expressions is implemented in a rather
crude and straightforward way. When the top supercompiler finds a node b con-
taining an expression e and embedding a previously encountered node a, it gen-
erates and tries all expressions e′ whose size (see Fig. 9) is less than the size of e.
Then the bottom supercompiler is used to check whether (e, e′) is an improve-
ment lemma and the search for a lemma stops.

Ensuring the termination of the top supercompiler is an exciting problem
that requires further investigation. The termination of zero-level supercompila-
tion is achieved by the check for homeomorphic embedding and generalization
[23,22,13]. However, the main idea of higher-level supercompilation (in the ver-
sion presented in Fig. 6) consists in avoiding generalization. When an embedding
is detected, the use of an improvement lemma enables the supercompiler to avoid
generalization and continue to build the process tree. And this, potentially, may
lead to non-termination.

From the practical point of view, though, the non-termination can be avoided
by imposing some restrictions on the use of lemmas. A simple and straightfor-
ward solution is the following.

Suppose, the check for embedding finds that there an upper node a is embed-
ded in a lower node b. Then b is replaced with b′ with the aid of an improvement
lemma, and supercompilation continues without generalization. But this fact
is recorded in the node a, so that next time when a gets embedded in another
node, no lemma will be used, and a will be generalized as in the case of zero-level
supercompilation.

To some extent this idea is alike to “cross-fertilization” used by Boyer and
Moore [2] in their theorem prover. They argue that the induction hypothesis



data Bool = True | False;
data Nat = Z | S Nat;

or (even m) (odd m) where

even = λx → case x of { Z → True; S x1 → odd x1;};
odd = λx → case x of { Z → False; S x1 → even x1;};

or = λx y → case x of { True → True; False → y;};

Fig. 10. or (even m) (odd m): the source program

or (even m) (odd m)

case (even m) of {True → True; False → (odd m);}

case (case m of {Z -> True; S x -> odd x;})
of {True -> True; False -> odd m;}

True

m = Z

case (odd x) of {True -> True; False -> odd (S x);}

case (case x of {Z -> False; S n -> even n;})
of {True -> True; False -> odd (S x);}

True

x = Z
case (even n) of
{True -> True; False -> odd (S (S n));}

x = S n

m = S x

Fig. 11. or (even m) (odd m): the whistle blows

should be used just once, and then thrown away. (And then comes the turn of
generalization.)

5 Examples

5.1 Supercompiling a non-linear expression

Let us try to supercompile the program shown in Fig. 10. We know in advance
that the expression or (even m) (odd m) can never return False, since a nat-
ural number m is either even or odd. But this cannot be readily seen from
the program’s text! After a few driving steps, we get the process tree shown in
Fig. 11. At this point an embedding (by coupling) is detected:

case (even m) of {True → True; False → (odd m);}
Ec case (even n) of {True → True; False → (odd (S (S n)));}



or (even m) (odd m)

let x=m in
case even m of {True -> True; False -> odd x;}

case (even m) of {True -> True; False -> odd x;}

case (case m of {Z -> True; S y -> odd y;})
of {True -> True; False -> odd x;}

True

m = Z

case (odd y) of {True -> True; False -> odd x;}

case (case y of {Z -> False; S z -> even z;})
of {True -> True; False -> odd x;}

odd x

y = Z
case (even z) of
{True -> True; False -> odd x;}

y = S z

*

m = S y

*

*

Fig. 12. or (even m) (odd m): after generalization

*(letrec f=*(λv→
case v of {
Z → True;
S p →
*(case p of {
Z →
letrec g = *(λw→
case w of {
Z → False;
S t → *(case t of {Z → True; S z → g z;});})

in g m;
S x → f x;

});
})

in f m)

Fig. 13. or (even m) (odd m): the result of “zero-level” supercompilation



let x=n in
case even n of {True -> True; F -> odd (S (S x));}

case (even n)
of {True -> True; False -> odd (S (S x));}

case (case n of {Z -> True; S y -> odd y;})
of {True -> True; False -> odd (S (S x));}

True

n = Z
case (odd y)
of {True -> True; False -> odd (S (S x));}

case (case y of {Z -> False; S z -> even z;})
of {True -> True; False -> odd (S (S x));}

odd (S (S x))

even (S x)

odd x
*

*

y = Z
case (even z) of
{True -> True; False -> odd (S (S x));}

y = S z

*

n = S y

*

Fig. 14. case even n of {True → True;False → odd (S (S n)); }: annotated process
tree

But the second expression is not an instance of the first one, for which reason
a folding cannot be performed. So the zero-level supercompiler HOSC would
perform a generalization by replacing the first expression with the let-expression:

let x = m in case (even m) of {True → True; False → (odd x);}

Then it would continue by transforming the body of the let-expression, instead
of the original expression, thereby “forgetting” that x and m have the same
value. This loss of information would result in the residual program in Fig. 13,
containing False, despite the fact that False can never be returned by the
program.

The higher-level version of HOSC, however, tries to find and apply an im-
provement lemma. The first lemma it finds has the size 5:

case (even n) of {True → True; False → (odd (S (S n)));}
∼= or (even n) (odd n)

But this lemma is not an improvement one, and the higher-level supercompiler
rejects it by supercompiling its left and right sides with the bottom supercompiler
to produce annotated expressions in Fig. 16 and Fig. 13, respectively.

However, there exist two improvement lemmas of size 6:

case (even n) of {True → True; False → odd (S (S n));}
.˜ case (even n) of {True → True; False → odd n;}



let x=n in
case even n of {True -> True; False -> odd x;}

case (even n) of {True -> True; False -> odd x;}

case (case n of {Z -> True; S y -> odd y;})
of {True -> True; False -> odd x;}

True

n = Z

case (odd y) of {True -> True; False -> odd x;}

case (case y of {Z -> False; S z -> even z;})
of {True -> True; False -> odd x;}

odd x

y = Z
case (even z) of
{True -> True; False -> odd x;}

y = S z

*

n = S y

*

Fig. 15. case even n of {True→ True;False→ odd n; }: annotated process tree

letrec f=*(λv→
case v of {
Z → True;
S p →
*(case p of {
Z →
**(letrec g = *(λw→
case w of {
Z → False;
S t → *(case t of {Z → True; S z → g z;});})

in g n);
S x → f x;

};)
})

in f n

Fig. 16. case even n of {True→ True;False→ odd (S (S n)); }: annotated residual
program



letrec f=*(λv→
case v of {
Z → True;
S p →
*(case p of {
Z →
(letrec g = *(λw→
case w of {
Z → False;
S t → *(case t of {Z → True; S z → g z;});})*

in g n);
S x → f x;

};)
})

in f n

Fig. 17. case even n of {True→ True;False→ odd n; }: annotated residual program

letrec f=λw→
case w of {
Z → True;
S x → case x of { Z → True; S z → f z;};

}
in f m

Fig. 18. or (even m) (odd m): the result of higher-level supercompilation

case (even n) of {True → True; False → odd (S (S n));}
.˜ case (odd n) of {True → odd n; False → True;}

The higher-level HOSC finds and applies the first one, thereby avoiding gener-
alization and producing the program in Fig. 18. Now False does not appear in
the program!

5.2 Accumulating parameter: using an improvement lemma

Let us reconsider the program with an accumulating parameter shown in Fig. 2.
If we try to supercompile it, the whistle blows for the following expressions:

case double x Z of {Z → True; S y → odd y);}
Ec case double n (S (S Z)) of {Z → True; S m → odd m;}

There are two improvement lemmas (of minimal size):

case double n (S (S Z)) of {Z → True; S m → odd m;}
.˜ case double n (S Z) of {Z → True; S m → even m;}

case double n (S (S Z)) of {Z → True; S m → odd m;}



.˜ case double n (S Z) of {Z → False; S m → even m;}

The higher-level HOSC finds and applies the first one and, after some driving,
the whistle blows for the second time:

case double n (S Z) of {Z → True; S m → even m;}
Ec case double p (S (S (S Z))) of {Z → True; S m → even m;}

Again, there are two improvement lemmas (of minimal size):

case double p (S (S (S Z))) of {Z → True; S m → even m;}
.˜ case double p (S Z) of {Z → True; S m → even m;}

case double p (S (S (S Z))) of {Z → True; S m → even m;}
.˜ case double p (S Z) of {Z → False; S m → even m;}

The application of the first lemma enables a fold to be performed without
generalization, so that the higher-level HOSC produces the program in Fig. 19.

case x of {
Z → True;
S y1 →
letrec f=λt2→
case t2 of {Z → True; S u2 → f u2;}

in f y1;
}

Fig. 19. even (double x Z): the result of higher-level supercompilation

6 Discussion and conclusion

The main idea of higher-level supercompilation is based on the principle of meta-
system transition [27,28].

Another approach to increasing the power of supercompilation based on
metasystem transition is distillation [8,10,9].

In many cases distillation and higher-level supercompilation produce simi-
lar results, but, seemingly, an advantage of higher-level supercompilation is its
conceptual simplicity and modularity: it can be implemented by a slight modi-
fication of a “classic” supercompiler, adding a (conceptually) trivial lemma gen-
erator, and making several copies of the same supercompiler to interact. Since
the lemma generator uses the supercompiler as a “black box”, its design does not
depend on the subtle details of the supercompilation process.

Our current implementation of higher-level supercompilation is a proof-of-
concept one, is rather “naive”, and can be improved in a variety of ways.

First, the higher-level supercompilation algorithm shown in Fig. 6 tries to
apply a lemma only to the whole embedding (lower) expression. But lemmas
could be applied in a more refined way.



– An (instance of an) improvement lemma could be applied to a subexpression
of the embedding expression.

– To avoid generalization, an (instance of an) improvement lemma could also
be applied to a (sub)expression of the embedded (upper) expression.

Second, the search for lemmas is implemented in a straightforward way: no
attempt is made to take into account the structure of the embedding (lower) and
embedded (upper) expressions. However, there are a few techniques developed
in the field of inductive theorem proving (like difference matching [1], rippling
[3] and divergence critic [29]) that could be used in implementing a more refined
lemma generator.

Higher-level supercompilation does not depend on minor implementation de-
tails of the supercompiler it is based upon. However, some properties of the
supercompiler do matter. First of all, the check whether a pair of expressions
forms an improvement lemma [20,21] relies on the supercompiler preserving ter-
mination properties of programs [15,13]. This requirement is not met by all su-
percompilers. For example, the supercompiler SCP4 [16] dealing with programs
in Refal, a strict first-order functional language, may extend the domain of a
transformed function, for which reason the equivalence of expressions can be
proven by supercompilation only for total expressions operating on finite data
structures [17].

During supercompilation, termination properties are easier to preserve for a
lazy functional language, than for a strict one. Nevertheless, Jonsson [11] suc-
ceeded in developing a termination-preserving supercompilation technique for a
higher-order call-by-value language. Therefore, higher-level supercompilation is
certainly applicable to higher-order strict languages.

Since any residual program produced by HOSC is a self-contained expres-
sion, the check for equality and improvement amounts to a trivial comparison
of expressions. In the case of a supercompiler like Supero [19,18], residual pro-
grams may have less trivial structure, therefore, comparing them for syntactic
isomorphism may be more intricate that in case of HOSC.

In principle, higher-level supercompilation should be implementable also on
the basis of a supercompiler for an imperative or object oriented language, such
as the Java supercompiler by Klimov [12], but there remains a number of tech-
nical problems to be investigated.
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