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Di�usion model of evolution of superthermal high-energy particles under scaling in
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Evolution of superthermal relict component is research on basis of non-equilibrium model of Universe and kinetic
equation of Fokker-Planck type o�ered by one of the Authors.
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Þ.Ã.Èãíàòüåâ, Ð.À.Çèàòäèíîâ

Íà îñíîâå ïðåäëîæåííûõ îäíèì èç Àâòîðîâ íåðàâíîâåñíîé ìîäåëè Âñåëåííîé è êèíåòè÷åñêîãî óðàâíåíèÿ òèïà
Ôîêêåðà-Ïëàíêà èçó÷àåòñÿ ýâîëþöèÿ ñâåðõòåïëîâîé ðåëèêòîâîé êîìïîíåíòû.

1. Introduction
Relativistic kinetic equation respect to macroscopic
distribution function
fa(xi, pk) a type particles [1]-[4]:

pi∇̃ifa(x, p) =
∑

b,c,d

Jab�cd(x, p), (1)

where ∇̃ - Cartans' covariant di�erentiation operator
in phase space X × P :

∇̃ = ∇i + Γj
ikpk ∂

∂pj
. (2)

Using distribution function fa(x, p) macroscopic
moments are determined:

ni
a(x) =

∫

P (x)

fa(x, p)pidP, (3)

- density vector of a type particles �ux and

T ik
a (x) =

∫

P (x)

pipkfa(x, p)dP, (4)

- a type particles energy-momentum tensor, where

dP =
√−gd3p/p4 (5)

- invariant element of momentum space volume. Re-
ducing formula (4) by means of metric tensor gik and
taking into account the 4-momentum normalization re-
lation:

(p, p) = m2
a, (6)

we get:

T a
S (x) = m2

a

∫

P (x)

fa(x, p)dP, (7)

where T a
S (x) - trace of a type particles energy-

momentum tensor.
In case of homogeneous isotropic distribution f(η, p)

in Freedmans' metric:

ds2 = a2(η)(dη2 − dl2) = dt2 − a2(t)dl2, (8)

where:

dl2 = dχ2 + ρ2(χ)dΩ2, (9)

ρ(χ) =





sh(χ), k = −1;
χ, k = 0;
sin(χ), k = +1

,

k -index of three-dimensional space curvature, kinetic
equations taking the form:

∂fa

∂t
− ȧ

a
p
∂fa

∂p
=

1√
m2

a + p2

∑

b,c,d

Jab�cd(t, p), (10)

or in η, p variables:

∂fa

∂η
− a′

a
p
∂fa

∂p
=

a(η)√
m2

a + p2

∑

b,c,d

Jab�cd(t, p), (11)

where ȧ-derivative with respect to time t and a′ -
derivative with respect to time variable η , moreover:

a(η)dη = dt.

As shown in [5], that in ultrarelativistic limit under the
condition of conformal invariance of non-gravitational
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macroscopic �eld equations and scale invariance of ma-
trix elements of interaction (which vary only as a result
of transformation of phase space volume element):

|M(p, q|p′, q′)|2 = a2(η)|M(p, q|p′, q′)|2 (12)

kinetic equations are conformally invariant. Then in
conformally corresponding space we will obtain stan-
dard result of kinetic theory: local thermodynamic
equilibrium restores at times much more than some
e�ective times of interactions. It means that in Freed-
mans' space at early times local thermodynamic equi-
librium must be absent. This article is dedicated to
study of relaxation process to local thermodynamic
equilibrium.

2. Four-piece reactions kinematics
Four-piece reactions such as:

a + b → c + d (13)

fully described by two kinematic invariants, s and t ,
which have following meaning: √s - energy of colliding
particles in frame of mass center:

s = (pa + pb)2 = (pc + pd)2, (14)

t -relativistic square of transmitted momentum:1

t = (pc − pa)2 = (pb − pd)2, (15)

where momentum squares are understood as scalar
four-piece squares:

p2
a = (pa, pa) = (p4)2 − (p1)2 − (p2)2 − (p3)2 = m2

a,

etc. For example:

(pa + pb)2 = p2
a + 2(papb) + p2

b = m2
a + 2(pa, pb) + m2

b .

Invariant scattering amplitudes F (s, t) , determined as
a result of averaging-out of invariant scattering am-
plitudes by particles state, c and d , turn out to be
depending only on these two invariants (e.g., see [6]):

∑
|MFJ |2 =

|F (s, t)|2
(2Sc + 1)(2Sd + 1)

, (16)

where Si - are spins. Using invariant amplitude F (s, t)
total crossection of reaction is determined (13) (see [6]):

σtot =
1

16π2λ2(s, m2
a,m2

b)

0∫

tmin

dt|F (s, t)|2, (17)

1Authors hope that following notation coincidence will not
confuse readers : t - time in Freedmans' metric, s - its inter-
val, simultaneously t, s - kinematic invariants. This notation is
standard and we didn't consider that it is necessary to change
it.

where λ - triangle function:

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc;

tmin = −λ2

s
.

In ultrarelativistic limit:
pi

mi
→∞;

s

m2
i

→∞ (18)

λ → s , and formula (17) considerably simpli�es
introducing dimensionless variable:

x = − t

s
: (19)

σtot =
1

16πs

1∫

0

dx|F (s, x)|2. (20)

Let us consider four-piece reaction in the form of (13).
Three-dimensional (trivariate) momentum modules of
corresponding particles will be symbolized as p, q, p′, q′

for short. Let's introduce the angles: ϕ-angle between
momentum vectors of particles and ~q , ψ - angles be-
tween momentum vectors ~p ′ and ~p′ , ϕ′ - angle be-
tween vectors ~p ′ and ~q ′ . Conservation laws of four-
dimensional momentum of particles we will write in
the following way:

√
m2

a + p2+
√

m2
b + q2 =

√
m2

c + p′ 2+
√

m2
d + q′ 2(21)

- law of conservation of energy and

~p + ~q = ~p ′ + ~q ′,− (22)

- law of conservation of momentum. Further �nd:

s = m2
a + m2

b + 2
√

m2
a + p2

√
m2

b + q2 − 2pq cos ϕ.

t = m2
a + m2

c − 2
√

m2
a + p2

√
m2

c + p ′2 + 2pp′ cos ψ.

In ultrarelativistic limit p/m →∞ get from (21):

p + q = p′ + q′. (23)

So, raising to the second power relations (22) and (23),
we will get in ultrarelativistic limit:

pq(1− cosϕ) = p′q′(1− cos ϕ′). (24)

lim
p,q→∞

s = 2pq(1− cosϕ) = 4pq cos2
ϕ

2
;

lim
p,p′→∞

t = −2pp′(1− cosψ) = −4pp′ cos2
ψ

2
. (25)

Hence, in ultrarelativistic limit for variable x we
will obtain:

x =
q(1− cos ϕ)
p′(1− cosψ)

. (26)
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Assumed that p′ = p−∆p , q′ = q−∆q , on account
of law of conservation of energy (23) we will obtain:

∆q = −∆p,

hence:

p′ = p−∆p; q′ = q + ∆p. (27)

In ultrarelativistic limit it is possible to write variable
∆p (18) in form of:

∆p = x(p− q)− cosϕ
√

x(1− x)(4pq − s). (28)

3. Scaling and asymptotic scattering
crossection

For analysis of kinetics of processes in early Universe it
is necessary to know asymptotic behavior of invariant
amplitudes F (s, t) in limit (18). Modern experimental
opportunities have coe�cient restriction √s at degree
of hundreds GeV. It would be risky to bear on that or
other �eld model of interaction for prediction of asymp-
totic behavior of scattering crossection in the range of
superhigh energies. It is more rational in recent con-
ditions to bear on axiomatic theory of S -matrix con-
clusions get on basis of fundamental laws of unitarity,
causality, scale invariance etc. Unitarity of S -matrix
leads to well-known asymptotic relation (see, e.g., [8]):

dσ

dt

∣∣∣∣
s→∞

∼ 1
s2

(29)

for variables s higher than unitary limit, i.e., under
the condition (18),if mi means the masses of all inter-
mediate particles. But from (20) results:

F (s, 1)|s→∞ ∼ Const. (30)

In the sixties of XX century on basis of axiomatic the-
ory of S -matrix were received stringent restrictions of
asymptotic behavior of total crossections and invariant
scattering amplitudes:

C1

s2 ln s
< σtot(s) < C2 ln2 s, (31)

where C1, C2 - unknown constants. Upper limit (31)
was determined in works [9]-[11], lower limit - in [12],
[13] (see also review in book [14]). We also notice re-
striction to invariant scattering amplitudes (see, e.g.,
[14]):

|F (s, t)| 6 |F (s, 0)|; (32)

C ′1 < |F (s, 0)| < C ′2s ln2 s. (33)

Therefore, invariant scattering amplitudes in limit
(18) must be functions of variable x = −t/s , i.e.:

|F (s, t)| = |F (x)|, (s →∞). (34)

But in consequence of (20)

σtot(s) =
1

16πs

1∫

0

dx|F (x)|2 =
Const

s
,− (35)

total crossection behaves such as the crossection of
electromagnetic interaction, i.e. scaling restores under
superhigh energies. Scaling asymptotics of crossection
(35) lies strictly between possible extreme asymptotics
of complete scattering crossection (31). Moreover, un-
der holding (35) automatically realize relations ob-
tained on basis of axiomatic theory of S -matrix (29)
and (30). Further, as described above, scaling exists
for pure electromagnetic interactions in consequence
of their scale invariance. For lepton-hadron interaction
assumption of scaling existence was o�ered in works
[15],[16]. Especially, for total crossection of reaction

e + e+ → hadrons

following expression was obtained:

σtot =
4πα2

3s

∑
e2
i ,

where α - �ne structure constant, ei - charges of
fundamental fermion �elds. Data, received on Stanford
accelerator, verify existence of scaling for this interacti-
ons. Apparently, for gravitational interactions scaling
also must restore under superhigh energies in conse-
quence of scale invariance of gravitational interactions
in WKB-approximation [18]. Later on we will assume
existence of scaling under energies higher than unitary
limit s → ∞ . The question arises about value of con-
stant in formula (35) and logarithmic re�nement of this
constant. This value can be estimated from following
consideration. If idea of union of all interactions on
Planck energy scales Epl = mpl = 1 , then for s ∼ 1
all interactions must be described by single scattering
crossection, formed from three fundamental constants
G, ~, c , i.e., in chosen scale of units must be:

σ|s∼1 = πl2pl (= π). (36)

However, in order that scattering crossection decreased
to such values on Planck energy scales, starting from
values of order σT = 8πα2/3m2

e (me - mass of elec-
tron, σT - Thompson scattering crossection) for elec-
tromagnetic interactions, i.e., for s ∼ m2

e , it must
decrease inversely s , i.e., and what is more by scal-
ing law .2 Logarithmically correcting this relation, we
introduce universal asymptotic scattering crossection
(UACS), derived in papers [19], [20]:

σ0(s) =
2π

s
(
1 + ln2 s

s0

) , (37)

2We note that this fact is one more independent reason in
favour of scaling existence in the range of high energies.
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where s0 = 4 - square of total energy of two colliding
Planck masses.

Scattering crossection σ0 , UACS derived by formu-
la (37), has some unusual properties:

1. UACS formed by fundamental constants G, ~, c ;

2. UACS behaves so that its values strictly lie be-
tween possible extreme limits of asymptotic be-
havior of scattering (31), determined by means
of asymptotic theory of S -matrix;

3. UACS is a scaling scattering crossection with log-
arithmic accuracy;

4. For scattering reaction of photon by nonrelativis-
tic electron
(s = m2

e ) formula (37) gives σ0 = 4/3σT ∼ σT ;

5. For electro-weak interactions (s = m2
W , where

mw - mass of intermediate W -boson) under
sin θW = 0, 22 (see, e.g., [8]) we will get from
(37) σ0 = 0, 78σW , where σW = G2

F m2
W /π -

crossection of scattering νe taking into account
intermediate W -boson;

6. Under Planck values of energy σ0(m2
pl) ≈ σpl .

These unusual features of UACS and surprising coinci-
dence of its values with crossections of well-known pro-
cesses hardly can be occasional on wide ranges of ener-
gy values (from me to 1022me ). This allows us to use
UACS as an accurate formula for asymptotic value of
scattering crossections for all interactions.

In case that from this point on we will discuss re-
actions kinetics only in range of superhigh energies,
in which all interactions described as we suppose by
UACS, no di�erence can be between particles in in-
tegrals of interactions, taking into account only there,
where it is necessary their spin and other characteris-
tics.

In this sense all interactions become uniform un-
der superhigh energies and four-piece interactions ef-
�ciently described as elastic, what makes much easier
to analyze these processes.

4. Derivation of collisions integral in
Fokker-Planck form

Integral of elastic paired collisions for reactions of type
(13) for isotropic distributions fa(p, xi) , depending on
absolute value of momentum, can be reduced to form
[7]:

Jab(p) =
2Sb + 1
(2π)3p

∞∫

0

qdq√
m2

b + q2

4pq∫

0

ds

16π

1∫

0

dx|M(s, x|2×

2π∫

0

dϕ [fa(p′)fb(q′)− fa(p)fb(q)] , (38)

where it is necessary to substitute expression (27)
for p′, q′ and (28) for ∆p .

Let's assume, as it frequently is done, that at colli-
sions of particles on average small momentum is trans-
mitted, i.e.,

(pa − pc)2 ¿ p2, (39)

to that values of variable x → 1 correspond. Setting

x = 1− ξ2, (40)

Let's take Taylor of collisions integral in smallness of
transmitted momentum, i.e., in smallness of parameter
ξ2 ¿ 1 .

It follows from formula (28) that:

∆p = (1− ξ2)(p− q)− cosϕξ
√

4pq − s. (41)

Retaining members of degree ξ2 , we will write ex-
pansions of distribution functions:

f(p′) = f(q) +
df

dq
[cos ϕξ

√
4pq − s + ξ2(p− q)]+

+
1
2

d2f

dq2
ξ2(4pq − s) cos2 ϕ;

f(q′) = f(p)− df

dp
[cos ϕξ

√
4pq − s + ξ2(p− q)]+

+
1
2

d2f

dp2
ξ2(4pq − s) cos2 ϕ.

By integration in angular variable, integrals linear
on ξ , will vanish. Therefore, for interior integral we
will get the following expression:

1
2π

2π∫

0

dϕ [f(p′)f(q′)− f(p)f(q)] =

f(p)f(q) + (p− q)ξ2

[
f(p)

df(q)
dq

− f(q)
df(p)
dp

]
+(42)

1
4
ξ2(4pq−s)

[
f(p)

d2f(q)
dq2

− 2
df(p)
dp

df(q)
dq

+ f(q)
d2f(p)

dp2

]
.

By integrating in variables x assume that:

A =

1∫

0

F (s, x)x(1− x)ds; B =

1∫

0

xF (s, x)dx, (43)

so that:

A + B =

1∫

0

F (s, x)dx. (44)
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Later on we will assume the fact, that scaling re-
stores under superhigh energies, i.e. the relation (35)
is realized, according to what F (s, x) ≈ F (x) so that
A ≈ Const, B ≈ Const.

Then by integrating in variables s we will �nd in
received relation:

Jab(p) = A
2Sb + 1
(4π)3p

∞∫

0

dq

{[
f(p)

df(q)
dq

− f(q)
df(p)
dp

]
+

+ 2p2q2

[
f(p)

d2f(q)
dq2

− 2
df(p)
dp

df(q)
dq

+ f(q)
d2f(p)

dp2

]}

Let's integrate by parts in the part of integral including
second derivatives in variable q , in this case:

∞∫

0

q2 d2f(q)
dq2

dq = q2 df(q)
dq

∣∣∣∣
∞

0

− 2

∞∫

0

q
df(q)
dq

dq =

= − 2qf(q)|∞0 + 2

∞∫

0

f(q)q2dq = 2

∞∫

0

f(q)q2dq,

considering:
lim

q→∞
qnf(q) = 0, (0 6 n 6 3), (45)

necessary condition for expressions convergence for nu-
merical density of particles and energy.

So, integrating by parts, we �nally get collisions
integral in Fokker-Planck form:

Jab(p) = A
2S + 1
4(2π)3p

×

∂

∂p


p2

∞∫

0

q2

(
f(q)

∂f(p)
∂p

− f(p)
∂f(q)

∂q

)
dq


 . (46)

5. Kinetic equation for superthermal
component in di�usive
approximation

Substituting obtained collisions integral in Fokker-
Planck form (46) in kinetic equation (10), we get at
ultrarelativistic values of impulse p :

∂fa

∂t
− ȧ

a
p
∂fa

∂p
= A

2S + 1
4(2π)3p2

×

∂

∂p


p2

∞∫

0

q2

(
f(q)

∂f(p)
∂p

− f(p)
∂f(q)

∂q

)
dq


 . (47)

Integrating by parts in equatuon (47) and taking into
account relations:

n(t) =
4π(2S + 1)

(2π)3

∞∫

0

q2f(q)dq, (48)

- numerical density of particles,

TS(t) =
4π(2S + 1)

(2π)3

∞∫

0

qf(q)dq, (49)

- trace of momentum-energy tensor of particles, equa-
tion (47) acquires the form:

∂fa

∂η
− a′

a
p
∂fa

∂p
=

A

p2

∂

∂p
p2

[
n(η)

∂f(p)
∂p

+ 2TS(η)f(p)
]

(50)

In the framework considered models in ultrarelati-
vistic area in consequence of particles identically con-
servation laws of number of particles, in result:

n(η)a3(η) = Const⇒ n(η) =
n∗

a(η)3
. (51)

In universal system of units (G = ~ = c = 1) we
chose scale factor in the form of:

a(t) =
√

2t = η,

so that at half-Planck point in time (η = 1, t = 1
2 ) we

have a = 1 , n = n0 , Let's pass to so-called confor-
mal momentum P , which is movement integral of free
particles in Freedmans' metric, by formula (see, e.g.,
[1]):

p = a(η)P, (52)

so that at Planck point in time p = P . Let's introduce
according to (47),(48) and (52) conformal numerical
density of particles and density of energy:

n∗(η) =
4π(2S + 1)

(2π)3

∞∫

0

f(η,P)P2dP (= Const = n0);

ε∗(η) =
4π(2S + 1)

(2π)3

∞∫

0

f(η,P)P3dP,

also introduce average conformal momentum (energy):

< P >=
ε∗(η)
n∗(η)

, (53)

so that:

n =
n∗
a3

; ε =
ε∗
a4

; ⇒ ε =< p > n, (54)

where:
< p >=

< P >

a
.

Relation for conformal densities is realized in consequ-
ence of (54):

ε∗(η) =< P(η) > n∗. (55)
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Let's introduce dimensionless function β(η) by means
of relation:

β(η)n∗ =
4π(2S + 1)

(2π)3

∞∫

0

f(η,P)PdP. (56)

By means of introduced notation we adduce equation
(50) to more elegant form respect to function f(η,P)
(see, e.g., di�erent variants [20], [21]):

∂f

∂η
=

An∗
P2

∂

∂PP
2

(
∂f

∂P + 2β(η)f
)

, (57)

- this is unknown kinetic equation in di�usive approxi-
mation.

As is easy to see that in consequence of de�nition
(56) function β(η) is integral of distribution function.
So, in spite of its outer simplicity, equation (57) re-
mains integro-di�erential. As we see, ultrarelativistic
equilib-
rium function of distribution is:

f0 = C(η)e
−2

β(η)
P , (58)

where C(η) - arbitrary function which converts to ze-
ro received collisions integral. It means that with time
η → ∞ solution of equation (57) approaches to equi-
librium distribution (58) with temperature:

T (η) =
β(η)
a(η)

⇒ T∗ = β(η), (59)

where T∗ - conformal temperature.

6. Evolution of superthermal particles
in strongly non-equilibrium
Universe

Let's consider the Universe at ultrarelativistic stage of
expansion and E - total density of matter energy, E∗
- its conformal value. Then from Einstein's equations
follows:

E =
3

32πt2
=

3
8πa4

=
3

8πη4
⇒ E∗ =

3
8π

. (60)

Let's consider the evolution of superthermal par-
ticles when number of equilibrium particles lower than
unitary limit in energy range order, nT much less than
number of superthermal particles in scaling range,

nT ¿ n. (61)

In this case E = ε , so that:

ε∗ =
3
8π

= Const. (62)

For equilibrium distributions of ultrarelativistic partic-
les:

fT =
1

e
p
T ± 1

, (63)

where +1 corresponds to fermions, −1 - to bosons,
numerical density of particles (48) equals to:

nT = µn
2S + 1

π2
T 3ζ(3), (64)

where statistical factor µn = 1 - for bosons and µn =
3/4 - for fermions, T - temperature. Appropriate equi-
librium densities of energy equal to:

εT = µε
2S + 1
30π2

T 4, (65)

where statistical factor µε = 1 for bosons and µε =
7/8 for fermions. Total density of energy of equilibrium
ultrarelativistic component equals to:

εT =
g

30π2
T 4, (66)

where g - statistical factor:

g =
∑

B

(2S + 1) +
7
8

∑

F

(2S + 1),

where summation is taken over by all thermal bosons
and fermions.

But in consequence of energy conservation law and
Einsteins equations following equality must realize:

ε∗ + gT 4
∗ =

3
8π

, (67)

where
T∗(η) = T/a(η).

Relation (67) can be considered as equation for de-
termining temperature of equilibrium component (see
details in [20], [21]).

In this article we will discuss evolution of super-
thermal component at the early stages of expansion,
when condition εT ¿ ε is met , or what is same:

gT 4
∗ ¿

3
8π

. (68)

Then

ε∗ =
3
8π

, (69)

and in consequence of (51), (55) following relation is
realized:

< P(η) >=
3

8πn∗
= Const = P0, (70)

- on this stage the average value of conformal energy of
superthermal particles doesn't change with time. For
values P0 ∼ 1 there are Planck energies on Planck
times, i.e. energies order to thermal in hot model of
Universe. Therefore we will set:

P0 À 1. (71)
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But in consequence of (55)

n∗ =
3

8πP0
¿ 1. (72)

Making estimate of function β(η) and taking into ac-
count reduced relations, we obtain:

β(η) ∼ 1
P0

¿ 1. (73)

In this article we assume for short

β(η) ≈ Const.

In case that dimensionless value P0 is free para-
meter of model, we pass to dimensionless momentum
variable x :

x =
P
P0

. (74)

Substituting the variables, we get relation of normali-
zation for distribution function from (54):

∞∫

0

f(η, x)x2dx =
3π

4(2S + 1)
1
P4

0

. (75)

Thus, order of distribution function is

f(η, x) ∼ 1
P4

0

.

From here passing on to new distribution function
G(η, x) ∼ 1 :

f(η, x) =
3π

4(2S + 1)
G(η, x)
P4

0

, (76)

so that
∞∫

0

G(η, x)x2dx = 1, (77)

and changing of variables, we obtain relations:

β(η) =
b(η)
P0

; (78)

where

b(η) =

∞∫

0

G(η, x)xdx; (79)

∞∫

0

G(η, x)x3dx = 1. (80)

So, in selected variables normalized distribution functi-
on G(η, x) must satisfy the two normalization relations
- (77) and (80).

Inserting renormalized time τ :

τ =
3Aη

8πP3
0

, (81)

Finally we write di�usive equation (60) respect to func-
tion G(τ, x) in the form of:

∂G
∂τ

=
1
x2

∂

∂x
x2

(
∂G
∂x

+ 2b(τ)G
)

. (82)

Equation (82) must be solved with initial and bound-
ary conditions in the form of:

G(0, x) = G(x); lim
x→∞

G(τ, x)x3 = 0, (83)

in consequence of (75), (77) function G(x) must satisfy
the integral conditions:

∞∫

0

G(x)x2dx = 1; (84)

∞∫

0

G(x)x3dx = 1. (85)

The last of conditions (83) are necessary for providing
of energy integral convergence. Setting

b(τ) ≈ Const,

what could be done at early stage of evolution, and
separating variables in equation (82):

G(τ, x) = T (τ)X(x),

we obtain following equation:

T = e−λ2τ , (86)

xX ′′ + 2X ′(1 + bx) + X(λ2x + 4b) = 0. (87)

If Xλ(x) - solution of equation (87), then general so-
lution of di�usive equation (82) can be written as:

G(τ, x) =

∞∫

0

Xλ(x)e−λ2τdλ. (88)

Solution of equation (87) is expressed through com-
bination of hypergeometric functions Φ(α, γ, z) and
Ψ(α, γ, z)(or Whittaker functions), Mµ,1/2(z) and
Wµ,1/2(z) :

Xλ(x) =
e−bx

x

[
C1(λ)M−iµ,1/2(2i

√
λ2 − b2x) +

+ C2(λ)W−iµ,1/2(2i
√

λ2 − b2x)
]
, (89)

where
µ =

b√
λ2 − b2

.
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Speci�cally, in case b = 0 we get µ = 0 ,

Xλ(x) =
1
x

[
C1(λ)M0,1/2(2iλx) + C2(λ)W0,1/2(2iλx)

]

Using relations of Whittaker functions with modi�ed
Bessel functions Iµ(z) è Kµ(z) [22]:

W0,µ(z) =
√

z

π
Kµ

(z

2

)
;

M0,µ(z) = 22µΓ(µ + 1)
√

zIµ

(z

2

)
, (90)

and also relations of modi�ed Bessel functions of ima-
ginary argument with Bessel functions of the �rst and
the third kind Jµ(z) è H(2)(z) (Hankel function) [23]:

Iµ(z) = e

iπ

2 Jµ


ze

− iπ

2


 , (∀ z|−π

2
< arg(z) < π),

Kµ(z) = − iπ

2
e
− iπµ

2 H(2)


ze

− iπ

2


 , (91)

obtain from (89) solution in case of β → 0 :

Xλ(x) =
√

2λx
[
C1(λ)

√
πei3π/4J 1

2
(λx) +

+C2(λ)e−i3π/4
√

1πH
(2)
1
2

(λx)
]
. (92)

Taking into account the fact, that Bessel functions with
half-integer index are expressed through elementary
functions:

J 1
2
(z) =

√
2
πz

sin z; H
(2)
1
2

(z) = i

√
2
πz

e−iz,

�nally we get:

G(τ, x) =

∞∫

0

P (λ)e−λ2τ+iλxdλ.

This result could be received directly from equation
(82), if it is assumed that b = 0 , - then for function
G(τ, x) we get thermal conductivity equation:

∂G
∂τ

=
1
x2

∂

∂x
x2

(
∂G
∂x

)
, (93)

which coincides with three-dimensional thermal con-
ductivity equation in spherical coordinates in case
of spherical symmetry. Standard solution of three-
dimensional thermal conductivity equation, correspon-
ding to initial condition:

U(x, y, z, 0) = U0(x, y, z) (94)
is given by (see, e.g., [24])):

U(~r, t) =
1

8πt3/2

∫

V0

U0(~r0)e
− (~r − ~r0)2

4t dV0 (95)

Let's choose temporary coordinates in order to obtain
spherically symmetric solution on basis of this solution:

~r0 = (0, 0, r)

and in integral (95) we pass to spherical coordinates:

x = r0 cos φ cos θ; y = r0 sin φ cos θ; z = r0 sin θ

⇒ (~r − ~r0)2 = r2
0 + r2 − 2rr0 sin θ

and integrating in angular variables we get solution,
that at early stages of expansion circumscribes norma-
lized function of distribution in unitary limit:

G(τ, x) =
1

2x
√

πτ
×

∞∫

0

G(y)


e
− (x− y)2

4τ − e
− (x + y)2

4τ


 ydy. (96)

Note that in approximation β → 0 function G must
not satisfy integral relations of normalization (84), (85)
by now in studied range, because this approximation
doesn't consider processes of particles in�ux in exami-
ned area for an account of collisions with low-energy
particles, that lead to thermalization of distribution.
Nevertheless, initial distribution must satisfy these
normalization relations.

Let's study evolution of high-energy tail of distri-
bution. Assume that initial distribution was given by:

G(0, x) =
G0k

3

(k2 + x2)3/2
χ(x0 − x),

where χ(x) - Heaviside function:

χ(x) =
{

0, x 6 0,
1, x > 0

i.e., at x0 > x À k G(0, x) ≈ G0/x3 - energy is dis-
tributed uniformly. Two constants k è G0 must be
determined from pair of normalization relations (84),
(85). Hence, we obtain relations:

1 = G0k
3

(
ln(ζ +

√
1 + ζ2)− ζ√

1 + ζ2

)
; (97)

1 = G0k
4

(
ζ2 + 2√
1 + ζ2

− 2

)
, (98)

where
ζ =

x0

k
.

Thus, for three constants G0, x0, k we have two equa-
tions (97), (98), here one parameter, for example, ζ ,
remains free. From here �nd:

G0k
3 =

√
1 + ζ2

√
1 + ζ2 ln(ζ +

√
1 + ζ2)− ζ

; (99)
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k =

√
1 + ζ2 ln(ζ +

√
1 + ζ2)− ζ

ζ2 + 2− 2
√

1 + ζ2
. (100)

Substitution of values (99), (100) in relation (96) brings
to �nal formal equation, suitable for large values of
momentum, - this solution is de�ned by free value ζ .

7. Numerical model of evolution of
high-energy tail of distribution

Introducing values:

z =
y

k
; u =

x

k
(101)

and taking into account relation (99), (100) in relation
(96), we get solution of in quadratures:

G(u, τ ; ζ) =
1

2u
√

πτ

√
1 + ζ2(ζ2 + 2− 2

√
1 + ζ2)3

[
√

1 + ζ2 ln(ζ +
√

1 + ζ2)− ζ]4
×

×
ζ∫

0

[
e
−

k2(z − u)2

4τ −e
−

k2(z + u)2

4τ
] zdz,

(1 + z2)3/2
(102)

where it is necessary to substitute value k = k(ξ) from
(100).

Let's analyze received solution by numerical meth-
ods using comprehensive computer system Maple.

0

10

20

30

40

50

2 4 6 8 10 12 14 16 18 20

u

Ðèñ. 1. Evolution of numerical density of superther-
mal particles x2G(u, τ, 10) at little times for values τ
=0; 0,0001; 0,0005; 0,001; 0,05; 0,01. On abscissa scale
u .

We will get estimate for asymptotic behavior of dis-
tribution tail in the range of very high energies

u À 1. (103)

In range (103) integrand function in (102) is given by
narrow peak with vertex point in range z = u , and at
the same time the second exponential member in in-
tegrand expression vanishingly small. If in this case
u > ζ , integral becomes exponentially small. Even
though u, ζ , integral can be estimated as area of peak,
i.e., as product of it's altitude and half-width. The
maximum of integrand function is:

maxΦ(z = u) =
u

(u2 + 1)3/2
' 1

u2
.

For calculation of half-width 2∆z of peak we have fol-
lowing equation:

1
2u3

= e−
k2∆z

4τ
1
u3

,

wherefrom we �nd:

2∆z =
4
√

τ ln 2
k

.

So, we get estimate:

G ∼




1
x3 x < x0;

e−x2/4τ , x > x0.

(104)
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Ðèñ. 2. Evolution of numerical density of superther-
mal particles in high-energy tail u2G(u, τ, 1) for values
τ =0,1; 1; 10; 100; 1000 (from left to right). On abscissa
scale log10 u .
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Ðèñ. 2. Evolution of energy distribution of super-
thermal particles in high-energy tail u2G(u, τ, 1) for
values τ =0,1; 1; 10; 100; 1000 (from left to right). On
abscissa scale log10 u .
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Ðèñ. 2. Evolution of numerical density of superther-
mal particles in high-energy tail u2G(u, τ, 100) for val-
ues τ =0,1; 1; 10; 100; 1000 (from left to right). On
abscissa scale log10 u .
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Ðèñ. 2. Evolution of energy distribution of super-
thermal particles in high-energy tail u2G(u, τ, 100) for
values τ =0,1; 1; 10; 100; 1000 (from left to right). On
abscissa scale log10 u .

8. Conclusions
From carried results we see that conformal energy of
distribution tail increases with time. This e�ect has
analogy to well-known e�ect of escaping particles. To-
tal energy of particles doesn't preserve, i.e. our model
doesn't consider particles interactions in low energy
ranges. In more total model at the same time with in-
creasing of particles energy in tail must decrease energy
of distribution in ranges of average energies. In next ar-
ticle we will consider more complete model of evolution
of superthermal particles, based on integro-di�erential
equation.
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