
Joumal of Experimental and Theoretical Physics, Vol. 93, No. 4, 2001, pp. 895-902. 
Translated from Zhurnal kk.sperimental'nol i Teoreticheskoi Fiziki, Vol. 120, No. 4, 2001, pp. 1027-1036. 
Original Russian Text Copyright Q ZOO1 by Zubova. 

MISCELLANEOUS 

On the Applicability of the Frenkel-Kontorova Model 
to Describing the Dynamics of Vacancies 

in a Polymeric Crystal Chain 
E. A. Zubova 

Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow, 11 7977 Russia 
e-mail: zubova@center: chph. ras. ru 

Received April 10, 2001 

Abstract-The necessary conditions of the applicability of the Frenkel-Kontorova one-dimensional model 
[the approximation of immobile neighboring chains plus sine-Gordon (continual) equation for nonlinear 
dynamics of the chain under consideration] to describing the dynamics of vacancies in a polymeric crystal chain 
are determined. It is shown that these conditions are satisfied for polyethylene crystals. The physical mechanism 
of model applicability limitations is established. O 2001 MAIK "NaukQ/lnterperiodica ". 

1. INTRODUCTION: ONE-DIMENSIONAL 
MODELS FOR DESCRIBING NONLINEAR 

DYNAMICS IN THREE-DIMENSIONAL 
SYSTEMS 

One of the most important achievements of nonlin- 
ear physics is the possibility of describing localized 
waves that propagate at a constant velocity, that is, soli- 
tons or soliton-like excitations. Such waves are often 
observed in physical systems, but they are seldom truly 
one-dimensional. These are either waves in filamentary 
systems (a magnetic flux quantum in a long and narrow 
Josephson contact, a solitary surface wave in a shallow 
and narrow channel with water, or an optical pulse of a 
picosecond width in a thin optical fiber waveguide 
made of a nonlinear material) or plane waves (a turning 
wave in a uniaxial ferromagnet with anisotropy of the 
type of an easy magnetization plane, ion-sound waves 
in a homogeneous collisionless nonisothermal plasma 
and magnetoacoustic waves in a cold plasma placed 
into a magnetic field, or an optical pulse in a nonlinear 
medium). In this context, examples of quasi-one- 
dimensional waves virtually localized along a line and 
propagating in a three-dimensional (3D) medium like 
truly one-dimensional excitations are very interesting. 
For instance, a soliton of stretches in a polymeric crys- 
tal (that is, a chain unit vacancy without rupture of 
internal bonds localized in a small chain portion) is a 
quasi-one-dimensional soliton. 

Solutions corresponding to nontopological solitons 
in multidimensional systems such as Langmuir (elec- 
tron) waves in a cold plasma are often unstable with 
respect to the wave collapse, although sometimes, new 
stable solitons localized in all directions appear, for 
instance, as magnetoacoustic waves in a cold 2D 
plasma. The problem of taking into account the 3D 
character of real physical objects for topological soli- 

tons, which are solutions to equations of the sine-Gor- 
don type, is qualitatively different in nature. 'The turn- 
ing region in a one-dimensional ferromagnet with 
anisotropy of the type of an easy magnetization plane, 
an edge dislocation in a low-molecular-weight crystal, 
or a chain unit vacancy in a polymeric crystal chain 
should exist as static objects (structural defects) in the 
3D as well as in one-dimensional case. In a 3D system, 
only the type of their dynamic behavior may change 
from soliton-like (motion at a constant velocity in a 
cold crystal) to pinning because of a lowering of the 
upper bound of the spectrum of velocities. 

In this work, we study the conditions of the applica- 
bility of the one-dimensional Frenkel-Kontorova 
model to analyzing nonlinear dynamics of a topological 
localized soliton-like excitation in a 3D system for the 
example of a vacancy in a polymeric crystal chain. We 
also consider the physical mechanisms responsible for 
changes in dynamic behavior of structural defects 
described above. 

2. POINT STRUCTURAL DEFECTS 
IN POLYMERIC CRYSTAL CHAINS 

The energy characteristics and the type of the 
dynamics of structural defects determine the relaxation 
properties and the special features of phase transitions 
in crystals. For this reason and in view of the availabil- 
ity of polymers with high crystallinity degrees, many 
studies of point and line structural defects in crystals 
formed by chain molecules have appeared during 
recent years. 

Because of strong anisotropy and hierarchy of inter- 
actions (intrachain covalent chemical bonds are several 
orders of magnitude more rigid than interchain van der 
Waals bonds), vacancies with rupture of intrachain 
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covalent bonds are virtually immobile. Such crystals 
can, however, contain other, specially polymeric, point 
defects caused by chain deformations rather that the 
rupture of intrachain bonds. These defects may be 
localized on a small chain portion, for instance, a chain 
can contain a chain unit vacancy or (a plane zigzag 
chain) a point defect of rotation through 180" accompa- 
nied by chain elongation or contraction by half the 
chain period to preserve crystallographic order outside 
the defect region. 

The idea that polymeric crystal chains can contain 
torsional defects with elongation was originally 
advanced in [I, 21 in relation to dielectric a-relaxation 
in weakly oxidized polyethylene; the exact form of this 
defect was established in [3]. The model including 
Brownian movement of such a defect along the chain as 
a relaxation mechanism (see review [4] and two series 
of works, [2,5] and [6]) allowed some special features 
of the process to be explained, namely, its occurrence in 
the crystalline fraction, anisotropy with respect to the 
direction of the applied field vector, the local character 
of the mechanism, the presence of the a-peak in dielec- 
tric relaxation of polyethylene and isotactic polypropy- 
lene and its absence for syndiotactic polypropylene and 
isotactic polystyrene [7]. Since then, the dynamics of 
structural defects of this type in polymeric crystals have 
been studied fairly extensively [3, 6-10]. 

Movement of a point structural defect along a chain 
in a polymeric crystal is usually treated in the quasi- 
one-dimensional approximation of immobile neighbor- 
ing chains and is described in terms of topological soli- 
ton-like excitations in the continual approximation as a 
nonlinear wave which freely propagates at a constant 
subsonic velocity along the chain and changes the state 
of the chain after its passage. 

Calculations of the characteristics of solitons even 
in the approximation of immobile neighboring chains 
requires knowledge of the form of the interatomic inter- 
action potential and its parameters, which cannot be 
obtained from experimental data, but which to a sub- 
stantial degree determine the type of behavior of 
defects. The idea that expanding the interchain poten- 
tial in a polymeric crystal into the Fourier series can be 
performed analytically by considering the potential of a 
linear chain of atoms and summing their contributions 
by the Poisson summation rule was long ago advanced 
by McCullough [ l l ] .  This approach was used to esti- 
mate the temperature dependence of shear moduli in 
paraffins [12] and to calculate crystal potential energy 
minima corresponding to the monoclinic and orthor- 
hombic polyethylene polymorphs [13]. The potential of 
a linear chain of atoms was calculated not only for Len- 
nard-Jones-type interatomic interactions but also for 
slowly decreasing Coulomb interactions (see review 
[14]). More recently [15], this method was used to 
determine the form of the interatomic potential in poly- 
ethylene. 

In all these works, the periodic potential of a linear 
chain of atoms was truncated after the first harmonic of 
the obtained Fourier expansion, A, + A,cos(2.nzlc), 
where c is the distance between chain atoms. The cor- 
rectness of this approximation was checked by trial cal- 
culations of the amplitude of the next harmonic. Physi- 
cal criteria of the applicability of such an approxima- 
tion (the sine-Gordon equation for describing nonlinear 
chain dynamics) to various real crystals were not, how- 
ever, formulated. 

On the other hand, it is not quite clear whether or not 
the environment of a chain can be considered immobile 
in analyzing the dynamics of chain point defects. 
Molecular dynamics simulations show [16, 171 that 
mobility of neighboring chains can have a noticeable 
effect on the dynamics of defects. In several works 
(e.g., see [18]), mobility of neighboring chains was 
taken into account by phenomenologically introduced 
terms which, in the limit of stationary neighboring 
chains, corresponded to the approximation of the first 
harmonic in the Fourier expansion, but the physical 
meaning of these terms was not discussed. 

In this work, we make an attempt to fill up the two 
gaps specified above and determine the limits of the 
applicability of the Frenkel-Kontorova one-dimen- 
sional model (the approximation of immobile neigh- 
boring chains plus the sine-Gordon equation for the 
nonlinear dynamics of the chain under consideration) 
to describing the dynamics of vacancies in a polymeric 
crystal chain (Sections 4 and 3, respectively). An exam- 
ple of a real polymeric crystal which satisfies these cri- 
teria and to which the Frenkel-Kontorova one-dimen- 
sional model is applicable is described in Section 5. 

3. A PERIODIC POTENTIAL 
OF A LINEAR CHAW OF ATOMS 

Consider potential W(c, b, z) created on axis z by a 
linear chain of rigidly fixed atoms situated parallel to 
this axis at distance b; c is the interatomic distance (Fig. 1). 
The analysis will be performed specifically for van der 
Waals interactions between a "test" atom and every 
other chain atom, 

Here, Uo is the potential energy minimum and ro is the 
point at which this minimum is attained. The sumrna- 
tion over all atoms yields 

If the equilibrium position of the test atom at the z = 0 
point is largely determined by interactions with its two 
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nearest neighbors (atoms with numbers 0 and -I), the 
"local" case, then 

Let us introduce they = blr, dimensionless variable and 
the 6 = c/2ro parameter and write the terms of (1) in an 
explicit form. In "local" equilibrium, when y2 + 62 = 1, . 
the Eu value only depends on parameter 6. Physically 
meaningful are 6 values in the (0, 1) interval. At a con- 
stant c parameter, the optimai b distance from the 
neighboring chain tends to infinity when 6 - 0 and to 
zero when 6 - 1. 

Selecting Eu = 0.03 as a boundary of the local case, 
we find that the potential of the atom at z = 0 is in reality 
only determined by two nearest atoms from the neigh- 

boring chain if 6 > m8 = 0.61. 

Otherwise (when the contributions of the other 
atoms are large), sum ( I )  can be calculated by the Pois- 
son summation formula, 

Then, 
Fig. 1. Linear chain of atoms with fixed positions along the 
x axis. Each atom interacts with the test atom situated on the 
z axis according to the Lennard-Jones potential. The total 
potential energy of the test atom is found as a function of 
chain period c, distance between axes b, and test atom posi- 
tion z. 

The amplitudes of the harmonics are given by thef(6, y) 
function, 

these are the of The condition of the applicability of expansion (3) is 
idues, and the expansion of the W(6, y, z) potential peri- 
odic along z into a Fourier series takes the form the smallness of the ratio of the first harmonic ampli- 

tude to the main term. This condition determines the 
boundary of the "collective" case: the requirement 

Web) + f (6 Y) cos (Fz) 1 f (6, yo)/ W,(y,)l < 0.1, where yo is the position of the 

(3) WOO) function minimum, is equivalent to the condition 

y cos -2z +f y cos -32 -... 6 < 0.41. The amplitude of every next harmonic is then G' ) (2," ) ( ) (2r ) 1' much less than that of the preceding harmonic because 
of the exponential dependence of the f function on the 

Here, the main contribution to the potential only harmonic number. Even at 8 = 0.41, the amplitude of 
depends on the interchain distance and is independent the second hannonic is 100 times lower than that of the first 
of either z or 6, one. If we retain the first harmonic in the expansion (this is 

necessary to obtain the dependence of the chain potential on 
z), the weaker condition 1 f (612, yo)/ f (6, yo)l < 0.1 
extends the boundary of the collective case to 6 = 0.55. 
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Fig. 2. Main contribution Wo (curve 1 j to the potential of a 
linear chain of atoms (Fig. 1) and theAG = 0.3, y )  amplitude 
(curve 2 )  of the first harmonic along z as functions of 
dimensionless distance y  = blro (rO is the equilibrium Len- 
nard-Jones interatomic potential distance) between axes x 
and z.  

Fig. 3. Equilibrium two-dimensional crystal formed by lin- 
ear chains. 

xlc 

Fig. 4. Potential created by one chain atom situated at point x 
(Fig. 1) at the position of the test atom situated at z = 0 on 
the z axis as a function of dimensionless distance xlc (c is 
the chain period). At the selected b = royo interchain dis- 
tance, the main contribution of the whole chain to the poten- 
tial is minimum. Curves for different 6 parameter values are 
plotted, from left to right: 6 = 0.5, 0.4, 0.3, 0.2, and 0.1. 
Solid circles along the xlc axis are real atomic positions on 
the axis. The horizontal line corresponds to the -0.05 level. 

We see that, in the collective case, the z dependence 
of the potential generated on the axis of a linear chain 
of atoms is largely determined by one harmonic. This 
distinguishes the collective case from the local case, in 
which the periodic substrate is created by flat wells with 
narrow barriers in between. It follows that the boundary 
of the collective case is also the boundary of the appli- 
cability of the sine-Gordon equation to describing the 
nonlinear dynamics of a chain in a polymeric crystal. 

Understanding the type of the polymeric crystal 
under study is necessary for correctly estimating the 
type of mobility of point defects in its chains. It is 
known [I91 that, if barriers are narrow, a much larger 
interchain rigidity is required for kinks to move along 
chains without pinning than when there is a single har- 
monic. 

The W,Cy) andf(6 = 0.3, y) functions are plotted in 
Fig. 2. The WoCy) function attains a minimum at 

The f(6 = 0.3, y) function is negative at reasonable y val- 
ues (it takes on exceedingly small positive values of the 
order of lo4 at y > 1.4). This means that, if we wish to 
construct a two-dimensional crystal of linear chains, we 
must displace atoms of every next chain by half the 
period with respect to atoms of the preceding chain 
(Fig. 3). 

Let us estimate the number of particles that make a 
noticeable (for instance, larger than 5% of Uo) contribu- 
tion to the potential in the collective case. At z = 0 and 
b = yore, the potential created by a chain atom at point x 
(Fig. 1) is given by 

The plots of this function obtained at various 8 values 
are given in Fig. 4. As .expected, four particles make 
noticeable contribution to the potential (N, = 4) if 6 - 
0.4-0.5. The data on the other 6 values are given in the 
table. 

Let us estimate the ratio between the amplitude of 
the first harmonic in (3) to the lowest Lennard-Jones 
interatomic potential energy at various 8. These ratios, 
(3d86)If(6, yo)/, are also given in the table. We see that, 
even at the boundary (6 = 0.5), the amplitude of the sub- 
strate is smaller than 0.25Uo, whereas at arbitrary 6 > 
0.61 (the local case), half the difference of potential 
hump and well energies exceeds 4.7Uo. 

This is an important difference between the local 
and collective cases. The width of a topological kink is 
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Dependence of the N, number of atoms actually forming potential at the z = 0 point (Fig. 1) and the amplitude of the first 
harmonic of this potential on 6 

proportional to the square root of the ratio between 
intrachain and substrate rigidities. At a large substrate 
amplitude (even if the substrate is sinusoidal), substan- 
tial intrachain rigidity is required for kinks to remain 
fairly broad and experience no deceleration caused by 
emission of energy into chain phonon modes [20]. 

It follows that the transition from the collective to 
the local case causes an increase in the amplitude of the 
linear chain potential and changes its form from purely 
sinusoidal to broad wells separated by narrow barriers. 
This corresponds to the transition from the soliton type 
of mobility of point defects to emission of phonons by 
defects (and the corresponding lowering of the upper 
spectrum bound) and, eventually, to purely diffusive 
mobility type with pinning. 

4. TAKING INTO ACCOUNT MOBILITY 
OF NEIGHBORING CHAINS. INTERCHAIN 

INTERACTION POTENTIAL 

The interaction energy between two chains whose 
atoms are displaced by (u,), and (u2), from their equi- 
librium positions shown in Fig. 3 is usually written in 
the form 1181 

Wu, ,  u,) = e0 j f!! C 

Setting u2 equal to zero, we obtain the sine-Gordon 
equation for the nonlinear dynamics of the first chain, 
ul. The criterion of the applicability of this equation 
was discussed in Section 3. Let us add interaction 
energy (4) to the Hamiltonian 

+ [l - coS(rul)l + ;($)'+ kg)' ( 5 )  

and consider the dynamics of a kink in chain u,. 
Assuming that a <( 1 and P + 1, one can find [18] 
within the framework of the perturbation theory that 
interaction (4) between chain u, and mobile chain u2 
changes the shape of the kink and causes the appear- 
ance of a perturbation in chain u, which moves together 
with the kink. The amplitude of this perturbation is pro- 
portional to a + Pl(1 - v2), where v is the velocity of 
the kink in units of vs, the sound velocity of an isolated 
chain. The amplitude increases infinitely as the velocity 
of the kink approaches the vs value, which shows that 
such perturbation theory cannot be used to take into 
account kink radiation loss which appears when its 
velocity increases. Indeed, it is easy to show that, in a 
system of two interacting chains, the introduction of the 
~~P(a~~lay)(au,lay) term results in that the lowest phase 
velocity of phonons common to both chains equals 

v,,, = m p  (in vs units) for two branches corre- 
sponding to phonons synphase and antiphase in chains, 
respectively. It follows that, regardless of the sign of P, 
the velocity of phonons on one branch is always smaller 
than unity, and if a kink exceeds this velocity, Vavilov- 
Cherenkov-type radiation appears. Conversely, the 
term 

-~ ,a  [ 1 - cos ('c" -(u, - u2))l 

only influences the width of the phonon spectrum gap 
rather than vl and v,. We therefore see that two terms 
in (4) have different physical meanings. 

Note also that Eq. (4) is internally contradictory. 
Indeed, the expression for energy only contains one 
harmonic, and this expression is obtained in the contin- 
ual approximation, in which displacements (u,), and 
(u,), are replaced by fields ul(y) and u2(y), and the sum- 
mation over atoms is replaced by the integration over 
the chain. This is the result of using the Poisson sum- 
mation formula. The condition that allows us to retain a 
single harmonic in the obtained Fourier expansion of 
the potential is the collective character of interactions, 
when substrate for a given atom is formed by many 
neighboring chain atoms. On the other hand, it follows 
from (4) that the interaction between the fields is quasi- 
local; that is, the equation for field u,Cy,) contains field 
u, and its second derivative with respect to the coordi- 
nate only at the same yo point. 
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As (4) is extensively used to study interactions 
between kinks in various polymeric crystal chains and 
the influence of the mobility of neighboring chains on 
the dynamics of kinks [IS] and to describe the dynam- 
ics of a fluxon in one of two interacting Josephson lines 
(see [21-231 and the references therein), it is interesting 
to determine if there exists a region of system parame- 
ters in which this equation is not physically mea- 
ningless. 

The interaction energy .between two chains in a 
crystal (see Fig. 3) is the sum of interactions of all pairs 
of atoms, 

Replacing the summation over 1 by integration over 0 in 
the Poisson formula, 

we see that terms depending on the difference of fields 
ul(nc) - u2(nc) at a single point nc can only appear in 
the expression for energy if, in calculating the integral 
over 0, ul(nc + 0) can be expanded into a Taylor series 
and the corrections depending on 0 can be assumed to 
be small, 

that is, on the segment of length N&2, where the 

u(Ab2 + €I2) function strongly varies (Fig. 4), the u,(0) 
function should be almost constant. If we are inter- 
ested in the dynamics of vacancies, the characteristic 
spatial scale of substantial changes in u1(8) is the Lkc 
kink half-width. The condition formulated above is 
then written as 

If this condition is satisfied, we can change variables 

to obtain 

Comparing this equation with (2) and (3), replacing the 
summation over n by the integration along the chain, 
and only retaining the largest terms describing the 
interaction of the fields, we obtain 

The last term in this equation' is seemingly asymmetric 
with respect to fields u1 and u,, but it can easily be 
reduced to the symmetrical form 

by adding the total derivative with respect to the coor- 
dinate to energy density. The first term is transformed 
to the symmetrical form via the integration by parts. On 
the assumptions made above, the third term is much 
smaller than the first two ones. 

The first two terms in Eq. (9) for the energy density 
are familiar to us because they are present in (4). How- 
ever in (9), "phenomenological" constants are 
expressed in terms of interatomic potential parameters, 
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We see that, in the terminology of [18], the interac- 5. AN EXAMPLE OF A CRYSTAL 
tion between two linear chains of atoms that we are WHOSE DYNAMICS OF VACANCIES 
considering is interchain attraction. We now know CAN BE DESCRIBED BY THE FRENKEL- 
which of many variants of interactions between kinks in KONTOROVA ONE-DIMENSIONAL MODEL 
neighboring chains considered in [18] (depending on 
signs of and the ratio between a and 0) corresponds to 
the Lennard-Jones interatomic potential. 

It is known that a discrete linear chain of atoms 
linked by springs and lying on a sine substrate (for 
instance, created by immobile neighboring chains) can 
be described by the continual sine-Gordon equation if 
the static kink half-width in interatomic distance units, 
L,, which is proportional to the square root of the ratio 
between the rigidities of springs and substrate, is much 
larger than one. Numerical simulation [24] shows that, 
already at Lk = 2-4, the kink virtually does not emit and 
moves at an almost constant velocity (at a not too high 
velocity, vk = 0 . 5 ~ ~ ) .  However, if the substrate is cre- 
ated by mobile rather than immobile chains, it is neces- 
sary that the interaction energy between chains be rep- 
resentable in form (9) for the kink not to radiate; that is, 
the P(du,ldy)(du,/ay) term resulting in radiative friction 
should be small. This requires condition (8) to be satis- 
fied, namely, the kink half-width in the chain should 
greatly exceed not unity but half the number of parti- 
cles, N,, that really form substrate for each atom. The 
table shows that, in the collective case far from the 
boundary, N, can be large, whereas in real polymers, 
intrachain rigidity can exceed the rigidity of substrate 
ten times but not ten thousand times. It follows that 
even the necessary condition of correctness of the Fren- 
kel-Kontorova model requires nontrivially checking it 
for every real polymeric crystal. 

In addition, in a polymeric crystal with all free 
chains, collective (involving many chains) phonon 
modes exist which have very narrow if any frequency 
gaps, and the lower boundary of phase velocity equals 
or approaches zero. Further, because any polymeric 
chain consists of several atomic rows linked with each 
other, the o = o(k) dispersion curves ( o  and k are the 
phonon frequency and wave vector) even of an isolated 
chain can be bent downward in the k --A 2 d c  region (c 
is the chain period). Such dispersion curves also have 
no lower bound of phase velocities. Note that the exist- 
ence of these modes is a direct consequence of the 
three-dimensional character of real polymeric crystals. 
A kink always emits radiation into these modes by the 
Vavilov-Cherenkov-type mechanism (when the veloc- 
ity of the kink coincides with the phase velocity of 
some phonon mode), but the intensity of this radiation 
depends on the strength of coupling between the kink 
and such modes. For instance, numerical simulation of 
the dynamics of vacancies in zigzag chains of polyeth- 
ylene crystals [16] for model [25] with united atoms in 
place of CH, groups shows that this radiation is only 
noticeable at velocities vk 0.6vS, and even at such 
velocities, its intensity is low. 

We have shown that, there exists a simple criterion 
for determining the amplitude and form of the potential 
generated by a row of atoms. This criterion is the 6 = 
c/2ro parameter value relating intrachain distances to 
the optimal r, distances of interchain interactions. At 
6 < 0.4-0.55 (the collective case), this periodic poten- 
tial is close to purely sinusoidal. 

An arbitrary polymeric chain consists of several 
rows of almost rigidly fixed atoms, and the potential of 
such a chain can be obtained by summing the contribu- 
tions of these rows. If the 6 < 0.44.55 condition is sat- 
isfied, each such contribution has a simple analytic 
form, which is important for calculating crystal unit 
cell parameters and the form and parameters of the 
interchain interaction potential. 

Remarkably, in the simplest model of zigzag poly- 
ethylene chains [16, 251 with united atoms in place of 
CH, groups, the 6 parameter for each row constituting 
a zigzag approximately equals 0.299. In a more realistic 
complete polyethylene model [26], which well repro- 
duces the density, structure, and unit cell parameters of 
the orthorhombic polyethylene phase at room tempera- 
ture, the 6 parameters for carbon-carbon, hydrogen- 
hydrogen, and carbon-hydrogen interactions between 
rows are 

which also falls into the category of collective interac- 
tions (although is close to the boundary value). 

On the other hand, for a kink to emit no phonons 
into neighboring mobile crystal chains, it is necessary 
that the number of atoms over the 2L, kink width be 
much larger than the N, number of atoms that form sub- 
strate at the given chain point. In the collective case, Ns 
2 4. It follows that the L, + NJ2 2 2 inequality is the 
necessary condition for applying the continual (rather 
than discrete) sine-Gordon equation and for ignoring 
mobility of neighboring chains in describing the non- 
linear dynamics of a chain with a kink. 

For instance, in the same polyethylene model [16, 
25, 261, L, = 16 and Ns = 4 (for 6 - 0.3-0.5). As poly- 
ethylene parameters are at the boundary of the collec- 
tive case, the rigidity of its chains is sufficiently large 
for the necessary condition Lk = 16 S NJ2 = 2 to be sat- 
isfied. 

We, however, know that this is not the sufficient con- 
dition. Molecular dynamics studies of this model [16] 
show that, at high (v, 2 0 . 6 ~ ~ )  kink velocities, there 
appears weak Vavilov-Cherenkov-type radiation to 
collective phonon modes of the crystal, the existence of 
which is a direct consequence of the three-dimensional 
character of real physical systems. 
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We nevertheless see that there exists at least one 
polymeric crystal, polyethylene, the behavior of vacan- 
cies in which can, with caution (at not very high veloc- 
ities v, < 0.6vS), be described by the Frerkel-Kontor- 
ova model (using the approximation of immobile 
neighboring chains plus the continual sine-Gordon 
equation for the nonlinear dynamics of the chain under 
consideration). 

6. CONCLUSION 
The type of the dynamic behavior of a vacancy in a 

polymeric crystal is determined by the N, number of 
neighboring chain atoms actually forming the substrate 
potential near each atom of the chain containing the 
defect. If this number is small (N, < 4), the vacancy 
experiences deceleration and transmits energy to atoms 
of the chain containing it. If N, is larger than the 2Lk 
vacancy width, the vacancy also experiences decelera- 
tion and transmits energy to atoms of the nearest neigh- 
boring chains. Only if the condition 

4 1 N s 4 2 L k  

is satisfied, the type of the dynamic behavior of vacan- 
cies is close to that of solitons, although, because of the 
three-dimensional character of systems, the energy of 
the defect is always slowly (in comparison with the 
characteristic period of chain vibrations) emitted into 
collective crystal phonon modes by the Vavilov-Cher- 
enkov-type mechanism. 

To summarize, we studied the possibility of apply- 
ing the one-dimensional nonlinear integrable model to 
describe the dynamics of a topological localized soli- 
ton-type excitation in a real physical three-dimensional 
system. We found that there existed an interval of three- 
dimensional system parameters in which the one- 
dimensional model correctly predicted the soliton type 
of the dynamic behavior of defects. On the other hand, 
at other parameter values, defects, as distinguished 
from solitons, could not retain a constant velocity. 
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