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Abstract—A molecular-dynamics simulation of the behavior of a twist point defect with stretching in a chain
of an equilibrium polymer crystal (“united” atoms approximation for polyethylene) is performed for immobile
and mobile neighboring chains. It is shown that such a defect in a cold polymer crystal possesses soliton-type
mobility. The upper limit of the spectrum of soliton velocities is found, and it is the same for both cases. The
maximum possible velocity of defects is three times lower than the theoretical limit of the spectrum (which is
equal to the velocity of “torsional” sound in an isolated chain). An explanation of the reason for this discrepancy
is proposed: because of the interaction of two “degrees of freedom” of the defect (twisting and stretching) the
energy of a nonlinear wave is dissipated in the linear modes of the system, which results in effective friction
whose magnitude depends strongly on the velocity of the defect. The “boundary of the spectrum of soliton
velocities” determines the transition between regimes of strong and weak braking of defects. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

To predict the relaxation, plastic, and strength prop-
erties as well as the melting temperature of crystals it is
necessary to study localized mobile defects—devia-
tions from an ideal structure. Point structural defects
(vacancies or inclusions) are responsible for the relax-
ation properties of solids. The impossibility of directed
motion of such defects is the reason why relaxation
processes are slow in low-molecular crystals. On
account of the strong anisotropy of the properties of
polymer crystals (the atoms in a polymer chain are
bound with one another by chemical covalent bonds,
and the intermolecular interaction is due to weak van-
der-Waals forces) vacancies with breaking of intrac-
hain covalent bonds are virtually immobile. However,
such crystals can contain different, specifically poly-
mer, point defects, which are due to not the breaking of
intrachain bonds but rather the deformation of a chain
localized on a small section of the chain.

The concepts of such defects appeared in the phys-
ics of polymer crystals after the discovery of the anom-
alously rapid dielectric relaxation of oxidized polyeth-
ylene (see the review in [1]). Analysis of a number of
possible molecular mechanisms of this process (see the
review in [2]) made it possible to identify as the most
likely mechanism the propagation of regions of twist-
ing (by 180°) with stretching (by a half-period of the
chain) that have a length of several tens of periods, in
the absence of conformational changes, along the
chains. It turned out [3, 4] that such defects are also cre-
ated in the process of premelting of a crystal (their
1063-7761/00/9103- $20.00 © 20515
energy is much lower than the energy of purely stretch-
ing defects—vacancies of one unit of the chain without
twisting).

The quasi-one-dimensional approximation with
immobile neighboring chains (see, for example, [5] and
the literature cited there) makes it possible to describe
a point defect as a soliton-type topological excitation
[6]—a localized nonlinear wave propagating with con-
stant subsonic velocity along the chain, changing the
state of the chain after it passes and therefore capable
of causing rapid relaxation in the crystal.

An approximate analytical description of static
point defects in polyethylene was proposed in [7], and
a numerical investigation by molecular-mechanics
methods was conducted in [8]. However, these works
did not consider the question of the mobility of defects
and correspondingly the role of defects in the relax-
ation of a crystal.

The problem of point defects in a polyethylene
chain surrounded by immobile neighboring chains has
recently been solved by a numerical-variational method
[9, 4] (in the “united” atoms model, in which CH2
groups are replaced by point particles). It was found
that in this case point defects possess soliton-type
mobility, and the upper limits of the velocity spectrum
for different types of defects were calculated.

But, in a more previous work [10] a molecular-
dynamics investigation of the behavior of torsional
point defects with stretching in a polyethylene crystal
was performed in the same “united-atoms” model but
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with mobile molecules of the first coordination sphere,
and it was concluded from the results of the numerical
experiment that the mobility of such defects is of non-
soliton type: they stopped rapidly.

However, the arrangement of this experiment was
such that defects could stop rapidly for several reasons.
In the first place, it was discovered in [11] that purely
stretching defects in an equilibrium crystal configura-
tion with all mobile chains in the crystal retain the ini-
tial velocities right up to values of the order of 0.6 times
the velocity of sound, and for high velocities they slow
down to this velocity but do not stop. In nonequilibrium
or unstable structures (including the orthorhombic struc-
ture, which is nonequilibrium in the “united atoms”
model of polyethylene used in [10]), requiring that the
chains rotate in order for relaxation to occur, the vacan-
cies stop rapidly. The clearly soliton character of the
dynamics of pure vacancies led us to conjecture that
the stopping of a defect in [10] was due precisely to the
nonequilibrium nature of the initial crystal.

But, in addition, we saw in [11] that friction against
the phonon modes of mobile neighboring chains sub-
stantially decreased the upper limit of the velocity spec-
trum even for pure vacancies (from the velocity of
sound c (theoretical limit) down to ≈0.6 times this

z

n + 1
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vnnc

un – 1

vn – 1 n – 1

θ0

Fig. 1. Model of a polymer crystal (polyethylene with
united atoms): parameters of the chain and the local coordi-
nates of the atoms.
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value). The interaction of a twist point defect with
stretching with the same phonon modes can be much
stronger and can even make the soliton mechanism of
defect mobility impossible.

The purpose of the present work is to study the
dynamics of twist point structural defects with stretch-
ing in a polymer crystal with all mobile chains on the
basis of the same molecular-dynamics model as the one
used in [11]. 

Our numerical model of a crystal for studying the
dynamics of point defects is described in Section 2. An
approximate analytical description of the defects is pre-
sented in Section 3 for immobile neighboring chains.
The results of a molecular-dynamics simulation of the
dynamics of defects with immobile and mobile neigh-
boring chains are presented in Section 4. Finally, Sec-
tion 5 is devoted to a discussion of these results and the
conclusions.

2. NUMERICAL MODEL OF A POLYMER 
CRYSTAL (POLYETHYLENE WITH “UNITED” 

ATOMS); EQUILIBRIUM CRYSTAL 
CONFIGURATION

We adopted the following model of a polymer crys-
tal [12] (polyethylene with united atoms; see Fig. 1):
the chains are a planar trans-zigzags; the bonds between
the atoms (point particles with mass m) are absolutely
rigid and their length is l0; the deformation energies of the
valence (θn) and conformational (τn) angles are

(1)

(2)

the atoms separated by more than 2 neighbors or
belonging to different chains interact according to the
law

where ULJ(r) = 4e[(σ/r)12 – (σ/r)6] is the Lennard–Jones
potential with a minimum at the point r0 = 21/6σ. The
numerical values used for the constants are given in
Table 1.

U3 θn( ) 1
2
---Kθ θn θ0–( )2,=

U4 τn( ) α β τn γ 3τn,cos+cos+=

U r( )
ULJ r( ) ULJ R( ), r R≤–

0 r R,>,



=

Table 1.  Parameters of the model crystal

Parameter Quantity References Parameter Quantity References

m 14 amu – β 1.675 kJ/mole [13]
l0 1.53 Å [13] γ 6.695 kJ/mole [13]
θ0 113° [13] e 0.4937 kJ/mole [14]
Kθ 331.37 kJ/mole [13] σ 3.8 Å [14]
α 8.370 kJ/mole [13] R 2r0 –
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For the model of the crystal we adopted periodic
boundary conditions in all three directions. A rectangu-
lar parallelepiped was chosen for the working cell. The
leap-frog algorithm [15], taking account of the restric-
tions imposed by the rigid bonds [16], was used to
solve the corresponding classical Lagrangian equations
of the first kind numerically. Periodic boundary condi-
tions along the axis of the molecules make it possible to
follow the dynamics of a defect for an unbounded time
and those in the transverse section of the crystal, to
avoid introducing in the transverse section unphysical
boundary conditions with a rigidly fixed second coordi-
nation sphere. To prevent a soliton from affecting itself
the number of molecules in the working cell was cho-
sen so that the image of each molecule was located no
closer than in its fourth coordination sphere and the
length of the molecule—for a defect of the order of
35 chain periods c long—was assumed to be 200c (one
period contains two CH2 groups).

Since the length of the projection of a molecule on
its transverse section is l⊥  = 0.843 Å and the van-der-
Waals radii of the united atoms r0 are 4.265 Å ≈ 5l⊥ , the
packing of the zigzag planes in the crystal will be close
to that of cylinders. Theoretically, two different
mechanically equilibrium configurations are possible
(see Fig. 2). Both possess a monoclinic cell and close
energies. However, the second one is unstable and sep-
arates into two domains, each of which corresponds to
the first configuration [11], as a result of relaxation. The
parameters of a stable equilibrium structure a and b
depend on the cutoff radius R. Table 2 presents data on
the relaxation of samples for different values of R. The
period along the axis of a molecule is always c = 2.554 Å.
The density of the sample is ρ = 1.155 g/cm3.

Molecular-dynamics simulation of a polyethylene
crystal in the united-atoms model has shown [11] that
the potential energy does not have a local minimum for
an orthorhombic structure for any value of the cell
parameters. The numerical experiment reveals the
appearance of this minimum only in a model of poly-
ethylene in which the CH2 group is represented by three
spatially separated force centers. Thus, the possibility
of the existence of an orthorhombic structure in poly-
ethylene is due to the presence of side groups and not
the form of the backbone of the chains.

3. APPROXIMATE ANALYTICAL DESCRIPTION 
OF A TWIST POINT DEFECT

WITH STRETCHING IN A CHAIN
OF A POLYMER CRYSTAL

We shall consider the simplest description of the
dynamics of a twist defect with stretching in the chain
of a polymer crystal in the immobile-neighbors approxi-
mation using the continuum model.

The effective substrate potential generated for the
nth atom by immobile neighbors in a stable equilibrium
monoclinic lattice of a polymer crystal in the “united”
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
atoms model should have two wells with different min-
ima at the points (φn, ψn): (0, 0) and (π, π). Here φn is
the angle in a cylindrical coordinate system whose axis
is directed along the axis of a molecule, ψn = (2π/c)un

(un is the longitudinal displacement from the position
of equilibrium).

Numerically, the substrate potentials obtained by
calculating the energy of the crystal with all molecules
secured except one, which can move and rotate (as a
whole) along the axis. In the stable equilibrium config-
uration of the crystal the function

(3)

with A ≈ 0.274 kJ/mole and B ≈ 0.865 kJ/mole approx-
imates the substrate potential with an error of less than
10% of its maximum value. The level lines of the func-
tion (3) are shown in Fig. 3.

Adding a term C(1 – cos4φn) with C = –0.067 kJ/mole
to the potential (3) decreases the error to 2%. We shall
discuss in Section 5, after presenting the results of the
molecular-dynamics simulation, how this addition can
influence the dynamics of a defect.

In our analysis we neglect the dependence of the
potential V on the third coordinate—transverse dis-
placements vn, since for long-wavelength waves (with
characteristic scale much greater than the distance
between the atoms of a chain) the transverse displace-
ments of the atoms are much smaller than the longitu-
dinal displacements (see Appendix A). The conse-
quences (except for a small change in the form of the
analytical solution) of taking account of the depen-

V φn ψn,( ) A 1 φn ψncoscos–( ) B 1 2φncos–( )+=

a(a)

b

(b)

Fig. 2. Possible equilibrium configurations for planar zigzag
packing: (a) stable, (b) unstable (the period of the transverse
section of the molecules is shown; the arrows show the
direction from the nearest atom of the molecule under the
plane to the nearest above the plane).

Table 2.  The parameters a and b (in Å) of the equilibrium
crystalline configuration for different cutoff radii R

Parameter R = 1.8r0 R = 2r0

a 3.998 3.980

b 7.994 7.966
SICS      Vol. 91      No. 3      2000
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dence of the potential on this coordinate will be dis-
cussed in Section 5. Here we shall confine our attention
to the main interaction of the two basic degrees of free-
dom of an atom.

The rigid-bond condition determines the relation
between the longitudinal and transverse displacements
u and v of the atoms (see Fig. 1). Switching to the con-
tinuum approximation (which is justified because of the
relative weakness of the intermolecular interaction) and
neglecting dispersion and nonlinearity, which are due
to intramolecular interactions (see [17] for a more
accurate continuum description), we obtain the
Lagrangian system

(4)

where the constants are related with the parameters of
the numerical model of the crystal by the relations (see
Appendix B)

(5)

(6)

(7)

Here Iφ, Iψ and Kφ, Kψ are, respectively, the inertial and
stiffness parameters of the chain—“torsional” (with

L = 
dx
l0s0
-------- Iφ

φt
2

2
----- Iψ

ψt
2

2
------ Kφ

φx
2

2
-----– Kψ

ψx
2

2
------ V φ ψ,( )––+ ,∫

Iφ m
l0c0

2
-------- 

 
2

, Iψ m
l0s0

π
-------- 

 
2

,= =

s0 = θ0/2( ), c0 = θ0/2( )cossin( );

Kφ l0
2 β 9γ+( ),=

Kψ
2l0s0

2

πc0
----------- 

 
2

Kθ.=

0 0.2 0.4 0.6 0.8 1.0
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0.4

0.6

0.8

1.0
ψ/2π

φ/2π

Fig. 3. Level lines of the potential surface (3) for a substrate,
generated by immobile neighboring chains, in the (φ, ψ)
plane. The broken line shows the “orbit” of the zeroth ana-
lytical approximation (Lφ/Lψ  0) in the solution of the
system of equations (8).
JOURNAL OF EXPERIMENTAL 
respect to φ) and “longitudinal” (with respect to ψ). For
our numerical values of the crystal parameters, Iφ/Iψ ≈
1.08 and Kφ/Kψ ≈ 0.29.

Thus, we have obtained a very simple model for two
coupled fields with different “stiffness characteristics”
and “inertial properties,” and the relation between them
is due only to the anharmonicity of the external sub-
strate potential.

The Lagrangian (4) with the potential function (3)
corresponds to coupled equations describing the evolu-
tion of the fields φ and ψ:

(8)

It is easy to see that the variables φ and ψ in the lin-
earized equations of the system separate and give two
branches of the dispersion curve with two sound veloc-

ities: torsional sound vφ =  ≈ 7.63 km/s and lon-

gitudinal sound vψ =  ≈ 14.70 km/s. In the con-
tinuum model of a chain without a substrate these are
the maximum propagation velocities of small-ampli-
tude disturbances along φ and ψ, respectively.

Let us assume that the system of equations (8) pos-
sesses a solution in the form of a topological solitary
nonlinear wave moving with velocity v ≥ 0 in a direc-
tion of positive values of x, i.e., in the form of “cou-
pled” kinks

where the functions φ and ψ are such that as time t var-
ies from –∞ to +∞ they vary from π to 0. Then this wave
corresponds to a kink of twisting by 180° and stretching
by a half-period of the chain. When such a wave passes
along the chain all particles will move in turn into the
position of the nearest neighbor in the direction of neg-
ative values of x.

If a solution of this form exists, then the problem
consists simply of finding the correct “orbit” in the φψ
plane. The exact solution of such a problem is known
for identical stiffness and inertial parameters of the
fields for a number of simple polynomial potentials
V(φ, ψ) (see [18] and the references cited there, as well
as [19]). In our case successive approximations to the
solution can be found assuming that the kink width Lφ
with respect to φ is much smaller than the kink width Lψ
with respect to ψ. Indeed, the “torsional” stiffness Kφ of
the chain is approximately 3.4 times smaller than the
longitudinal stiffness Kψ, and the substrate is stiffer
for φ than for ψ because of the presence of the large
term B(1 – cos2φn) in the potential. In the limit
Lφ/Lψ  0 the orbit will approach the broken line
shown in Fig. 3. For a finite value of the parameter the
first approximation to the solution can be obtained by
assuming that in the equation for φ the kink with
respect to ψ is “infinitely wide” and setting ψ  π/2.
The equation for ψ can be solved in two regions: for x –
vt < 0, replacing φ by 0, and for x – vt ≥ 0, making the

Iφφtt Kφφxx A φ ψ 2B 2φsin+cossin+– 0,=

Iψψtt Kψψxx A ψ φcossin+– 0.=

Kφ/Iφ

Kψ/Iψ

φ φ x vt–( ), ψ ψ x vt–( ),= =
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substitution φ  π and matching the solutions at the
point x – vt = 0 (this method of solving a similar system
of equations was proposed in [5]). In our case all three
equations reduce to the sine-Gordon equations. After
matching the solutions we obtain

(9)

(10)

and the kink velocity v must be less than the lowest of
the velocities vφ and vψ. We can see that the parameter
Lφ/Lψ ≈ 0.152 is indeed small.

When the term C(1 – cos4φn) is included in the
potential the form of the kink with respect to φ will be
the solution not of a simple but rather a double sine-
Gordon equation.

In what follows we shall seek the solution in the
form φ = φ1 + φ2 + … ψ = ψ1 + ψ2 + …, refining the
form of the kinks. However, it is important to note that
this procedure, even though it leads to the dependence
of the form of the kink with respect to φ on the param-
eters Lψ and vψ and the form of the kink with respect to
ψ on the parameters Lφ and vφ, it cannot change the
maximum velocity of a kink. In the opposite approxi-
mation (the case of identical stiffness and inertial
parameters of the field [19]) the exact solution also
admits arbitrary subsonic velocities of coupled waves.

Thus, if the interaction V(φ, ψ) is such that there
exists an “orbital” solution in the form of a coupled sol-
itary wave φ – ψ, then for the potential (3) with a small
value of the parameter Lφ/Lψ the form of this wave is
given approximately by Eqs. (9) and (10) and the veloc-
ity v < vφ < vψ.

In summary, a twist defect with stretching (no
breaking of covalent bonds (Fig. 4)) can move along the
chain with subsonic velocity v < vφ < vψ, maintaining
localization and not disrupting the crystal structure out-
side the region of the defect. This means that for veloc-
ities that are not too close to the sound velocity the

φ1 2
x vt–

Lφ 1 v /vφ( )2–
--------------------------------------

 
 
 

,exparctan=

Lφ
Kφ

4B
------- 5.08

c
2
---;≈=

ψ1

=    

4 x vt–

Lψ 1 v /vψ( )2–
----------------------------------------

3π
8

------ 
 tanln–

 
 
 

,exparctan

x v t 0<–

4 x vt–

Lψ 1 v /vψ( )2–
----------------------------------------

3π
8

------ 
 tanln+

 
 
 

π,–exparctan

x v t 0,≥–

Lψ
Kψ

A
------- 33.5

c
2
---,≈=
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dynamics of defects should be of a soliton character (as
v  vφ the discreteness and the intramolecular non-
linearity can no longer be neglected, since the solitons
are too “narrow”).

4. RESULTS OF MOLECULAR-DYNAMICS 
SIMULATION OF THE BEHAVIOR

OF TWIST DEFECTS WITH STRETCHING IN A 
POLYMER CRYSTAL

The following time scales are characteristic for the
system under study: the travel time of longitudinal
sound over one period of the chain is approximately
1.7 × 10–2 ps, the width of a defect along ψ is about
0.58 ps, the travel time of “torsional” sound over the
width of a defect along the φ coordinate is approxi-
mately 0.17 ps.

In the molecular-dynamics experiment, for one of
the molecules of a crystal, which has relaxed and
cooled down to 0.01 K, we set the atomic displace-
ments and velocities according to the approximate ana-
lytic formulas (9) and (10) and observed the evolution
of a defect for a prolonged time (of the order of hun-
dreds of picoseconds).

Our analytical approximation (9) and (10) seems to
be very rough: kinks “are not coupled.” But it turns out
that for a static kink the approximation fits the experi-
mentally observed curves (Fig. 4) with an error of less
than 0.5% of the magnitude of the jump.

In the numerical experiment we followed the posi-
tion xcm and velocity vcm of the center of mass of a chain
with a defect, which were easily converted to the dis-
placement and velocity of a defect: xdef = –N1[xcm – xcm(t =
0)] and vdef = –N1vcm (N1 = 399 is the number of atoms

0 80 160 240 320 400

0.2

0.4

0.6

0.8

1.0

n

φn/π, ψn/π

φn
π

------ ψn
π

-------

Fig. 4. Static twist point defect with stretching in a chain in
a polymer crystal: the coordinates of the atoms in a chain
with a defect in a cylindrical coordinate system with the axis
directed along the axis of the molecule (see Fig. 1): the
steeper curve is for the angle φn/π (φ in radians), the more
gently sloping curve is for ψn/π = (2/c)un (un is the longitu-
dinal displacement from the position of equilibrium); the
form of the defect after relaxation of the crystal in 15 ps is
shown, and the difference of the curves shown from the ana-
lytical solution (9) and (10) does not exceed 0.005.
SICS      Vol. 91      No. 3      2000
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in a chain with a defect). With this conversion, because
of the thermal vibrations of the atoms (for sample tem-
perature of the order of several Kelvins) high-fre-
quency oscillations are superposed on the true value of
the velocity of a defect. These oscillations have no rela-
tion to the velocity, and we filtered them out to make
the picture clearer.

4.1. Dynamics of Twist Defects with Stretching
in a Chain on a Substrate, Generated

by Stationary Neighboring Chains

We shall now describe the results of a simulation of
the evolution of twist defects with stretching with ini-

1

2

3

4

0 50 100 150 200

1000

2000

3000

4000

5000

t, ps

xdef /(c/2)

Fig. 5. Dynamics of defects in a chain on a substrate gener-
ated by stationary neighboring chains: displacement of
defects (in half-periods of the chain) with velocities (1) 0.9,
(2) 0.45, (3) 0.2, and (4) 0.1 of the velocity of the lower (tor-
sional) sound as a function of time.

0 50 100 150 200

0.1

0.2

0.3

0.4

t, ps

vdef /vφ

Fig. 6. Dynamics of defects in a polymer crystal: variation
of the average velocity of defects with time with immobile
(dashed lines) and mobile (solid lines) neighboring chains;
the initial velocities of the defects are 0.45, 0.2, and 0.1 times
the velocity of lower (torsional) sound (the sharp cutoffs at
the end of the plots are not a physical effect; they are due to
the averaging procedure).
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tial velocities of approximately 0.9, 0.45, 0.2, and 0.1
times the velocity of the lower (torsional) sound (6.875,
3.437, 1.514, and 0.757 km/s) in a crystal in stable
equilibrium (Fig. 2a) with clamped neighboring mole-
cules.

As expected, soliton-type mobility of defects is clearly
observed in the numerical experiment (see Fig. 5): they
move along the chain with constant average velocity,
traversing in 200 ps 4378, 4003, 2194, and 937 CH2
groups (half-periods of the chain), respectively. By
analogy with the dynamics of pure vacancies, one
would expect that the defects would retain their initial
velocities. However (Figs. 6 and 7), only two of the
slowest defects retain their velocities. The velocity of
fast defects decreases in the first 7 ps to 0.43 (from 0.9)
and 0.39 (from 0.45) from the velocity of sound, and in
the next 193 ps it slowly decreases to 0.34 and 0.33,
respectively.

This picture strongly resembles the evolution of
pure vacancies in the presence of mobile neighboring
chains [11], when the energy of high-velocity vacan-
cies was transferred to neighboring chains because of
the stronger interaction, and the intensity of the interac-
tion with phonon modes of the surrounding molecules
decreased sharply with decreasing velocity of the
vacancy, so that the (first) limit of the velocity spectrum
of purely stretching solitons (approximately 0.6 times
the upper (longitudinal) sound) in the presence of
mobile neighboring chains arose.

For the propagation of a twist defect with stretching,
the energy of a nonlinear wave in the coordinate ψ is
transferred into phonon modes φ (or, possibly, other
modes; see the discussion in Section 5) because of the
interaction of the fields φ and ψ. Conversely, the energy
of the nonlinear wave in the coordinate φ is transferred

0 50 100 150 200
0.2

0.4

0.6

0.8

t, ps

vdef /vφ

1

2

Fig. 7. Dynamics of a defect with initial velocity 0.9 times the
velocity of lower (torsional) sound in a polymer crystal:
variation of the average velocity with time with (1) immobile
and (2) mobile neighboring chains (the sharp cutoffs at the end
of the plots are not a physical effect; they are due to the aver-
aging procedure).
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into phonon (or other) modes ψ. The intensity of this
interaction, just as the interaction of a purely stretching
soliton with the phonon modes of neighboring mobile
chains, decreases sharply with decreasing velocity of
the wave, and the (second) limit of the velocity spec-
trum of twist solitons with stretching (~0.34 times the
lower (torsional) sound) arises even with immobile
neighboring chains. For initial defect velocities much
higher than this limit the defect slows down (with large
oscillations of even the average velocity; see Fig. 7,
curve 1). These oscillations are still noticeable with the
initial velocity of the defect 0.45 times the “torsional”
sound (above the limit where the velocity decreases;
see Fig. 6, upper curve), but they are no longer notice-
able for slow defects, whose initial velocities are
remain unchanged.

4.2. Dynamics of Torsional Defects with Stretching 
in a Chain Surrounded by Mobile Neighboring Chains

The simulation results for the evolution of torsional
defects with stretching with initial velocities of the
order of 0.9, 0.45, 0.2, and 0.1 times the velocity of
lower (torsional) sound in a crystal in stable equilib-
rium (Fig. 2a) with all mobile molecules are very close
to the results obtained for a sample in which the neigh-
boring chains are clamped.

Soliton-type mobility of defects is observed in the
numerical experiment: they move steadily along the
chain; the corresponding plot is very similar to Fig. 5,
the only difference being that the tangents of the slope
angles of the curves are smaller (see Figs. 6 and 7 for
the velocities) and the average velocities fluctuate
somewhat and decrease slightly even for the two slow-
est defects.

Deformations (along the axis of the molecule and
along the angle) accompanying a defect during motion
along a chain (“shadows”) arise on the mobile neigh-
boring chains near a defect. The form of the “shadows”
can be determined analytically in perturbation theory
for a purely stretching defect [20]. In the numerical
experiment we took as the initial condition the atomic
displacements and velocities using the analytical for-
mulas (9) and (10) only on a chain with a defect. It is
probably because the initial conditions are not com-
pletely “correct” that the velocities of the defects in the
steady state with mobile neighbors turned out to be less
than for immobile neighbors.

The oscillations of the magnitude and the hardly
noticeable additional decrease of the velocities (Fig. 6)
are the only direct consequences of the mobility of the
neighboring chains in the crystal. It is obvious why this
effect is so weak: the velocities of the defects are low,
and the interaction of the defects with the phonon
modes of neighboring chains become substantial, as we
saw in [11], only for velocities higher than the first limit
~0.6vψ ≈ 1.2vφ. It is interesting that near this first
boundary (with initial defect velocity 0.9vφ) friction on
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the phonon modes of neighboring mobile chains is still
so large that the velocity of a defect decreases much
more rapidly than for stationary neighboring chains, and
it decreases immediately down to the value of the lower
second boundary, after which it stops decreasing and no
longer fluctuates (Fig. 7, curve 2).

5. DISCUSSION

In the present paper it was found by molecular-
dynamics simulation that the dynamics of twist point
defects with stretching in a (cold) polymer crystal is of
a soliton character: defects retain their initial velocities
if they lie below a certain value (~0.34 times the veloc-
ity of the lower (torsional) sound—the theoretical limit
of the spectrum). The motion of a twist defect with
stretching in a chain in a polymer crystal with veloci-
ties below torsional sound is essentially independent
of whether the surrounding chains are mobile or
immobile.

In [21] the upper limit of the velocity spectrum of
twist solitons with stretching remained unnoticed in the
molecular-dynamics study of defects in a close model
of polyethylene with united atoms because the evolu-
tion of the solitons was followed for only a short time
(in the time available the solitons could traverse only
several tens of CH2 groups). In [4, 9] it was found for
other values of the parameters of the model crystal
(with immobile neighboring chains) by a numerical-
variational method (it was found that a numerical extre-
mum of the Lagrangian of the system exists for solu-
tions in the form of a solitary wave only for velocities
below a certain limit), but the reason why this limit
appeared was not discussed.

We believe that the reason is as follows: because the
fields φ and ψ interact with one another energy is trans-
ferred from the nonlinear wave in the coordinate ψ into
phonon modes φ (or modes localized near a kink) and,
conversely, energy is transferred from the nonlinear
wave in the coordinate φ into phonon modes ψ (or
modes localized near a kink).

We note that, of course, for the sine-Gordon equa-
tion no localized linear modes other than a translational
mode exist. However, in our analytical approximation
we actually “separated” the kinks, and only because of
this our equations all reduce to the sine-Gordon equa-
tions. In addition, in our theoretical analysis we con-
fined our attention to the simplest potential for the
interaction of the fields (3), which, however, approxi-
mates a real substrate to within about 10%. To increase
the accuracy to 2%, a term C(1 – cos4φn) with C =
−0.067 kJ/mole must be added; this leads to a double
sine-Gordon equation in the variable φ. Finally, multi-
ple harmonics can effectively be added to the main term
in (3) when the transverse displacements of atoms in
the zigzag plane are taken into account.

For the perturbed sine-Gordon equation, however, it
is known that, just as in the nonintegrable ϕ4 model, the
SICS      Vol. 91      No. 3      2000
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energy of the directed motion of a defect can be trans-
ferred not only to phonon but also to localized modes,
which can be excited “around” a nonlinear wave (for
certain types of perturbations see [22]; for the double
sine-Gordon equation the form of these modes was
obtained in [23]).

Thus, because the energy of a nonlinear wave is dis-
sipated into linear modes of the system an effective
friction arises, and the magnitude of this friction
decreases sharply with decreasing velocity of the wave,
so that a limit of the velocity spectrum of a twist soliton
with stretching appears even with stationary neighbor-
ing chains. The friction against the phonon modes of
neighboring mobile chains [11] is much smaller than
the interaction of the torsional and longitudinal degrees
of freedom of a defect, and consequently it is this inter-
action that limits the velocity of a defect in a cold poly-
mer crystal.

Of course, the “orbital” analytical approximation in
Section 3 cannot describe such a transfer of energy
from a nonlinear wave into linear modes of the system.
Further study of the evolution of the interacting fields is
required (analytical “nonorbital” and numerical).
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APPENDIX A

Possibility of Ruling Out Transverse Displacements 
of Atoms of a Flat Trans-Zigzag for Long Wavelengths 
in a Model with Absolutely Rigid Bonds between Atoms

The condition for the interatomic bonds to be rigid
gives in the linear approximation

(A.1)

where un and vn are the local Cartesian coordinates of
the atoms (see Fig. 1), and the third coordinate wn forms
a triplet with them.

If we confine our attention to waves with long wave-
lengths and switch from a discrete set {un(t)} to a field
u(x, t) (and similarly for v and w), then Eq. (A.1)
becomes

We can see that v ~ (c/4L)u (c is the period of the chain
and L is the characteristic scale of variation of u). Thus,
for long wavelengths the coordinate v can be neglected
in the zeroth approximation.

c0 v n 1+ v n+( ) s0 un 1+ un–( ),≈

v x t,( )
s0

2

2c0
--------l0ux x t,( ).≈
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APPENDIX B

Relation between the Constants of the Analytical Model 
and the Parameters of the Numerical Model 

of the Crystal

The inertial constants (5) can be easily obtained by
writing the kinetic energy of an atom in cylindrical
coordinates (z, r, φ) with r = const.

To express the constant Kψ in terms of Kθ, we shall
write the increment to the angle θn in the linear approx-
imation:

It is independent of w (in the linear approximation).
Using Eq. (A.1) it becomes

(B.1)

Switching to the variable ψn = (2π/ c)un, we obtain from
the formula (1) for the deformation energy of the
valence angle U3(θn – θ0) and the relation (B.1) the
expression (7) for Kψ.

To obtain the constant Kφ we note that the conforma-
tional angle τn between the atomic planes [nth, (n +
1)st, (n +2)nd] and [(n – 1)st, nth, and (n + 1)st] with
slow variation (for long-wavelength waves) is τn = π –
χn, χn ! 1. The angle χn in the linear approximation
does not depend on un and vn and is equal to

In a cylindrical coordinate system with r = const this
difference can be easily represented in terms of the dif-
ference of the angles φj:

(B.2)

Using the harmonic (in the small angle χn) approxima-
tion of the potential U4(τn) of the conformational angle
and switching to the continuum approximation, we
obtain from Eqs. (2) and (B.2) the relation (6) between
Kφ and the constants β and γ for the numerical potential.
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