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Abstract 

The quantum limit for the resolution of a small force using an optical transducer of a displacement with a coherent 
nonmodulated pump is proved to be less than the standard quantum limit if one measures the quadrature amplitude in the 
output wave, squeezed by the ponderomotive nonlinearity mechanism. This squeezing has a spectral dependence and we 
propose a procedure showing it. 

1. Introduction 

Quantum noise in a mechanical displacement 
sensor is the key problem for the interferometric 
gravitational-wave antenna (the LIGO project) and in 
some other fundamental experiments. Under a contin- 
uous coordinate measurement the back-action noise 
of the sensor is responsible for the limit of the sen- 
sitivity [ 1-31, known as the standard quantum limit 
(SQL). For the simplest optical transducer (Fig. 1) 
the back-action noise is caused by fluctuations of the 
ponderomotive force of light pressure: the amplitude 
fluctuations of the incident wave transform to phase 
fluctuations of the reflected one, and the conversion 
factor is proportional to the square root of the pump 
power (the power of the incident wave). 

The SQL for a coordinate is usually used to deter- 
mine the value of the minimum registered force. For 
the force Fs = F sin(oFt), acting on the free mass m 
during a time t ~ ,  which is a multiple of 27T/wF, the 
SQL is equal to F s Q ~  C" J-. Here and below 

we assume that there are no intrinsic mechanical noise 
and losses. 

A force measurement with an error less than FsaL 
is known to be theoretically possible in a continuous 
coordinate measurement if the noise of the meter is 
correlated in a special way [2,3]. One of the possible 
ways to break through the SQL is the use of a modu- 
lated pump [4], frequency anticorrelated states [5] or 
a pump in a squeezed state [6] (this squeezing should 
have a special spectral dependence; it is not clear how 
this can be realized). 

It was shown [7-91 that the SQL can be overcome 
even with a coherent nonmodulated pump - without 
using squeezed states, photon number states or any 
nonclassical states. For this one has to measure not 
the phase but a specially chosen squeezed quadrature 
amplitude B of the reflected wave (see Fig. 2). It is 
the light pressure mechanism (in fact - a ponderomo- 
tive kind of X ( 3 )  susceptibility) causing a back action 
that leads to squeezing of reflected light. Registration 
of B ( 8 )  allows one "not to see" the back-action per- 
turbation. 
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Fig. 1. Simplest optical transducpr of a mechanical displacement 
as a detector of the variation of the coordinate of the oscillator 
caused by the signal force. The plane em wave El is normal 
to the surface of an ideal mirror without absorption. The action 
of a signal force changes the coordinate of the mirror. It causes 
a phase shift of the reflected wave E2, which is detected in a 
modified balanced homodyne scheme. The differential photocur- 
rent J- = JI - J 2  is proportional to the quadrature amplitude 
B(19(t)) of the signal wave and the phase 8 ( t )  is determined 
by the phase of the local oscillator ELO. TO eliminate the fluc- 
tuations of the quadrature amplitudes of the local oscillator wave 
one should use large E L O ( ~ ) :  lELOl >> KIE21 (here IELoJ, IE21 
are the amplitudes of the electrical fields, K > 1 is the coefficient 
of the squeezing of the signal field Ez), also we assume the local 
oscillator field to be in a coherent state. 

In our case the squeezing of the reflected wave has 
a special feature: 6 depends on the spectral frequency 
4 = $ ( a ) .  Therefore the usual homodyne scheme 
(Fig. 1) (with a constant phase of the local oscilla- 
tor) is suitable for measureming the squeezed quadra- 
ture amplitude only in a narrow frequency band inside 
which one can neglect the dependence 6 = 6(a).  
In Section 2 we propose modulating the phase of the 
local oscillator during the averaging time in order to 
measure the spectral-dependent squeezing in a wide 
frequency band (i.e. a short averaging time, which 
is required in the LIGO experiment). We show that 
by choosing the phase modulation and the averaging 
function in a proper way the back-action noise can 
be fully compensated. Thus one can conclude that the 
error of the force measurement decreases with an in- 
crease of the pump power. 

However, there is a physical mechanism that lim- 
its the sensitivity in the force measurement with in- 
creasing pump power - radiative friction. (If the mir- 
ror moves in the same direction as the incident wave, 
the flux of incident photons becomes smaller because 
the light path lengthens. Thus the light pressure force 
depends on the velocity of the mirror.) In Section 3 
we show that this effect puts the limit for squeezing 
and therefore defines the minimal error of the force 

Fig. 2. If the incident wave is in a coherent state, on the phase 
diagram its fluctuations are described by a round spot, rotating at 
a distance Jii from the center of coordinates: the uncertainties 
of the quadrature amplitudes ( A B ~ )  and ( A B ~ )  are equal. The 
ponderomotive nonlinearity (light pressure mechanism) produces 
a phase-amplitude correlation in the reflected wave. This means 
the squeezing of the Fourier transform of the quadrature amplitude 
B(f2,tY) - the circle turns into an ellipse. The points A and C for 
the incident wave transform to the points A' and C', respectively, 
for the reflected wave. The amplitude-phase correlation appears 
- the reflected wave is in the squeezed state. The action of the 
minimal signal force F,i, to be registered has to change the phase 
of the reflected wave by the value of the phase uncertainty of 
the incident wave Aqcoh, but only if one measures the quadrature 
amplitude B(I9), which coincides with B1 in this figure. Then 
the force F,,, may be less than F ~ Q L ,  because Aqcoh 1. 1 / 2 4  
and the error of the force measurement decreases with increasing 
pump power. The two states of the reflected wave with and without 
action of the signal force are shown by solid and dashed lines. 

measurement: F*, - & F ~ ~ ~  d G  ( W, is the fre- 
quency of the optical pump, 6 the numerical factor of 
order unity), which can be achieved at a certain op- 
timal pump power. This result however is better than 
the minimal error obtained in Refs. [8,9]: F*,, z 
SFSQL (wF/w,) 'I4, where the possibility of full com- 
pensation of the back action was overlooked. 

The proposed procedure is not a quantum nonde- 
molition (QND) measurement - there is no nondis- 
turbed variable of the mechanical oscillator. Instead, 
the reflected wave brings out little information about 
the coordinate, momentum or their combination, be- 
cause they are strongly disturbed by the measuring de- 
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vice. Only variation of the coordinate caused by the 
signal force is registered [ 101. Such procedures may 
be called quantum variation measurements. We can 
conclude that the problem of detecting a signal action 
and the problem of the QND measurement are differ- 
ent. Each of them has its own strategy. In general one 
is not related to the other. 

2. Measurement of the quadrature amplitude 

The differential photocurrent J- in the homodyne 
scheme (Fig. 1 ) is proportional to the quadrature com- 
ponent B(6( t ) ,  t )  of the reflected wave: J-(t) = 
JOB ( 4 ( t ) ,  t), with the angle 6 ( t )  determined by the 
phase of ELo (here Jo is constant). However, the mea- 
surement is not instantaneous and includes averaging. 
So an experimentalist measures the value 

and in doing so has the opportunity to choose the av- 
eraging function @(t) and the modulation of the local 
oscillator phase 6 ( t ) .  Analyzing the noise of the value 
BT one can conclude that (see the Appendix) the back 
action can be fully compensated under the following 
condition (we write it in both time and spectral do- 
mains), 

where 

and 

g s ( a )  = gs(t) ei"' dt, I 

are their Fourier transforms, 

K ( a )  = 46~ ,8~ / (& - a2 - 2iSRa), 

where SR = 2W/mc2 is the coefficient of the ra- 
diative friction of the mechanical oscillator, W is 
the mean power of the incident wave, K(t)  = 
(27~)-' J-: K ( 0 )  e-'" d a .  

Under conditions (2), (3) BT has the following 
simple form, 

T 

- B T =  Jgs(,t) k P h ( t )  
0 

Here a(w) , a+(w) are the annihilation and creation 
operators, describing quantum fluctuations of the inci- 
dent wave (their commutators are [a(o)a+(wl)  ] = 
6 ( 0  - w'), the averages (af (o)a(wl) )  = 0, and we 
denote a =a(@,  + a ) , a ?  = a+(w, - a ) ) ,  Aph are 
the phase fluctuations of the incident wave (we as- 
sume the mean amplitude of the incident wave to be 
real ) , 

Fs(t) is the signal force, Fs(L?) = S-z Fs(t) ein' dt 
is its Fourier transform. 

The sensitivity of the proposed scheme is deter- 
mined by the achievable value of the squeezing (A B:). 
For the measurement at frequency 0, (in the nakow 
frequency bandwidth) one can obtain from (4) : 

where the dispersion (AB?~,~)  is calculated for co- 
herent light. The squeezing is restricted because the 
coefficient IK(f2,) 1 is limited by the maximum value 
2w0/00, which is achieved at W -+ oo. This limit is 
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the result of radiation friction introduced bv the mea- 
suring device. 

3. Detection of the force 

To evaluate the minimal detectable force with an a 
priori known waveform (template), let us apply the 
recipes of the theory of optimal filtration to the suffi- 
cient statistic BT (4).  The signal-to-noise ratio is 

Within the free mass approximation (& >> wM) this 
integral has a maximum at the optimal pump, 

and the minimal detectable amplitude of force is equal 
to 

Here 11, I2 are constants of order unity. We should 
note that the maximum sensitivity is predicted for 
large pump values that may not be realized in the ex- 
periment. (The condition SR % w~ means that the 
signal force and the force of radiative friction are of 
the same order.) In the scheme using a Fabry-Perot 
resonator with a resonance pump the requirement on 
the pump is somewhat easier, WoPt N &m62wF[~2 + 
( ~ L w ~ / c ) ~ ] ,  but also is hardly realizable. Here R is 
the transmissivity of the input mirror (losses are ab- 
sent in both mirrors), L is the separation between mir- 
rors. (This formula is obtained under the assumption 
that the rigidity, introduced by the optical resonator 
into the mechanical system, is compensated.) Note 
that Wept 21 WSQL(W~/WF), where WSQL is the value 
of the pump power at which the SQL is achieved (the 
same value is projected in LIGO). For m = 1 kg, 
WF = lo2 S-l, L = 4 km, w, = 10" s-', R = 
the value of WsQL is about 1 W and Wmi, cx 1013 
W! One can conclude that with a reasonable pump 
power WsQL << W << Wept, the error of the force mea- 
surement monotonically drops with increasing pump 
power: F E F ~ ,  ,/- -- F ~ Q L ~ ~ .  For 
example, with W = lo4 W one can obtain the estima- 
tion F II I O - ~ F ~ Q ~ .  

fig. 3. The scheme of the QND measurement of the number 
of quanta using the principle of quantum variation measurement. 
The meter wave Em serves to registrate the displacement of the 
movable mirror caused by the ponderomotive light pressure force 
of the signal wave Es.  

There is also another cause why the large value of I 
I the pump power is not worth using. All the above con- 

siderations are based on a linear expansion in terms 
of N wOX/c and N a/&. It is only in this approx- 

i 
imation that the distribution of fluctuations in the re- 
flected wave is described by the regular ellipse shown 
in Fig. 2. However taking account of the quadratic 
terms - ( w ~ x / c ) ~  and - (a / f l ) '  results in the 
bending of the ellipse and consequently in the increase 
of the uncertainty of the squeezed quadratic amplitude. 
One can neglect this deformation under the condition: 

<< 1, which is not valid for Wept 
and the parameters listed above. It is worth noting that 
this restriction is not a principal one but is connected 
with the linear procedure of the measurement of the 
quadratic amplitude, which allows one "to distinguish 
regular ellipses". To overcome this obstacle one has 
to modify the linear procedure into a nonlinear one 
in such a way so as "to distinguish the bent ellipses". 
The discussion of such a procedure will be the subject 
of a later publication. 

The above described measurement procedure can 
be used for a QND measurement of the number of 
optical quanta, if one has another resonator on the op- 
posite side of a movable mirror (Fig. 3). The wave in 
the right-hand side resonator (let its frequency, num- 
ber of quanta and duration be w,, n, 7, respectively) 
produces a pressure force that is registered by a meter 
wave in the left resonator. From (5) one can obtain 
a measurement error An of the quantum number (we 
assume that LO/c << R), 
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With w, = 1015 s-', 7 = 0.01 s, R = rn = 0.1 
g we obtain the numerical estimation An N 

Therefore one can detect a single quantum without 
its demolition. Note that the main obstacles for the 
experimental realization of this scheme are losses in 
the resonator mirrors and the intrinsic thermal noise 
of the mechanical oscillator. 

4. Conclusion 

The main advantage of the proposed measurement 
scheme in the authors' view is that it allows one to 
overcome the SQL in the usual scheme of the contin- 
uous measurement of a coordinate with a usual coher- 
ent laser pump (as planned in the LIGO) experiment 
only by adding the modified homodyne scheme with 
a phase modulated local oscillator. However, it can be 
shown that for a squeezed pump with small phase un- 
certainty A q  << Aqcoh the error A F of the force mea- 
surement may be considerably less than (5): AF 11 
FminAp/Aqcoh or the error A F = F ~ ,  can be obtained 
with a smaller pump power. However, the squeezed 
pump is hard to realize in an experiment. 

It should be mentioned that the above considera- 
tions are valid for mirrors with zero losses. In the 
presence of losses the sensitivity for the transducer 
of the displacement with an optical Fabry-Perot res- 
onator (or with a Michelson interferometer, as planned 
in the LIGO) in the force measurement is limited by 
the value fi,,, N ~ ' F s ~ L (  R/Q) 'I4 [9], where R is the 
sum of the loss coefficients in all mirrors and Q is the 
transmission coefficient of the input mirror, 4' is about 
unity. 
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Appendix A 

The coordinate of the mechanical oscillator X(t) is 
changed by the action of the signal force Fs(t) and 
the fluctuating part of the light pressure (back action) 
as follows (see the notations in Section 3) [7,8], 

where X(O) = STrn X(t) eiRt dt is the Fourier trans- 
form of X(t). The annihilation operators describing 
the quantum fluctuations of the reflected wave b(w) 
(commutators, averages and all notations are as for 
a(w))  are 

The quadrature amplitude B(.4(t), t) of the field E2 
in the reflected wave is then expressed as follows, 

Using (A.l), (A.2), BT can be written in the time 
domain in terms of the functions gc(t) and gs ( t) , 
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where the mean amplitude of the incident wave is as- 
sumed to be real and amplitude fluctuations are intro- 
duced, 

( a  + a?) e-int d a .  

-m 

BT may also be written in the spectral domain, 

+ -L 2~ T g s ( - ~ )  ( ( a  - a*) / i  

-00 

It is easy to show that when under conditions ( 2 ) ,  
( 3 )  the noise of BT is reduced to a minimum the cor- 
responding expressions in square brackets in (A.3), 
(A.4)  vanish. The noise of BT depends only on the 
phase noise of the incident wave ( 4 ) .  This means that 
the back action is fully compensated during the av- 
eraging process through a proper choice of @ ( t )  and 
d t ) .  

An important point is that gc( - 0 )  and gs( -0) 
may be complex functions. If one restricts oneself to 
real functions (as in Refs. [7,8,11] ), compensation 
cannot be full because the imaginary part of K results 

from radiative friction. It is this incomplete compensa- 
tion that leads to the result Ffi, E tFsQL(wF/w,)114 
instead of Ffi, E t ~ ~ ~ ~ d G .  
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