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Methods for protein modeling and design advanced
rapidly in recent years. At the heart of these compu-
tational methods is an energy function that calculates the
free energy of the system. Many of these functions were
also developed to estimate the consequence of mutation
on protein stability or binding affinity. In the current
study, we chose six different methods that were previously
reported as being able to predict the change in protein
stability (DDG) upon mutation: CC/PBSA, EGAD, FoldX,
I-Mutant2.0, Rosetta and Hunter. We evaluated their per-
formance on a large set of 2156 single mutations, avoiding
for each program the mutations used for training. The
correlation coefficients between experimental and pre-
dicted DDG values were in the range of 0.59 for the best
and 0.26 for the worst performing method. All the tested
computational methods showed a correct trend in their
predictions, but failed in providing the precise values.
This is not due to lack in precision of the experimental
data, which showed a correlation coefficient of 0.86
between different measurements. Combining the methods
did not significantly improve prediction accuracy com-
pared to a single method. These results suggest that there
is still room for improvement, which is crucial if we want
forcefields to perform better in their various tasks.
Keywords: computational protein design/energy functions/
estimating protein stability/protein engineering

Introduction

Proteins are the working horses of the cellular machinery.
Protein structure and function are mutually interdependent
(Fersht, 1999). The same chemical and physical forces
govern structure formation, their molecular interactions and
enzymatic activities (Cohen et al., 2008). The major driving
forces for protein folding are the burial of hydrophobic
groups, formation of optimal non-covalent interactions and
maximization of the entropy (Pickett and Sternberg, 1993;
Fersht, 1999). The final structure of the monomer or complex
is a result of a subtle balance between the entropic effects
and different stabilizing interactions (enthalpy) (Fersht,
1999).

Solving the three-dimensional structure of proteins (using
NMR or X-ray crystallography) provides atomic details on
their architecture, but not on the forces stabilizing them.

These are studied by introducing mutations and measuring
their energetic consequence (Matthews, 1993). Most of the
mutations are either neutral or destabilizing proteins;
however, many stabilizing mutations have been found as well
(Serrano et al., 1993; Selzer et al., 2000). A good compu-
tational method to predict stability changes upon mutation
will help in designing new or altered proteins with specific
levels of stability, enzymatic activity and binding to other
molecules (proteins, DNA, drugs, etc.). Moreover this will
reflect our basic understanding of the rules that govern
protein folding and binding processes, and will be very
useful in drug design.

A computational method has to balance between two tasks
to predict protein stability upon mutation. One is the search
problem, i.e. to search through the three-dimensional confor-
mational space (Voigt et al., 2000). As one further divides
the space into smaller (higher resolution) bits, the search is
growing exponentially (Pierce and Winfree, 2002). The
second is the scoring problem. Theoretically, using QM cal-
culations, these two entwined problems can have an exact
solution (Morozov et al., 2004). However, for proteins with
thousands of atoms embedded in water, this is not practical.
Thus, the degrees of freedom for both the search and scoring
functions must be reduced. For example, the search space
can be reduced by considering only preferred side chain con-
formations (rotamers) (Dunbrack, 2002). Scoring functions
can be simplified by considering only pairwise interactions.
Forcefields take their energy functions from: physical-based
potentials (PBP), which are based on the fundamental ana-
lyses of the forces between atoms (Brooks et al., 1983;
Pearlman et al., 1995; Lazaridis and Karplus, 2000), and
knowledge-based potentials (KBP), which rely on statistical
analysis of different properties extracted from protein data-
bases (Tanaka and Scheraga, 1976; Miyazawa and Jernigan,
1985). Both methods incorporate terms that describe different
aspect of the protein structure. For example, PBP may use
Coulomb’s law to describe electrostatic interactions while
the KBP may extract the probability to observe two charged
atoms as function of the distance between them from known
PDB structures. An intricate balance of the different energy
terms is needed to correctly estimate the free energy of
binding or folding (Makhatadze and Privalov, 1995; Frisch
et al., 1997; Reichmann et al., 2007).

Many methods have been developed to predict change in
protein stability utilizing PBP, KBP or a hybrid of them. In
this study, we evaluate six different methods: CC/PBSA
(Benedix et al., 2009), EGAD (Pokala and Handel, 2005),
FoldX (Guerois et al., 2002), I-Mutant2.0 (Capriotti et al.,
2005), Rosetta (Rohl et al., 2004) and Hunter (V.P., M.C.
and G.S. unpublished). The first two rely on existing
physical-based forcefields. EGAD utilizes OPLS-AA force-
field and was trained to reproduce experimental binding affi-
nities. CC/PBSA generates an ensemble of structures and1The two authors contributed equally to this work.
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uses Gromacs to calculate averaged scores. FoldX and
Hunter are KBPs that use different terms, though both were
trained to reproduce experimental results. I-Mutant2.0 relies
on SVM regression to reproduce experimental stability
changes, whereas Rosetta is a hybrid of KBP and PBP.
Rosetta was trained to reproduce the native sequence of
native proteins. In this study, these methods were tested on a
large set of single mutations, avoiding mutations that had
been used for each software in its training.

Our results indicate that current computational methods
predict the general trend of free energy change upon
mutation, though they fail in details.

Methods

Data set of mutations
For the purpose of this study, a data set of 2156 mutations
was compiled from two sources. The first source was a list of
964 single mutations that was published previously by
Guerois et al. (2002). Five mutations were excluded from
this list as either there was a mismatch with the wild-type
residue in the protein crystal structure or the site of mutation
had an incomplete side chain. Additionally, several PDB
structures were replaced by others: 1LMB was used instead
of 1LRP (Ca-only structure), 1BKS instead of 1WSY (obso-
lete), 1ANF instead of 2MBP (obsolete) and 3CHY instead
of 1CEY (NMR structure).

The second set of 2972 single mutations was obtained
from the ProTherm database (Kumar et al., 2006) and was
filtered to exclude any mutation that was already listed in the
first set, or where the structure of the protein was determined
by NMR. The remaining 2048 mutations were joined with
the first set, resulting in 3007 mutations. Some of the
mutations in the data set were measured several times.
Therefore, in such situations, the average value was calcu-
lated and mutations were presented only once. The final set
lists 2156 mutations. In several cases, the protein structure of
wild-type had incomplete side chains. Those were automati-
cally reconstructed using Swiss-Pdb Viewer (Guex and
Peitsch, 1997).

Mutations with multiple measurements
As was mentioned above, for some of the mutations in the
ProTherm database, there were two or more experimental
measurements. These 406 mutations were extracted and used
to estimate the magnitude of the experimental error between
the measurements. To evaluate a correlation between exper-
imental data, we randomly picked two measurements for
each mutation and plotted one against the other for all 406
mutations.

Backbone movement upon mutation
The set of 146 single mutations, for which wild-type and
mutant structures exist, were obtained from the ProTherm
database. It was assured that the structures differed exactly
by one residue in the site of mutation. RMSDs between wild-
type and mutant structures were calculated with the ProFit
software (http://www.bioinf.org.uk/software/profit/).

Calculating change in protein stability
CC/PBSA This method uses a combined strategy to predict
stability changes. At first, the Concoord program is used to
generate an ensemble of structures. Then, the Gromacs
forcefield is applied to evaluate structures and calculate
averaged score. The designated web server (http://
ccpbsa.bioinformatik.uni-saarland.de/ccpbsa/) was used to
run the calculations. We used the ‘Protein Stability’ option
in the job submission page. As the method is computation-
ally demanding, only a limited set of 478 mutations was sub-
mitted for analysis.

EGAD EGAD is a method that utilizes the OPLS-AA force-
field, with the main focus of performing protein design on
fixed backbone scaffolds. To run scanning mutagenesis, the
‘scan_mut’ option was used as outlined in the EGAD
manual (http://egad.ucsd.edu/EGAD_manual/). Owing to the
fixed backbone approach, EGAD does not allow calculating
DDG for mutations to or from: Cys, Gly or Pro, reducing the
number of mutations by 515. Only structures with zero
clashes were included in the final EGAD mutation subset.
This further reduced the number of mutations by 576; thus,
only half of the mutations could be evaluated using EGAD.

FoldX The recent version of FoldX forcefield (version 3.0)
was obtained from http://foldx.crg.es/. As a first step, the
structures of the wild-type proteins were minimized using the
‘RepairPDB’ command. Then, individual mutations were
built using ‘BuildModel’ command and DDG values were
extracted from the FoldX output files.

Hunter Hunter is a KBP for accurate structure modeling that
relies on a new method for high-resolution description of
residue–residue interactions (V.P., M.C. and G.S., unpub-
lished). This method defines the interaction of two residues
in terms of four distances (4-D), which are calculated
between two pairs of atoms. The pair of atoms can be chosen
either on a side chain or on the backbone of a residue to
define side chain–side chain (ScSc) and/or side chain–main
chain (ScMc) interactions. Such description puts strict con-
straints on the mutual arrangement of chosen atoms in two
interacting residues and allows analyzing in detail preferable
geometry of residue interactions. The statistical preferences
on 4-D geometry of 190 ScSc and 18 ScMc interactions
were derived from a large set of high-resolution protein
structures and were used as a basis for Hunter. Originally,
Hunter was trained for optimal side chain modeling on a test
set of proteins. In addition to a side chain–side chain term
(EScSc) and a side chain–main chain term (EScMc), it
includes a rotamer probability term (Erot) and a modified
Lennard-Jones term (Elj):

DE ¼ DEScSc þ DEScMc þ DErot þ DElj ð1Þ

For the current study, Hunter was trained to predict the
change in protein stability upon mutation. The mutant and
the corresponding wild-type proteins were modeled for each
mutation in the data set (fixed backbone). Any residue
within 5 Å from the site of mutation was allowed to repack.
Then, for each mutation, the difference in scores between
mutant and wild-type protein was calculated (DDEScSc,
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DDEScMc, DDErot and DDElj) and the optimal set of weights
was derived to reproduce experimental DDG values using
least square fitting. The data set of 2156 mutations was
divided into training and test sets. All mutations with DDG
values below 20.5 kcal/mol or above 1.5 kcal/mol were
identified and half of them (456 mutations) were randomly
chosen for the training set. The final regression model had a
correlation factor of 0.47 on the training set and 0.45 on the
test set (1700 mutations).

I-Mutant2.0 The Python program for calculating stability
change was obtained from http://gpcr.biocomp.unibo.it/cgi/
predictors/I-Mutant2.0/I-Mutant2.0.cgi and was run for every
mutation in the data set using structural information.

Rosetta The Rosetta software (version 2.2.0) was obtained
from http://www.rosettacommons.org/. The structures of
wild-type proteins were minimized using Rosetta ‘idealize’
protocol. Then, mutant proteins were modeled using ‘design’
mode. Any residue within 5 Å from the site of mutation was
allowed to repack. For each mutant protein in the data set, a
corresponding wild-type protein was built and evaluated by
allowing repacking the same set of residues as in the mutant.
The stability scores of the mutant (DGmut) and wild-type
protein (DGwt) were extracted from the output files and the
stability change upon mutation (DDG) was calculated as
DGmut 2 DGwt. During structure modeling, the backbone
was kept fixed. It should be noted that Rosetta was not
specifically trained for estimating protein stability changes
upon mutations, but for protein design.

Per structure prediction accuracy
All 2156 mutations in the data set were divided into separate
groups based on the wild-type protein structure. Only pro-
teins for which data of more than 50 mutations were avail-
able were used for the analysis. The correlation coefficient
was used to evaluate the method’s ability to predict exper-
imental DDG values for a specific protein. Since some
mutations were excluded from the different methods (i.e.
mutations that were used as part of the training set for a
specific method; see Results), the number of mutations per
protein could be ,50 in some groups.

Combining the methods
Combining a number of methods may improve prediction.
The six methods used here can be combined into 57 possible
combinations of two or more methods. For each combination,
a common subset of mutations was determined, i.e. those
mutations that all methods under consideration include after
removing mutations that have been used for their training. As
the number of common mutations can be very low, only
16 combinations with .400 mutations were used. The com-
bined DDG of each mutation was calculated as a simple
average of DDGs predicted by individual methods. The
common subset of mutation for each combination was
divided randomly in two halves (the training set and the test
set). Then, each combination was evaluated separately on the
two halves. As the result of the evaluation depends on the
original division of the data, the whole procedure was
repeated 100 times and the average result and standard devi-
ation was obtained.

Classification
All mutations in the data set were classified based on two
criteria. In the first classification, all mutations were con-
sidered either as stabilizing (DDG , 0) or destabilizing
(DDG . 0). In the second classification, mutations were
classified as being hot spot (jDDGj . 2 kcal/mol) or not
(jDDGj, 2 kcal/mol). The prediction performances were
evaluated based on three measures: accuracy, sensitivity and
specificity. Accuracy is defined as a percentage of correctly
identified mutations out of total number of mutations (TP þ
TN)/Total (TP, true positive; TN, true negative). Sensitivity
is defined as TP/(TP þ FN). Specificity is defined as TN/
(TN þ FP) (FN, false negative; FP, false positive).

Results

Assessment of the different algorithms in predicting
stability changes
We calculated the change in protein stability (DDG) on a
data set of 2156 mutations using six different methods. To
objectively compare the different algorithms, we eliminated
from each method those mutations that were used for train-
ing, as reported in the original publications. For EGAD and
Rosetta, we noted that many predictions were highly unrea-
listic. Examining individual mutants indicated that the
problem stems from clashes in the modeled structures.
Therefore, when a clash was reported in the EGAD output
file, we removed the mutant from further consideration. In
total, 576 mutant structures had clashes. Adding to this the
515 mutants that could not be modeled by EGAD (due to
residue type) resulted in a reduction of the number of
mutations that were evaluated to half (from 2156 to 1065).
On the positive side, cleaning the data, substantially
improved the performance (from r ¼ 0.16 to 0.59). The
Rosetta method does not explicitly indicate whether a struc-
ture has a clash; therefore, we used the following strategy:
the maximal repulsive energy per residue in an idealized
structure was identified, and if any residue in the modeled
mutant protein had a repulsive energy above a cutoff of 7.1
(which is the highest value observed in minimized wild-type
structures), then the mutation was excluded. In total, 243
mutations were discarded, improving the correlation from
0.05 to 0.26 (Table I and Fig. 1).

A plot of the performance of the different methods is shown
in Fig. 1. We also report on the correlation coefficient and the
slope of the linear fit. A slope of 1 suggests that the method is
well calibrated. Interestingly, all the slopes were below 1, and
thus they underestimate the experimental results. The best per-
forming method was EGAD (r ¼ 0.59), followed closely by
CC/PBSA, I-Mutant2.0, FoldX and Hunter. However, EGAD
was also the only method that could not model most mutations.
Table I shows how the different methods perform on specific
type of mutations. Mutations were divided into three classes:
special mutations (involving Gly and Pro), mutations to alanine
and all others. Interestingly, DDG values for special and
alanine mutations were predicted with the same level of accu-
racy, although mutations of Gly and Pro may affect the back-
bone and thus will be more difficult to predict. Non-alanine
mutations were always predicted less accurately than mutations
to Ala. Predicting DDGs for buried residues worked better than
for exposed residues, except for CC/PBSA and Rosetta.
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Table I. Accuracy of predicted change in DDG upon mutation

Method Speciala Alanine Non-alanine Exposed Buried

r n r n r n r n r n

CC/PBSA 0.73 83 0.62 152 0.41 243 0.52 336 0.50 142
EGAD — — 0.63 507 0.45 558 0.45 747 0.56 318
FoldX 0.48 191 0.49 124 0.46 885 0.43 742 0.50 458
Hunter 0.46 310 0.40 477 0.37 807 0.35 1031 0.47 563
I-Mutant2.0 0.56 281 0.52 351 0.38 301 0.44 531 0.53 402
Rosetta 0.25 390 0.32 603 0.23 920 0.35 1245 0.13 668
Average 0.50 0.50 0.38 0.42 0.45

Method Extended Helix Loop All mutationsb Outliersc

r n r n r n r n n

CC/PBSA 0.68 140 0.54 153 0.42 185 0.56 478 –
EGAD 0.66 307 0.56 367 0.50 391 0.59 1065 1091
FoldX 0.48 318 0.48 460 0.55 422 0.50 1200 –
Hunter 0.53 461 0.46 546 0.33 587 0.45 1594 –
I-Mutant2.0 0.57 375 0.56 241 0.39 317 0.54 933 –
Rosetta 0.22 551 0.20 633 0.34 729 0.26 1913 243
Average 0.52 0.47 0.42 0.48

For each group, the correlation coefficient (r) and the number of mutations (n) are given.
aSpecial are the mutations involving Gly and Pro.
bThe total number of mutations used to evaluate each method.
cNumber of excluded mutations due to clashes. The number for EGAD includes also 515 mutations involving Gly, Pro, and Cys.

Fig. 1. Assessment of the different algorithms in predicting stability changes. Each method was tested on set of mutations that are not part of the training set.
The correlation coefficient (r) and the equation of regression line (y) are given at the top left corner of each panel. A regression line is represented in solid, the
dashed line is y ¼ x. The number of mutations for each method is given in Table I.
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Finally, classifying residues based on secondary structure type
indicated that predicting DDG of mutations located in b-sheets
was best for four methods, whereas for FoldX and Rosetta,
mutations in unstructured regions were best predicted.

As seen in Fig. 1, none of the methods was able to accu-
rately predict DDGs for all mutations, as there is a significant
deviation between experimental and calculated values.
However, it is very important to note that in spite of errors
in details, all the methods demonstrated a correct trend.
This becomes particularly evident in Fig. 2. For this figure,
all mutations were binned into 1 kcal/mol intervals, from 24
to 8 kcal/mol (based on the experimental DDG values).
Then for each bin, the average predicted DDG was deter-
mined and plotted against the average experimental value.
The average values show a much higher correlation coeffi-
cient compared with those shown in Fig. 1 (however, with a
slope below 1). In this kind of analysis, Hunter and FoldX
performed best (r ¼ 0.96) followed closely by CC/PBSA,
EGAD, Rosetta and I-Mutant2.0. This shows again that all
the methods work well on averages, but less so on specific
mutations.

Testing the methods on individual structures
Next, we evaluated the performance of the methods on
individual proteins where sufficient data were available
(Table II). A large variance in performance between methods
for individual structures was observed. For example, effects

of mutations in T4 lysozyme (PDB ID 2LZM) were
predicted very well using I-Mutant2.0, but quite poorly using
Rosetta. We found also extensive variance in prediction of
the different structures using the same method. For example,
the correlation coefficient of EGAD varied from 0.05 to 0.69
for mutants placed on different proteins. Yet, in general, all
the methods seem to perform somewhat better on individual
proteins than on all the mutations combined.

Combining different methods
We tested the possibility to improve DDG predictions by
combining results obtained for the same mutant using differ-
ent methods. We tried all possible combinations of six differ-
ent methods with sufficient number of mutations (see
Methods for details). The largest improvement was observed
for a set of 407 mutants for the combination of EGAD,
I-Mutant2.0 and Rosetta (Fig. 3, r ¼ 0.64). The different
training sets persistently yield this combination as the best.
However, even though the combined result of EGAD,
I-Mutant2.0 and Rosetta was better than any of the six
methods individually, correlation factor for EGAD alone
(r ¼ 0.62) on this set of 407 mutations was very close, and
within the standard deviation of the combined method
(SD ¼ 0.03). In addition, only 7 out of 16 tested combi-
nations showed improved correlation coefficient compared
with the best result obtained by individual method on the
same set of mutations.

Fig. 2. Correlation between experimental and average predicted DDG values. The data set of mutations was binned according to their experimental DDGs,
from which the average DDG was calculated for each interval (given as black solid dots). The solid line is a regression line, the dashed line is y ¼ x. The
correlation coefficient (r) between experimental and average predicted DDG, and the equation of the regression line are given at the top of each panel.
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Predicting hot spots
Often we are more interested to know whether a mutation is
stabilizing or destabilizing, or to identify hot spots, than to
obtain the exact DDG value. Results presented in Table III
show that depending on the method, 69–79% of the
mutations were correctly predicted as stabilizing or destabi-
lizing. Next, we evaluated the ability of the methods to
detect hot spot residues (jDDGj . 2 kcal/mol). Table III
reports hot spot predictions based on accuracy, sensitivity
and specificity (see Methods for details). Among the evalu-
ated methods, EGAD was the most accurate in identifying
hot spots. It had the highest percentage of correctly identified
hot spots (accuracy) and the highest sensitivity, even though
EGAD is not the most specific method.

Computational and experimental errors
We calculated the average unsigned error for all methods
under consideration. As can be seen in Table IV, the average

difference between experimental and predicted DDG values
was �1.2 kcal/mol. To reassure us that this is not the result
of inaccurate experimental data, we also estimated the mag-
nitude of experimental error. This was determined based on
a set of mutations for which data were reported at least twice
(see Methods for details). Plotting the individual measure-
ments one against the other resulted in a straight line with a
correlation coefficient of r ¼ 0.86 (Fig. 4). The average
unsigned error of the experimental data was 0.44 kcal/mol,

Table III. Predicting stabilizing/destabilizing mutations and hot spots

Method Stabilizing/
destabilizing

Hot spot

Accuracy (%) Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

CC/PBSA 78.6 73.8 38.4 89.5
EGAD 71.0 80.0 63.1 87.0
FoldX 69.5 74.2 48.4 83.5
Hunter 69.4 73.7 49.6 85.4
I-Mutant2.0 77.5 75.4 50.0 87.0
Rosetta 73.4 67.5 52.0 75.4

For definitions of accuracy, sensitivity and specificity, see the Methods
section.

Table IV. Computational and experimental error in DDG determination

Method Average unsigned
error (kcal/mol)

Standard deviation
(kcal/mol)

CC/PBSA 1.03 0.96
EGAD 1.00 0.95
FoldX 1.28 1.37
Hunter 1.09 0.92
I-Mutant2.0 1.01 0.86
Rosetta 1.68 2.32
Average 1.20 1.23

Best combinationa 0.80 0.78
Experimental dataa 0.44 0.61

aSee Methods and Results for details.

Fig. 3. Combining methods to improve DDG prediction. EGAD,
I-Mutant2.0 and Rosetta were used to predict DDG over a set of 407
mutations. The average of these three methods was calculated for each
mutation and plotted versus experimental DDGs. The results were compared
with those achieved using EGAD alone on the same set (dotted line).

Table II. Evaluating predicted values on individual structures

PDB ID CC/PBSA EGAD FoldX Hunter I-Mutant2.0 Rosetta

r n s r n s r N s r n s r n s r n s

1a2p 0.58 68 0.5 0.60 56 0.8 - - - 0.56 37 0.5 - - - 0.29 64 0.4
1bni 0.61 94 0.3 0.17 68 0.5 0.73 95 0.8 0.55 44 0.6 0.83 12 0.4 0.42 91 1.0
1bvc 0.57 57 1.1 0.49 46 1.2 0.45 54 0.9 0.30 30 0.4 - - - 0.56 37 2.0
1hz6 - - - 0.65 43 0.7 - - - 0.52 32 0.6 0.75 57 0.6 0.46 56 0.8
1lz1 - - - 0.05 48 0.3 0.61 82 1.3 0.44 36 0.5 20.65 9 20.3 0.14 74 0.4
1stn - - - 0.62 156 0.8 0.73 16 0.9 0.70 135 0.5 0.62 249 0.5 0.28 279 0.4
1vqb - - - 0.17 62 0.4 0.53 92 0.3 0.45 46 0.2 - - - 0.17 83 0.3
1ypc - - - 0.69 47 0.7 - - - 0.59 31 0.3 - - - 0.76 64 0.7
2lzm - - - 0.48 194 0.8 0.63 163 0.8 0.57 116 0.7 0.87 14 0.6 0.23 216 0.6
2rn2 - - - 0.31 52 0.4 0.51 65 0.6 0.13 35 0.1 - - - 0.33 50 0.7
Average 0.58 0.6 0.40 0.7 0.59 0.8 0.48 0.4 0.48 0.4 0.36 0.7

For each group, the correlation coefficient (r), the number of mutations (n) and the slope of the regression line (s) are given. The dash sign (-) denotes cases
where the number of available mutations was zero.
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much below that found between experimental and calculated
values.

Discussion

In the current study, we evaluated the accuracy of common
methods used to predict stability changes in proteins upon
mutation. We did this to compare the methods in a non-
biased way, in order to assess their strength and weaknesses.
On the positive side, all the methods were able to produce a
correct trend in their predictions. However, they frequently
failed in details. Comparing our results with those published
in the original papers showed that none of them performed
as good as reported (between r ¼ 0.7 and 0.8). Mutations
may introduce structural changes, which can be modeled
with some degree of success (Kelley and Sternberg, 2009).
To evaluate whether structural rearrangements upon
mutations is indeed a major cause of concern, we calculated
the RMSD of backbone movements upon single mutation
and found it to be on average only 0.34 Å (as evaluated on a
set of determined mutant structures, see Methods).
Therefore, the additional complexity of potential backbone
movements can be neglected, as indeed done in all of the
methods. Therefore, problems in correctly estimating DDGs
suggest inaccuracies in the scoring functions, which only
estimate the forces. The six methods evaluated here utilize
different classes of energy functions. EGAD and CC/PBSA
are PBP, Hunter, FoldX and Rosetta are hybrid of PBP and
KBP and I-Mutant2.0 is an SVM-based tool. The prediction
accuracy achieved by the three forcefield classes was com-
parable. A more detailed analysis of the types of mutations
that were easier to predict has shown that mutations to
alanine were more predictable, as were buried mutations and
those located in b-sheets (Table I). Non-alanine mutations
are expected to be more difficult to predict as they introduce
a new residue that may occupy a larger volume and make
new interactions, whereas Ala mutations basically leave a
cavity (Baldwin et al., 1993; Serrano et al., 1993). This intro-
duces additional complexity for computational methods

when predicting mutant structure. Indeed, predictions of
mutations located in unstructured regions were among the
least accurate (Table I).

From the six methods tested, EGAD performed best, even
though the method was trained originally to reproduce exper-
imental binding affinities. This method is also fast. However,
the drawbacks of this method were its inability to predict
mutations to Cys, Gly and Pro due to fix backbone paradigm
and that about one-third of the mutations introduced clashes,
making those results unusable. Those problematic mutations
are not excluded automatically, and may introduce ambiguity
in the results. In total, about 50% of mutations were not suit-
able for analysis by EGAD. Rosetta was the least accurate
among the methods. It should, however, be noted that we
used Rosetta design, which is not specifically trained for this
task. A Robetta server does exist, but it uses as input only
interfaces between proteins (Kim et al., 2004).

All of the methods underestimate change in protein stab-
ility for strongly stabilizing and destabilizing mutations. As
can be seen in Fig. 1, the regression lines have slopes ,1.
However, all of the methods were able to correctly identify
68–80% of hot spots (Table III) or classify mutations as sta-
bilizing or destabilizing with about the same quality. An
important issue in predicting changes in stability of proteins
upon mutation is accuracy of experimental data. Inherently,
any experimental technique gives a spread between measure-
ments. Results may vary even more when using different
techniques, different conditions or performing the exper-
iments by different groups. In such situation, none of the
methods would be able to correctly predict DDGs. However,
we found that experimental data agree very well; the corre-
lation between different measurements is 0.86 with an
average unsigned error 0.44 kcal/mol (Fig. 4). At the same
time, an average unsigned error for the tested computational
methods was about 3-fold larger (1.2 kcal/mol). Therefore,
the limited accuracy of current methods is not due to poor
experimental data but due to inherent inaccuracies in the
scoring functions.

Combining results of EGAD, I-Mutant2.0 and Rosetta
allowed improving DDG predictions; however, the improve-
ment over a single method on this data set of 407 mutants
was not statistically significant (0.64 versus 0.62 with SD of
0.03). Although these three methods belong to different
classes of predictors (physical, KBP and SVM) and are thus
orthogonal, the different directions did apparently not add
much new predictive power. In addition, only few combi-
nations could yield any better correlation coefficient (7 out
of 16). Giving a different weight for each method did not
improve results significantly (data not shown).

Some of the studied methods (e.g. EGAD, FoldX, and
Rosetta) were successfully applied to design new folds,
improving protein stability or binding specificity (Kuhlman
et al., 2003; Kortemme et al., 2004; Pokala and Handel,
2005; Szczepek et al., 2007). The questions then arise how
did these method accomplish such complex tasks, while
demonstrating moderate results in predicting DDG values?
A major component of any method is its scoring function.
The inability to exactly estimate energy changes, as shown in
this study, should lead inevitably to failure in structure pre-
diction. However, it seems that the ability of all the scoring
functions to produce correct trends is sufficient to predict
and design protein structure. Moreover, this is also the

Fig. 4. Agreement in experimental measurements. For each of 406
mutations with two or more experimental measurements, two randomly
chosen values were plotted against each other.
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reason why MD simulations, protein modeling, etc. work. In
most of these tasks, we are actually not interested in the
exact fate of an individual residue, but of the protein as a
thermodynamic identity. As is clearly shown in Fig. 2, aver-
aging the energies of groups of residues provided the accu-
racy needed for computational biology. In summary, the
current computational methods are clearly good enough for
most of the tasks they are used for. Further improvement in
scoring functions is, however, needed to calculate exact
details, which are often required. It is not clear from our
work, whether the current approaches will lead to this, or
much more realistic energy functions will be needed.

Funding

This work was partially supported by the Israel Ministry of
Science and Technology [grant number 263]; and
MINERVA [grant number 8525].

References
Baldwin,E.P., Hajiseyedjavadi,O., Baase,W.A. and Matthews,B.W. (1993)

Science, 262, 1715–1718.
Benedix,A., Becker,C.M., de Groot,B.L., Caflisch,A. and Bockmann,R.A.

(2009) Nat. Methods, 6, 3–4.
Brooks,B.R., Bruccoleri,R.E., Olafson,B.D., States,D.J., Swaminathan,S. and

Karplus,M. (1983) J. Comput. Chem., 4, 187–217.
Capriotti,E., Fariselli,P. and Casadio,R. (2005) Nucleic Acids Res., 33,

W306–W310.
Cohen,M., Reichmann,D., Neuvirth,H. and Schreiber,G. (2008) Proteins, 72,

741–753.
Dunbrack,R.L. (2002) Curr. Opin. Struct. Biol., 12, 431–440.
Fersht,A. (1999) In Freeman,W.H. (ed.), Structure and Mechanism in

Protein Science: A Guide to Enzyme Catalysis and Protein Folding.
Basingstoke, New York.

Frisch,C., Schreiber,G., Johnson,C.M. and Fersht,A.R. (1997) J. Mol. Biol.,
267, 696–706.

Guerois,R., Nielsen,J.E. and Serrano,L. (2002) J. Mol. Biol., 320, 369–387.
Guex,N. and Peitsch,M.C. (1997) Electrophoresis, 18, 2714–2723.
Kelley,L.A. and Sternberg,M.J. (2009) Nat. Protoc., 4, 363–371.
Kim,D.E., Chivian,D. and Baker,D. (2004) Nucleic Acids Res., 32,

W526–W531.
Kortemme,T., Joachimiak,L.A., Bullock,A.N., Schuler,A.D., Stoddard,B.L.

and Baker,D. (2004) Nat. Struct. Mol. Biol., 11, 371–379.
Kuhlman,B., Dantas,G., Ireton,G.C., Varani,G., Stoddard,B.L. and Baker,D.

(2003) Science, 302, 1364–1368.
Kumar,M.D., Bava,K.A., Gromiha,M.M., Prabakaran,P., Kitajima,K.,

Uedaira,H. and Sarai,A. (2006) Nucleic Acids Res., 34, D204–D206.
Lazaridis,T. and Karplus,M. (2000) Curr. Opin. Struct. Biol., 10, 139–145.
Makhatadze,G.I. and Privalov,P.L. (1995) Adv. Protein Chem., 47, 307–425.
Matthews,B.W. (1993) Annu. Rev. Biochem., 62, 139–160.
Miyazawa,S. and Jernigan,R.L. (1985) Macromolecules, 18, 534–552.
Morozov,A.V., Kortemme,T., Tsemekhman,K. and Baker,D. (2004) Proc.

Natl Acad. Sci. USA, 101, 6946–6951.
Pearlman,D., Case,D., Caldwell,J., Ross,W., Cheatham,T., Debolt,S.,

Ferguson,D., Seibel,G. and Kollman,P. (1995) Comput. Phys. Commun.,
91, 1–41.

Pickett,S.D. and Sternberg,M.J. (1993) J. Mol. Biol., 231, 825–839.
Pierce,N.A. and Winfree,E. (2002) Protein Eng., 15, 779–782.
Pokala,N. and Handel,T.M. (2005) J. Mol. Biol., 347, 203–227.
Reichmann,D., Rahat,O., Cohen,M., Neuvirth,H. and Schreiber,G. (2007)

Curr. Opin. Struct. Biol., 17, 67–76.
Rohl,C.A., Strauss,C.E., Misura,K.M. and Baker,D. (2004) Methods

Enzymol., 383, 66–93.
Selzer,T., Albeck,S. and Schreiber,G. (2000) Nat. Struct. Biol, 7, 537–541.
Serrano,L., Day,A.G. and Fersht,A.R. (1993) J. Mol. Biol., 233, 305–312.
Szczepek,M., Brondani,V., Buchel,J., Serrano,L., Segal,D.J. and

Cathomen,T. (2007) Nat. Biotechnol., 25, 786–793.
Tanaka,S. and Scheraga,H.A. (1976) Macromolecules, 9, 945–950.
Voigt,C.A., Gordon,D.B. and Mayo,S.L. (2000) J. Mol. Biol., 299, 789–803.

Received June 2, 2009; revised June 2, 2009;
accepted June 3, 2009

Edited by Michael Sternberg

V.Potapov et al.

560


