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A new method is presented for the redesign of protein–protein interfaces,
resulting in specificity of the designed pair while maintaining high affinity.
The design is based on modular interface architecture and was carried out
on the interaction between TEM1 β-lactamase and its inhibitor protein, β-
lactamase inhibitor protein. The interface between these two proteins is
composed of several mostly independent modules. We previously showed
that it is possible to delete a complete module without affecting the overall
structure of the interface. Here, we replace a complete module with
structure fragments taken from nonrelated proteins. Nature-optimized
fragments were chosen from 107 starting templates found in the Protein
Data Bank. A procedure was then developed to identify sets of interacting
template residues with a backbone arrangement mimicking the original
module. This generated a final list of 361 putative replacement modules that
were ranked using a novel scoring function based on grouped atom–atom
contact surface areas. The top-ranked designed complex exhibited an
affinity of at least the wild-type level and a mode of binding that was
remarkably specific despite the absence of negative design in the procedure.
In retrospect, the combined application of three factors led to the success of
the design approach: utilizing the modular construction of the interface,
capitalizing on native rather than artificial templates, and ranking with an
accurate atom–atom contact surface scoring function.
© 2008 Elsevier Ltd. All rights reserved.
Keywords: computational protein design; protein–protein interaction;
structure-based reengineering; molecular recognition
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Introduction

The ability of proteins to specifically interact with
one another is central to life. These interactions form
networks, whose operations drive processes such as
resses:
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resonance.
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signal transduction, the immune system, control of
enzyme reactions, cell differentiation, growth, and
so on.1 A major goal in studying protein–protein
interfaces is to achieve a biophysical understanding
from which engineering principles can be derived.
Interface engineering opens up a myriad of possibi-
lities for promoting or inhibiting cellular processes,
both for biotechnological and biomedical purposes.
At present, protein engineers can choose either to
use rational computer-based design or in vitro
protein evolution methods such as phage display
and ribosomal display2,3 to select effective binders.
The procedures based on directed evolution and
selection are technically demanding, but proved to
be very successful in engineering binding proteins.4
d.
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Yet, they do not add to our understanding of the
protein–protein binding mechanism. The ability to
successfully design new interactions in silico
requires at least a partial understanding of the
binding process. It allows testing of design princi-
ples and, in the future, has a potential to become a
viable way for engineering protein–protein
interactions.5 Therefore, the development of suc-
cessful computational design methods, while chal-
lenging, is worthwhile.
Binding sites have previously been rationally

redesigned; however, there exists no example for
the design-from-scratch of a new binding site for
transient heterocomplexes obtaining reasonably
high affinity. In a number of cases, tighter binding
to the wild-type partner6–8 or new specificities for
binding9 were successfully achieved. Resolving the
structures of designed interfaces teaches us that
Fig. 1. Modular architecture of the TEM1–BLIP interface. (a
BLIP proteins (PDB ID 1JTG). The color scheme correspond
Connectivity map of the wild-type TEM1–BLIP interface. TEM
interaction types are shown: side chain/side chain (continuo
where both side chain/side chain and backbone/side chain are
with arrows). The arrows point towards the residue that contrib
was created as described in Reichmann et al.11 and is color-cod
of wild-type M2 (PDB ID 1JTG), the module chosen for interfa
module (PDB ID 1IOO; in blue) and wild-type M2 (in green). A
the PDBmodule are within 2.5 Å of the corresponding distance
than 30°. Cα atoms are represented as balls; sticks represent
indicate residues in wild-type M2, and labels in blue indicat
module. Molecular graphics images were generated with PyM
some design features were implemented as pre-
dicted, but others were not.10 Thus, one problem in
the design of new interfaces may be the inability to
consistently produce accurate structural models,
particularly if backbone movements are involved.
A second challenge is the approximated nature of
the energy functions used and the computational
difficulty in achieving the absolute energyminimum
due to the very large search space.
We previously showed that the interface between

proteins is built in a modular fashion.11,12 Each
module is comprised of a number of closely inter-
acting residues, with few interactions between
modules. Single mutations cause complex energetic
and structural consequences within their module.
Yet, mutations in one module do not affect residues
located in a neighboring one. As a result, the struc-
tural and energetic consequences of the deletion of
) Location of modules on the protein surface of TEM1 and
s to that in (b). Numbers in TEM1 are for M1–M6. (b)
1 (squares) and BLIP (circles) residues are nodes. Three
us lines), backbone/side chain (dotted lines), and cases
found between the same pair of residues (continuous lines
utes the backbone to the interaction. The connectivity map
ed to match the representation in (a). (c) Detailed structure
ce design. (d) Superimposition of the highest-scoring PDB
ll 45 distances between five Cα atoms and five Cβ atoms in
s in M2. All five angles between Cα and Cβ vectors are less
the covalent bonds between Cα and Cβ. Labels in green
e the corresponding residues in the highest-scoring PDB
OL.37
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entire modules are surprisingly small.12 In this
study, we present a new strategy to redesign
protein–protein interfaces by taking advantage of
their modular architecture. We suggest that such
modules can be replaced with “ready-made” tem-
plates extracted from resolved Protein Data Bank
(PDB) structures. We tested this idea for the interface
of TEM1 β-lactamase (TEM1) with β-lactamase
inhibitor protein (BLIP) and achieved high affinity
and specificity for a designed mutant complex.
Fig. 2. RosettaDesign solutions. One hundred Rosetta-
Design runs (as described in Materials and Methods)
converged into eight different solutions, each predicted to
be energetically lower than the wild-type complex. The
three most frequently occurring design solutions were
experimentally evaluated.
Results

The interface between the TEM1 and BLIP pro-
teins is made up of six energetically independent
modules.11,12 In this study, we search for methods to
redesign module 2 (M2), which is composed of
residues Glu104 and Tyr105 in TEM1, and Lys74,
Phe142, and Tyr143 in BLIP (Fig. 1). The crystal
structure of the TEM1–BLIP complex in which the
five residues composing M2 are mutated to Ala
was solved12 (PDB ID 1XXM), showing rigidity of
the M2 environment (all-atom RMSD for interface
residues equals 0.37 Å relative to wild type). Note-
worthily, the large cavity created within the inter-
face bymutational deletion ofM2was not filled with
structural water.12 The aim of our computational
design is to fill this cavity with five new side chains,
while providing high affinity and specificity for the
designed complex. Two strategies are tested. One
uses the RosettaDesign program to search for op-
timal residues.13 RosettaDesign is among the most
successful computational methods currently avail-
able.8,9,14,15 The second utilizes resolved protein
structures in the PDB as a source of “ready-made”
nature-optimized residue fragments.

Redesign of the interface module using the
RosettaDesign program

The RosettaDesign program was run 100 times,
with each run providing a single solution compris-
ing a double-TEM1mutant and a triple-BLIP mutant
(see Materials and Methods). All runs converged to
eight different solutions, with each predicted to be
energetically lower than the wild-type complex.
Since energy scoring was not consistent for multiple
solutions of the same residue set, we defined the best
sets among the eight by their convergence (Fig. 2).
The three sets with the highest degree of conver-
gence were YNT–NYPB, ENT–HYSB, and EGT–HYSB

(where superscript T marks mutations on TEM1 and
superscript B marks mutations on BLIP). These were
expressed, purified, and analyzed experimentally
for binding using surface plasmon resonance (SPR)
technology. The binding energies of the designed
proteins are summarized in Table 1. Mutating
simultaneously the five residues comprising M2 to
alanine decreased the binding affinity by 14 kJ/mol
and served as a base reference for the success of
the design. The experimental results show that
RosettaDesign successfully increased binding affi-
nities by 5–7 kJ/mol above the alanine reference, but
the affinities were still lower by 7–9 kJ/mol than
those for the wild-type complex (Table 1).
Computational protein design methods seek to

identify amino acid sequences that provide both high
affinity and specificity for the designed complex.
However, specificity for the top RosettaDesign pairs
was not achieved. All designed proteins, except for
NYPB, interacted more strongly with the wild-type
protein than with the designed partner (Table 1).

Computational redesign of the interface using
PDB fragments

The method PDBmodDesign was specifically
developed for the current study and is fundamen-
tally different from RosettaDesign. Here, native
proteins are considered to have optimal structure;
thus, resolved protein structures can be an ideal
resource for nature-optimized templates. In the first
step, we searched for sets of five interacting residues
in the PDB (“PDB modules”) that have a backbone
arrangement similar to that of the M2 interface
module. We searched through the entire three-
dimensional space of the proteins, not only through
interfaces, as the interface search space was too
small. Residues composing M2 are buried in the
TEM1–BLIP interface, favoring such a strategy. A
list of nonredundant proteins was obtained from the
PISCES server (resolution of 2.5 Å or better; mutual
sequence identity of less than 50%).16 This list
contained 5307 single protein chains. Whenever
the protein chain was part of a larger complex, the
coordinates of a whole complex were used in the
search. In total, 4948 PDB entries were used.
Using only distance constraints (Fig. 1d), the

search procedure identified ~107 PDB modules.



Fig. 3. Comparison of experimental and calculated
ΔΔG values for a set of 151 mutations in the TEM1–BLIP
interface. The scoring function was trained on a subset of
96 mutations (filled circles) with a correlation coefficient of
0.7. A subset of 55 mutations not used in training (empty
circles) was evaluated using this scoring function. The
correlation coefficient for the test set, which contained
only Ala mutations, was even higher (R=0.78). The overall
correlation coefficient for the entire set of 151 mutations is
0.78. The continuous line represents y=x.

Fig. 4. Scoring the 361 PDB modules according to
predicted binding free energy (ΔΔGbinding) following inter-
face remodeling. Calculations were carried out relative to
thewild-type TEM1–BLIP complex (ΔΔGbinding=0). Sixteen
modules have calculated ΔΔGbinding values lower than
those of the wild type (ΔΔGbindingb0). The sequences of
the top nine are listed. The highest-scoring module
(WKT–QYFB) was experimentally verified (Fig. 5 and
Table 1).

Table 1. Loss of binding free energies determined by SPR

TEM1–
BLIPa

ΔΔGkoff
b

(kJ/mol)
ΔΔGKa

c

(kJ/mol)

AA–AAA 14.1 14.5d

A. RosettaDesign
53% convergence YN–NYP 6.9 6.3

YN–wt 4.6 3.0
wt–NYP No binding No binding

22% convergence EN–HYS 7.6 8.9
EN–wt 0.1 1.5
wt–HYS 2.4 2.8

14% convergence EG–HYS 8.1 7.6
EG–wt −0.4 0.4
wt–HYS 2.4 2.8

B. PDBmodDesign
Top-ranked complex WK–QYF 0.7 −1.1

wt–QYF 14 13d

WK–wt Weak binding 15.4d

Best complementarity RY–WRY 15.4 11.5d

RY–wt 15.1 12.6d

wt–WRY 14.0 16.3d

C. Predicted best solution without use of PDB modulese

KK–EHF 13.0 14.0d

wt–EHF No binding No binding
KK–wt No binding No binding

a The first two residues are Glu104 and Tyr105 in TEM1, and
the last three residues are Lys74, Phe142, and Tyr143 in BLIP. The
wild-type sequence is EY–KFY.

b ΔΔGkoff=−RTln(koff
wt/koff

mut).
c ΔΔGKa

=−RTln(Ka
mut/Ka

wt).
d Ka values for low-affinity complexes were also determined by

equilibrium analysis (see Materials and Methods; Eq. 3). The
others were determined from Ka=kon/koff.

e The same force field was applied as for the top-ranked
complex, but using any combination of residues.
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However, inspection of superimposed structures
demonstrated that, even in PDB modules with an
RMSD of less than 1 Å, the orientation of side chains
could deviate significantly from that in M2 and
showed interactions considerably different from
those in the target structure. Therefore, angle
constraints for Cα–Cβ bonds were introduced to
ensure that side chains in the PDB modules point to
the same directions (within 30°) as in the target
module (Fig. 1d). This drastically reduced the
number of acceptable modules to 361 (Supplemen-
tary Table 1). Next, the five side chains from each
PDB module were remodeled within the interface
context of the wild-type TEM1–BLIP complex in
their respective positions, using SCCOMP.17 Side-
chain orientations of the target residues in contact
with the module residues were remodeled as well.
Ranking of the 361 PDB modules was made

according to their predicted complex stability upon
interface remodeling. This was performed using an
energy function that includes atom–atom and atom–
solvent contact surfaces,18 an electrostatic term, and
side-chain volumes (see Materials and Methods).
The components of the function were weighted to
reproduce experimentally known ΔΔG values for a
large set of mutations in the TEM1–BLIP inter-
face.11,12,19 A correlation coefficient of 0.7 was
achieved between the calculated data and the
experimental data (Fig. 3). Sixteen complexes are
predicted to have binding energy greater than that of
the wild-type complex (Fig. 4). The top-ranked
complex, WKT–QYFB, was taken for experimental
validation.
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Experimental validation of the design

Table 1B and Fig. 5 summarize the binding free
energies of the designed complexes. SPR measure-
ments show the binding affinity of the WKT–QYFB

complex to be equal (within the experimental error)
to that of the wild type. In addition, this complex is
highly specific: WKT and QYFB proteins interact
strongly with each other, but only marginally with
their wild-type counterpartners (Fig. 5c and d and
Table 1B). According to SPR, the koff values of the
designed and wild-type complexes are 2.0×10−4 s−1

and 1.5×10−4 s−1, respectively, with kon values
of 2.9×105 M−1 s−1 and 1.4×105 M−1 s−1 corres-
ponding to binding affinities of 0.7 nM and 1.0 nM,
respectively. In contrast, the binding affinities for
wtT–QYFB and WKT–wtB as determined using the
equilibrium signal (Eq. 3) were 130 nM and 330 nM.
Fig. 5. Real-time binding measurements of wild-type co
wt–QYFB (d). SPR measurements were carried out at six dif
20 nM, 40 nM, 60 nM, and 100 nM. The TEM protein was imm
affinity was determined from the kinetic trace. For WKT–BLIP
equilibrium signal using Eq. 3. The plots in the figure show o
repeats.
This represents a specificity switch (based on Kd) for
cognate and noncognate complexes of 190-fold for
wtT–QYFB and 480-fold for WKT–wtB.
While SPR is a reliablemethod for determining koff,

values of kon may differ from those measured in
solution.20–23 Therefore, the association rate constant
of the WKT–QYFB complex in solution was addi-
tionally measured using stopped-flow spectropho-
tometry. Using this method, the kon of the designed
complex was determined to be 20-fold faster than
that of the wild-type complex (9.3×106M−1 s−1

versus 4.4×105 M−1 s−1; Supplementary Fig. 1). The
kon value for WKT–wtB was 5.5×106 M−1 s−1. Thus,
the faster association rate constant of WKT–QYFB

does not contribute to specificity, but only to the
affinity of the mutant. This is among the best
computational design results reported so far for
transient protein–protein heterocomplexes.
mplex (a), WKT–QYFB (b), WKT–BLIP wt (c), and TEM
ferent concentrations of the BLIP protein: 5 nM, 10 nM,
obilized on the sensor chip. For wild type andWKT–QYFB,
wt and TEM wt–QYFB, affinity was calculated from the

ne binding measurement from at least three independent



Table 2. Loss of binding free energies of alanine
mutations located outside M2 on wild-type and WKT–
QYFB backgrounds

ΔΔGkoff
a (kJ/mol) ΔΔGKa

b (kJ/mol)

WKT–QYFB wtc WKT–QYFB wtc

A. Binding free energies
Q99T 1.4 1.8 1.4 1.8
P107T 1.3 0.7 2.4 −1.6
S235T 1.2 5.5d 1.2 5.4d

R243T 1.0 2.3d 1.0 5.8d

W150B 13.5 15.4 13.0 17.8
H41B 14.8 13.3 15.0 13.6
D49B 3.0 7.1 4.7 7.0

B. Interacting binding free energies (ΔΔGint) determined from double-
mutant cycles

Q99T–W150B −3.2 −3.9 −3.3 −3.0
R243T–D49B −2.7 −5.6d −4.0 −8.8d
S235T–D49B −1.6 −6.1d −1.4 −6.3d

The first two residues are Glu104 and Tyr105 in TEM1, and the
last three residues are Lys74, Phe142, and Tyr143 in BLIP. The
wild-type sequence is EY–KFY.

a ΔΔGkoff=−RTln(koff
wt/koff

mut).
b ΔΔGKa

=−RTln(Ka
mut/Ka

wt).
c Data for mutations on wild-type background were obtained

from Reichmann et al.12
d Data for mutations on wild-type background were obtained

from Albeck et al.19 using a different SPR setup and buffer.
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Evaluating the influence of redesigning M2 on its
environment

Despite major efforts, we were not able to obtain
an X-ray structure of the WKT–QYFB complex to
validate its structural integrity. While the complex
crystallized readily and diffracted to high resolu-
tion, the unit cell was repeatedly too large to be
solved. Therefore, as an alternative method for
probing the integrity of the interface, we compared
the influence of mutations from other modules on
the WKT–QYFB complex to their influence on the
wild-type complex (Fig. 6). Table 2A shows that the
ΔΔG values for the single Ala mutations Q99T,
W150B, H41B, and P107T were similar on wild-type
and WKT–QYFB backgrounds, while values for
S235T, R243T, and D49B were different. These latter
three residues are all located in module M1, with
D49B interacting directly with the other two residues
(Figs. 1b and 6).
To obtain additional information on distance

constraints within the designed interface, we ana-
lyzed double-mutant cycles by comparing interac-
tion energies between pairs of residues outside M2
that are known to be in direct contact in the resolved
structure of the wild-type complex. If these residue
pairs also interact in the designed complex, then it
can be deduced that the distance constraints of the
designed interface resemble those in wild type. The
double-mutant cycle method has been previously
used to validate the structural integrity of inter-
faces.11,19,24 Three pairs of known wild-type inter-
acting residues were evaluated on WKT–QYFB

background: interactions between residues Q99T–
W150B (located inM3) and residues R243T–D49B and
S235T–D49B (located in M1) (Fig. 6). Although the
magnitude of interaction energies is similar to that in
the wild-type background only for the Q99T–W150B
Fig. 6. Location of mutations external to M2. These
mutations were used to determine whether distance
constraints in wild-type and designed complexes are
similar. Residue color is matched to the corresponding
module color in Fig. 1a. Double-mutant cycle residues are
connected by dashed lines. The five residues used in the
redesign of M2 are colored. The protein surface is
rendered in semitransparent gray, and experimentally
probed residues are represented as spheres. The figure
was generated with PyMOL.37
pair, double-mutant cycle analysis showed that
significant ΔΔGint values are obtained for all three
pairs (Table 2B). Therefore, it seems that the interface
is similar to that of wild type; however, the design
has some influence on the energy landscape of M1.

Only the designed residue combination retains
high binding affinity

A well-known feature of protein–protein inter-
faces is the high degree of surface complementarity
between the binding proteins.11,12 Therefore, early
on, we evaluated the combination that has the
highest complementarity rank (see Materials and
Methods and Supplementary Table 4) among the
361 modules, namely, RYT–WRYB. However, the
binding affinities proved to be similar to the values
obtained for the all-Ala replacement (Table 1B).
Apparently, surface complementarity in a designed
module is not sufficient to reproduce a stable
complex—a task that requires a more accurate
scoring function.
An additional 19 mutant modules, obtained by

pairing components from different design experi-
ments, were similarly tested for binding (Table 3).
All of these pentamutant complexes have weak
binding affinities. The reduction in the binding free
energy of the strongest complex among them (YYT–
WRYB) was 9.3 kJ/mol; however, most have
affinities close to that of the all-Ala mutant, with
some complexes binding below the limit of experi-
mental detection. This result shows the difficulty in
finding residue combinations involving both pro-
teins that provide high affinity and specificity to the



Table 3. Binding free energies for nondesigned mutant
modules

TEM1–BLIPa ΔΔGkoff
b (kJ/mol)

A. Binding of noncorresponding protein pairs
AA–FVS 10.7
AA–HYS 11.6
AA–WRY 10.7
EN–AAA No binding
EN–FVS No binding
EN–WRY No binding
YN–AAA 12.6
YN–FVS 12.8
YN–HYS 10.5
YN–WRY 10.6
YY–AAA 11.2
YY–FVS 14.9
YY–HYS 10.4
YY–WRY 9.3
RY–AAA 12.9
RY–FVS 13.5
RY–HYS 15.5
WK–EHF No binding
WK–YMH No binding

B. Binding with wild-type counterpartners
AA–wt 6.0
YY–wt 6.6
wt–AAA No binding
wt–FVS No binding
wt–YMH 19.5

a The first two residues are Glu104 and Tyr105 in TEM1, and
the last three residues are Lys74, Phe142, and Tyr143 in BLIP. The
wild-type sequence is EY–KFY.

b ΔΔGkoff=−RTln(koff
wt/koff

mut).
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complex, as well as poor flexibility of the target
module in introducing new residues.
Discussion

A central tenet in the design of complex systems is
that individual components are modular. It was
recently demonstrated that modularity is a funda-
mental design principle not only in human engi-
neered systems but also in biological systems such as
transcription activation25 and biochemical reac-
tions.26 We have shown that this principle applies
for protein–protein interactions as well.11,12,27
Here, we took advantage of the natural design

principle of modularity to develop a strategy for
redesigning the TEM1–BLIP interface by filling in
the geometric space occupied by M2 with a different
set of residues derived from a nonrelated protein
found in the PDB database. The top-scoring de-
signed complex that we obtained is highly specific.
Its binding affinity is similar to that of wild type
according to SPR, and even tighter than that of wild
type when taking the stopped-flow data into
account. The PDB module that gave the best design
result for the TEM1–BLIP interface was extracted
from the interior of a protein. While it has an amino
acid composition overlapping the wild-type resi-
dues (WKT–QYFB versus EYT–KFYB), the sequence
positions that they occupy are all different. A mo-
dule from the protein interior could be used for
interface redesign, as the chemistries of the intra-
protein and interprotein interactions are similar.28

We failed to resolve an X-ray structure of the
crystallized mutant complex as it repeatedly crystal-
lized in intractable forms. We therefore resorted to
validating its integrity by evaluating the effect of the
design on the binding energy of residues located in
neighboring modules. Both the single mutations and
the double-mutant cycles summarized in Table 2 and
Fig. 6 show that the design had no effect on residues
located in M3 (Q99T, W150B, and their interaction)
and M5 (P107T and H41B). However, significant
differenceswere detected formutations located inM1
on a background of WKT–QYFB versus that of wild
type. Still, M1 residues R243T and D49B do interact,
albeit with a different energy of interaction (Table 2B),
suggesting that they are in close proximity. All in all,
these data show that theWKT–QYFB interface closely
resembles that of the wild type, albeit with some
changes in the interaction energies in M1.
A combination of three factors contributed to the

success of our design approach: utilizing the
modular architecture of the interface, employing
native PDB templates, and accurate scoring function
to correctly rank putative protein–protein com-
plexes. Surprisingly, we were able to locate only a
few PDB templates with similar backbone arrange-
ments as in the wild type. From ~107 starting
templates satisfying the distant constraints between
Cα and Cβ atoms in our search, none passed an angle
constraint cutoff of 15°, and only 361 (Supplemen-
tary Table 1) passed a cutoff of 30°. This suggests that
the precise geometric arrangement of the interacting
residues in an interface module is a relatively unique
feature in structure space.
The scoring function used was specifically trained

on experimental data obtained from mutagenesis of
interface residues in the TEM1–BLIP complex. The
function allowed us to successfully rank the list of
putative PDB-based complexes, while a comple-
mentarity rank gave much poorer results (Table 1B).
This suggests that proper accounting of the fine
details of residue–residue interactions is of major
importance. The lesser success of the RosettaDesign
solutions is probably due to the fact that, for the
TEM1–BLIP interface, RosettaDesign failed to cor-
rectly calculate the free energy of mutations (corre-
lation coefficient R=0.3; unpublished data) between
experimental and calculated ΔΔG values, versus
R=0.7 using our scoring function.
Ranking the list of 361 putative protein–protein

complexes using our scoring function demonstrates
that only a few complexes produced an energy score
better than that of the wild type (Fig. 4). This
suggests that only a small number of PDB modules
can be successfully grafted into the TEM1–BLIP
interface while retaining the same binding affinity.
Accordingly, most residue combinations will desta-
bilize the complex. Experimental data measured for
43 residue combinations (Tables 1 and 3) for M2
support this contention.
An intriguing aspect of our scoring function is its

ability to correctly identify a high-affinity module on
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the PDB-based list of putative protein modules, but
not on a list based on artificial sequences. Using our
scoring function to choose the top-ranked residue
combination without the use of the PDB-based list
resulted in a specific but low-binding-affinity com-
plex (KKT–EHFB; ΔΔGkoff=13 kJ/mol; Table 1C and
Supplementary Fig. 2). It is known that energy
functions may be biased toward artificial sequences
that do not occur in native protein structures.29

Therefore, employing PDB modules is advanta-
geous as they preclude unrealistic sequences.
From the TEM1–BLIP case analyzed experimen-

tally in this work, we cannot state that the new
methodology presented here will be superior to
other methods with different complexes. Rather, we
consider the successful redesign of M2 in the TEM1–
BLIP interface as demonstrating the feasibility of
this approach at least in this particular experimental
system and could be considered as a proof of
concept. This approach could be generalized to re-
design a whole interface by constructing it incre-
mentally from small PDB fragments similar to the
idea of using fragment libraries in Rosetta for ab
initio structure prediction.15

A previously designed protein–protein complex
achieved increased specificity but at the expense of
decreased affinity.9 Using protein engineering, we
showed that it is not difficult to obtain an increased
affinity for a designed partner without specificity by
optimizing the electrostatic complementarity bet-
ween the proteins.30,31 Good design, however,
requires both parameters simultaneously; achieving
it may be more a matter of evolution than amatter of
revolution.
Materials and Methods

Computational design using PDB fragments
(PDBmodDesign)

Geometric search

The atomic coordinates of the five residues selected for
redesign were taken from a structure of wild-type TEM1–
BLIP complex (PDB ID 1JTG; resolution, 1.7 Å). These five
residues (Glu104 and Tyr105 in TEM1, and Lys74, Phe142,
and Tyr143 in BLIP) are referred to as the “interface
module.” The search procedure uses all atom–atom
distances for sets of five Cα atoms and five Cβ atoms in
the interface module. In the first step, all possible sets of
five residues in a particular PDB entry (referred as “PDB
modules”) are assessed to meet the distance constraints
determined in the interface module. A PDB module is
rejected if the difference between atom–atom distances in
the interface module and the corresponding distances in
the PDB module is above 2.5 Å for at least one distance
(Fig. 1d). To speed up the search, distances between Cα

atoms were assessed first, and only if they met these
distance constrains were other distances checked. In the
second step, the angle between the Cα–Cβ vectors in the
PDBmodule and the interface module was calculated after
superimposition of the two modules (Fig. 1d). A PDB
module was accepted only if each of the five angles was
equal to or less than 30°.
Scoring function

The scoring function utilizes atom–atom contact surface
areas.18 The major underlying assumptions were that: the
change in protein complex stability upon mutation is
proportional to the change in the contact surface area, and
proper weights can be obtained based on experimentally
determined stability changes for a set of interface
mutations. The scoring function was trained on mutation
data previously obtained for the TEM1–BLIP protein
complex11,12,19 and on experimental data for mutants used
for design in this study. Solvent-accessible area was
considered as a contact with a special atom type. In
addition to eight standard atom types,18 this resulted in 36
atom–atom and 8 atom–solvent types of contact surface.
Deriving weights for all 44 contact surface types resulted

in overfitting of the data. Several attempts were undertaken
to utilize a computer-driven approach for selecting the best
subset of contact surface types and their weights. This
resulted in a scoring function with a reduced number of
contact surface types that, in spite of a significant
correlation factor (R=0.73) for calculated data versus
experimental data, led to designed sequences with unrea-
listic amino acid compositions and calculated stability
change. Analysis of chosen parameters and weights in this
scoring function showed that the contact surface between
atoms of the neutral/donor class was close to zero in the
training set, resulting in spurious random correlations.
Instead of the above, a scheme that includes all atom–

atom and atom–solvent contact surfaces, grouped accord-
ing to their physical–chemical compatibility, was
developed.32 Using contact surface types highlighted one
general problem: some contact surface types are comple-
tely absent in the training set, and the proper weights just
cannot be derived. Interactions between negatively (or
positively) charged groups are very rare in proteins and
protein complexes, as they are destabilizing in nature. On
the other hand, in the design procedure, a proper weight
must be used to punish such interactions. This situation
was resolved by summing up rare contacts, with frequent
ones having an opposite sign such that the same weight is
given to rare contacts but with opposite sign. The scoring
function includes 14 groups of atom–atom contacts (Fig. 7).
Note that charge–charge interactions are about twice as

strong as polar–charge interactions and about four times
stronger than polar–polar ones.33 Therefore, polar–charge
contacts were counted twice, and charge–charge interac-
tions were counted four times to give a higher weight to
these types of interactions. The donor–aromatic contact
surface type (positively charged atoms in Lys and Arg in
contact with an aromatic ring) was counted twice as well,
as it represents π–cation interactions having increased
strength. Giving higher weights to these types of interac-
tions proved to be in the right direction, as it resulted in an
increase in the correlation coefficient between the calcu-
lated data and the experimental data. Equal weights were
assumed for any atom–solvent contacts and any atom–
hydrophilic contacts. Thus, they were summed into one
term for each atom type (acceptor/solvent with acceptor/
hydrophilic, donor/solvent with donor/hydrophilic, and
so on).
Two additional terms were introduced to the scoring

function, as their effect was not captured by the surface
complementarity approach: an explicit electrostatic term31

and a side-chain volume term. The side-chain volume term
accounts for the packing of residues and was calculated as
the sum of amino acid volumes.34 The entropy term,
surprisingly, had negligible contribution and was not
included in the scoring function. Similar results have



Fig. 7. Grouping of contact surface types (Roman
numerals) in the scoring function. Solvent-accessible
surface was considered as contact with a special atom
type (type 0), in addition to eight standard atoms types.32

Thirty-six atom–atom and eight atom–solvent types of
contact surface were sorted into 14 groups according to
physical–chemical compatibility: (I) hydrophilic/hydro-
philic, hydrophilic/acceptor, hydrophilic/donor, accep-
tor/donor, acceptor/acceptor with opposite sign, donor/
donor with opposite sign; (II) hydrophobic/hydrophilic,
hydrophobic/acceptor, hydrophobic/donor; (III) hydro-
phobic/hydrophobic, hydrophobic/aromatic; (IV) aro-
matic/hydrophilic; (V) aromatic/acceptor; (VI)
aromatic/donor; (VII) aromatic/aromatic; (VII) hydro-
philic/neutral; (IX) hydrophilic/neutral donor; (X) hydro-
philic/neutral acceptor; (XI) acceptor/neutral, acceptor/
neutral donor, donor/neutral acceptor; (XII) donor/
neutral, donor/neutral acceptor, acceptor/neutral accep-
tor; (XIII) hydrophobic/neutral, hydrophobic/neutral
donor, hydrophobic/neutral acceptor; (XIV) aromatic/
neutral, aromatic/neutral donor, aromatic/neutral accep-
tor. Note that contacts among neutral atom types are
infrequent and were not included in the scoring function.
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recently been reported.35 The resulting scoring function,
trained on mutational data for the TEM1–BLIP protein
complex, had a correlation coefficient R=0.70. The perfor-
mance of the scoring function was tested on a set of 55
mutations of the TEM1–BLIP complex that was not used in
training. The correlation coefficient of this set, which
contained only Ala mutations, was even higher (R=0.78).
The binding energy (ΔΔGbinding) was calculated by

evaluating wild-type (wt) and mutant (mut) proteins in
the complex and in the unbound form:

DDGbinding ¼ DGmut
binding � DGwt

binding

DGbinding ¼ DGcomplex � DGprotein A þ DGprotein B
� � ð1Þ

Side chains were modeled in their correct environment (in
the complex and in unbound proteins) using the SCCOMP
program.17 Residues in contact with mutated positions
were remodeled as well.

Complementarity rank

Several parameters were defined for every PDB module
based on a surface complementarity approach.18 Sclu is
the surface area sum of all atom–atom contacts between
residues forming the module, with appropriate sign; Senv
is the surface area sum of all atom–atom contacts between
residues from the module and from the environment; and
Sint is the surface area sum of all atom–atom contacts
between residues in the module, but from different
chains. The last parameter was introduced to ensure
that residues from different protein chains form sub-
stantial contacts. Every PDB module was assigned a rank
according to its Sclu, Senv, and Sint values, and total rank
(complementarity rank) was defined as the sum of the
three ranks.

Computational design by RosettaDesign

The variant library was designed using the Rosetta-
Design program,13 with the crystal structure of wild-type
TEM1–BLIP complex (PBD ID 1JTG; chains A and B) as
starting template. Calculations were carried out to
evaluate combinatorial substitutions of five residues in
the interface module M2. In each case, amino acids
contacting the substituted residues were repacked (allow-
ing all rotamers of the native amino acid type). The
program was run 100 times, and final residue sets were
selected as the most repetitive results.

Site-directed mutagenesis

Mutagenesis was performed using Kunkel mutage-
nesis based on single-stranded DNA, as described
before.11 Insertion of mutations was verified by DNA
sequencing.

Protein expression and purification

Expression and purification of TEM1 and BLIP were
undertaken as described.22 The quality of protein
(degree of purity and activity), as well as its relative
concentration, was determined alone and in complex
with wild-type protein using analytical gel-filtration
chromatography.

Kinetic measurements

Kinetic constants were evaluated by SPR detection
using the ProteOn™ XPR36 Protein Interaction Array
System (Bio-Rad) in phosphate-buffered saline (pH 7.4)
with 0.005% surfactant P20 at 25 °C. For all measure-
ments, TEM1 was immobilized by amine coupling to the
sensor chip, and BLIP was the analyte applied at six
different protein concentrations simultaneously. Data
were analyzed with BIAeval 4.1 software using both
Langmuir models for fitting kinetic data (global and local
fitting) and, from the equilibrium response at each
concentration, fitted to the mass–action equation. The
change in free energy (ΔΔGKa

) upon mutation was calcu-
lated from:

DDGKa ¼ �RTln
Kmut
a

Kwt
a

ð2Þ

with Ka values being determined in two ways: by the ratio
of the kinetic constants (Ka=kon/koff; for interactions of
konb5×10

6 M−1 s−1 and koffb0.2 s−1), and by following
the change in the refractive index (RU) at the equilibrium-
binding signal and then by fitting the data to the mass
action expression (Ka(ma)):

RU ¼ CKa mað ÞRmax

� �
= CKa mað Þ þ 1
� � ð3Þ

where C represents the protein concentration. Values of
ΔΔGKa

(determined from kon/koff) and ΔΔGKa(ma)
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(determined by mass action) are highly correlated
(R=0.99). Error analysis shows that significant values of
ΔΔG (2SE) calculated from koff were N0.7 kJ/mol, and
those from Ka were N1.4 kJ/mol.11,36

Double-mutant cycle analysis

The interaction binding energy ΔΔGint for a pair of
residues (residues 1 and 2) was calculated from:

DDGint ¼ DDGmut1mut2 � DDGmut1 � DDGmut2 ð4Þ
This analysis reveals whether the contributions from a pair
of residues are additive, or whether the effects of
mutations are coupled. If there is no interaction between
the two mutated residues, the effects of the two substitu-
tions should be additive in respect to the double mutation
(ΔΔGint=0). If they form an attractive interaction, the
interaction binding energy is negative (ΔΔGintb0), and a
repulsive interaction results in a positive interaction
energy (ΔΔGintN0). The experimental error for ΔΔGint
(2SE) calculated from koff is 1.2 kJ/mol, and that from Ka is
2.4 kJ/mol.
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