
Four Distances between Pairs of Amino Acids Provide a
Precise Description of their Interaction
Mati Cohen., Vladimir Potapov., Gideon Schreiber*

Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel

Abstract

The three-dimensional structures of proteins are stabilized by the interactions between amino acid residues. Here we report
a method where four distances are calculated between any two side chains to provide an exact spatial definition of their
bonds. The data were binned into a four-dimensional grid and compared to a random model, from which the preference for
specific four-distances was calculated. A clear relation between the quality of the experimental data and the tightness of the
distance distribution was observed, with crystal structure data providing far tighter distance distributions than NMR data.
Since the four-distance data have higher information content than classical bond descriptions, we were able to identify
many unique inter-residue features not found previously in proteins. For example, we found that the side chains of Arg, Glu,
Val and Leu are not symmetrical in respect to the interactions of their head groups. The described method may be
developed into a function, which computationally models accurately protein structures.
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Introduction

Most biological activities of the living cell are directed or

regulated by proteins. These diverse functions are due to proteins

three-dimensional structures consequent of the physical interac-

tions of their amino acid residues [1]. As the backbone of all amino

acids is identical, side chains (and associated cofactors) dictate

structure. Therefore, the knowledge of how side chains interact

with each other and with the backbone will enable the

computational prediction of protein structures, and the design of

their shapes and functions [1].

Computational methods have been used in several research

fields for the assessment and prediction of protein structures [2–8]

such as: fold recognition, threading [9], binding [10–19], de novo

design [20–24] and the prediction of protein stability [25–27].

There are two main issues to be considered while computationally

modeling protein structure, one is the conformational search and

the other is the scoring function. Currently rigorous functions to

describe the physical interaction between molecules are compu-

tationally demanding [20,28]. Therefore, three types of approx-

imation are currently used: physical-based, empirical or a

combination of both methods. The first is based on the

fundamental analysis of forces between atoms [12,29–31]. The

second is a knowledge-based scheme that provides a shortcut by

assuming predictable [32,33], though theoretically questionable,

potentials derived from databases of protein structures and

sequences. The third method is a hybrid that combines the two

schemes [34]. The majority of scoring functions are a sum of pair-

wise interactions, which are assumed to be independent. Yet this

approximation was proven to be inaccurate both computationally

[35] and experimentally [36]. The cooperativity of the residue

contacts have been modeled partially by three and four-body

interaction and by modeling protein local environment with no

significant advantage compared to the pair-wise methods [37–41].

The key concept of the knowledge-based potential (KBP) is

collecting features from protein structure databases relative to

random predictions [42–44]. Statistical potentials can be catego-

rized on the basis of different aspects: residue-level potentials [9]

versus atomic-level potentials [2,29,45,46]. Examples of knowledge-

based features used include: solvent accessibility [47], local

environment [40,41], atom contact area, sequence fragments

[34], bond angle [24,48] and distance [2,4,8,14,26,42,45,49–51]

(which is the most abundantly used). A good random model is

crucial for the success of this method as being a reference state.

There remains, however, a lack of consensus on how to define

random models for KBP [13,26,28,52]. One method is to shuffle the

residues or atoms in the database and then recollect the data

[46,53]. A different scheme is the distance-scaled finite ideal gas

reference state, which assumes the spatial distribution in the

reference state that should be scaled as power distance (i.e. ra) [26].

The expected number of atom pairs in a given distance shell is

proportional to that observed in the database regardless of the atom

type. A few issues have been raised criticizing statistical potentials,

including the argument that the topology of the proteins included in

the database ‘‘remembers’’ the database it was derived from [54],

the Boltzmann distribution assumption [32] and the reproducibility

of the function using the knowledge-based method [33].

Knowledge-based distance potentials vary in the representation

of the amino acid, which can be at the residue level or at the atom

level. At the residue level the side chain is represented by one
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object; this simple model is used to reduce the computational cost,

though, it was empirically shown that such simplifications reduce

the accuracy of the resulting statistical potentials [2,55–57].

Examples include residue centroid [45,58] (center of mass), where

a pseudo atom is calculated for each residue. Another represen-

tation for the side chain is the ‘‘volume block’’ for parts of the

amino acid molecule [59]. In the case of atom-level representation

for high-resolution models, a representative atom [60] (i.e. CA or

CB) or several atom sets for each residue can be selected [61]. The

collected distances are binned to a distance distribution, and the

prediction power of the model is improved in accordance with the

bin resolutions [5].

Here we report a new high-resolution distance method for

precise description of the residue interaction geometry. We show

the disadvantage of considering similar atoms as one group.

Several observations regarding the reference model are described.

Finally, we demonstrate that our four-distance description has

predictive power on residue contact geometry.

Methods

Databases
High-resolution protein structures (#2 Å) were taken from the

PISCES server [62]. A 90% non-redundant dataset comprising of

6830 structures was chosen. The low-resolution protein structures

(resolution 2.5 Å–3.0 Å) were also taken from the PISCES server.

Non-redundant NMR protein structures with 60% identity were

taken from the OCA server (1877 structures) [63]. To increase the

number of distance measurements, two NMR models were chosen

randomly for each structure.

Representative atom selection
An interaction between two residues is defined in terms of four

distances between two pairs of atoms (Figure 1). The following

notation ‘‘R1_R2_A1_A2_B1_B2’’ is used throughout this study,

where R1 and R2 are the interacting residues, A1 and A2 is the pair

of atoms in residue R1, B1 and B2 is the pair of atoms in residue R2.

For example, Lys_Val_CB_CD_CG1_CG2 means that for the

interacting residue pair Lys and Val the representative atoms of Lys

are CB and CD and the representative atoms of Val are CG1 and

CG2. To choose the pair of atoms for each residue pair, all the

possible combinations were enumerated. The four Euclidean

distances were collected for all of them and a four-distance set was

kept only if one of the distances was ,5 Å. This cutoff enabled us to

discard the huge amount of data comprising distanced non-

interacting pairs. A representative four-atom set was chosen for

each residue pair. The criterion for choosing this representation was

to maximize the chances that at least one interactive distance of less

than 5 Å will be represented for each amino acid pair (Table S1).

This allows the possibility that the same amino acid is in contact with

different partners via different atom pairs. For example, the Lys–Val

contact was defined as Lys_Val_CB_CD_CG1_CG2 while the

contact of Lys with Asp was defined as, Lys_Asp_CD_CE_O-

D1_OD2. Side chain backbone contacts were grouped regardless of

the identity of the backbone amino acid. The representative

backbone atoms are the alpha carbon and the carboxyl oxygen.

For example, for Arg_Any_CG_NH2_CA_O side chain of Arg can

be in contact with backbone atoms from any residue.

Random model
The random model was generated from the high-resolution

dataset (see above). Each residue conformation was replaced

randomly by a rotamer from the rotamer library [64], keeping the

same amino acid identity. No considerations for rotamer

probabilities or conformational clashes were taken. The distances

were collected as for the real data. However, to reduce the noise

level of the random data, a 25-fold excess of random to real data

was used.

Histogram setup
The four distance data were arranged in a 4-D histogram. Each

contact pair was binned at a resolution of 0.5 Å, from 0 to 10 Å

forming histograms of 214 bins (i.e. 194481). The probability

(frequency normalized to one) for each four-distance combination

was the number of measurements in a selected bin divided by total

number of measurements.

The flying rotamer method
To test the suitability of the derived data for modeling residue-

residue interactions a simulation was performed. Two residues with

arbitrary side chain conformations were built. Then, these residues

were randomly placed relative to each other 106 times. Four

distances between atoms defining the residue-residue interaction

were calculated for each random placement and a score was assigned

in accordance with Equation 2. The orientation of two residues, for

which the best score was attained was identified and examined.

Results

Multiple distances between two bodies can describe the exact

spatial relation between them. For amino acids, a further

Figure 1. Graphical representation of the four distances for the
Arg-Asp residue pair. Two representative atoms were chosen for
each residue: NH1, NH2 and OD1, OD2 for Arg and Asp, respectively.
Four Euclidian distances are measured: d11 for the NH1–OD1 pair; d12
for the NH1–OD2 pair; d21 for the NH2–OD1 pair; d22 for the NH2–OD2
pair.
doi:10.1371/journal.pcbi.1000470.g001

Author Summary

Knowledge of high-resolution structures of proteins is an
invaluable source of information for molecular biologists.
Since obtaining structures experimentally is a laborious
process, using computational methods to model correctly
protein structure is highly beneficial. As protein structures
are stabilized by the specific contacts formed by amino
acid side chains, detailed understanding of inter-residue
interaction is essential. Here we report a novel concept to
analyze contact geometry, in which four distances are
calculated between any two residues to describe their
interactions in great detail. It allowed us to extract
information from the Protein Data Bank, which until now
was overlooked. This concept can be used to develop a
computational method to accurately model protein
structures.

Four Distances between Pairs of Amino Acids
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complexity arises from the flexibility of their construction, which

results in many possible rotamers per amino acid. Theoretically,

this would require multiple distances per amino acid pair to

achieve a complete description of their spatial relation. However,

due to the high dimensionality of the problem this would result in

bins scarcely populated when using the known protein structures

in the PDB. Therefore, we described the relation between any two

amino acids in terms of four distances. These four distances were

calculated between two atoms from each residue (Figure 1). For

example, the interaction between Arg and Asp was defined as

follows: Arg_Asp_NH1_NH2_OD1_OD2. This means that for

the Arg–Asp interaction pair the representative atoms are NH1,

NH2 for Arg and OD1, OD2 for Asp, namely atom 1 and 2 for

each residue (for more details see Methods). The four distances

describing the contact between the two residues are therefore:

NH1–OD1 (d11), NH1–OD2 (d12), NH2–OD1 (d21), and NH2–

OD2 (d22) (Figure 1). Assuming the four distances are indepen-

dent, this method provides a four dimensional description of each

interaction. The four-dimensional data can be viewed using six

two-dimensional projections as shown in Figure 2 for the Arg–Asp

pair. The 4-D data were collected and binned for the 19 amino

acids (excluding Gly) resulting in 190 pairwise combinations. In

addition, we collected 18 interactions between side chains and

backbone atoms (Table S1). The 4-D data were collected from a

set of 6830 protein structures (sequence identity ,90%) [62]. In

the case of multiple conformations of the same amino acid, we

considered only the first conformation for data collection. We

found that less than 1.5% of analyzed residues in our dataset have

alternative conformations. This experimental dataset provided a

sufficiently large source of information required to construct a

database of the four-distances, binning the data with intervals of

0.5 Å.

Asymmetry of amino acid
The 4-D description of residue-residue interactions is a more

restricted form of the single distance potential extensively used.

This higher order description allowed us to challenge common

beliefs of the symmetric nature of some of the amino acids. For

example, the Arg nitrogen atoms NH1 and NH2 were usually

considered to be exchangeable with one another [55]. The

notation of atoms for Arg in X-ray structures of proteins is as

shown in Figure 1: in the guanidinium plane NH2 is trans to CD

[65]. In Figure 2 we present the distances between the Arg–Asp

atom pair as collected from the PDB. Comparing the two distance

peaks of NH1–OD1 (d11) and NH2–OD1 (d21) (Figure 2B) shows

a non-equal distribution of the two populations: d21 at 3 Å and

d11 at 5 Å is much more populated than d21 at 5 Å and d11 at

3 Å. This observation shows that the guanidinium group in the

Arg residue is not symmetric [55], which is a result of the notation

of Arg in the PDB: in this conformation NE can serve as a

hydrogen bond donor (compare Figure 2A to 2B). In the

conformation where d21 is 5 Å and d11 is 3 Å the CD atom

Figure 2. Six projections of the four distances connecting Arg and Asp. The four distances are: NH1–OD1 (d11), NH1–OD2 (d12), NH2–OD1
(d21), and NH2–OD2 (d22). Six projection are needed to plot the four dimensional data. Only cases with correct IUPAC atom name assignment
protocol were considered.
doi:10.1371/journal.pcbi.1000470.g002
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sterically interferes in forming the second hydrogen bond of an

incoming residue with NE. Figure 2E gives the interaction

distances for the atom pairs NH1–OD2 and NH2–OD2, showing

that OD1 and OD2 are symmetric while NH1 and NH2 are not.

It is interesting to note that it is rare to find OD1 and OD2 being

located at an equal distance from either NH1 or NH2 (Figure 2B,

2E and 2F). In fact, one distance is 3 Å while the other is 3.6 Å.

This means that at a given Asp–Arg interaction only one of the

OD atoms forms a hydrogen bond with the NH group of Arg,

while the second distance is beyond the hydrogen bond threshold

and may be of an electrostatic nature. To the contrary, the

distances of both NH1 and NH2 with either OD1 or OD2 peak at

3 Å (Figure 2C and 2D).

Another striking example of an amino acid, which is considered

as symmetric, is Val. Defining the atom notation as an optical

enantiomer with CB acting as a pseudo chiral center and the

hydrogen pointing away from the viewer, then going clockwise

from CA the two methyl groups are always CG1 and next CG2

[65]. In Figure 3A one can see that the shorter d21 distance

(CG2–CG1) of 4 Å is preferred over the d11 distance (CG1–CG1)

of 6 Å. Figure 3B (panels 1 to 4) depicts the possible orientations

where d11 and d21 are 4 Å or 6 Å. The observation that the B1,

B3 conformations are preferred over the B2, B4 conformations

require an explanation. Figures 3C and 3D suggest that CG1 is

generally closer to the backbone oxygen (negative partial charge)

while CG2 is closer to the backbone nitrogen (positive partial

charge). In the B1 conformation there are three short bonding

distances, two with opposite partial charges and one with a similar

charge. Conversely, in B2 there are two distances with a similar

partial charge, and one with an opposite partial charges. For the

same reason, B3 is preferred over B4. The definition we propose in

the 4 dimensional matrices exploits this asymmetry because the

two atoms are treated separately. The two examples brought here

demonstrate how defining interactions as a 4-D matrix provides

high-resolution structural insight.

Additional examples of the asymmetry of the same atom types

behaving differently in different contexts include His, Ile, Phe,

Glu, Leu and Pro (Figure 4, panels A–F). We have noticed

different distance distributions for the two nitrogen atoms of His.

The NE2–NE2 distance has a higher occupancy at 3.5 Å (which is

a good hydrogen bond distance) compared to ND1–ND1

(Figure 4A). For Ile, the CD1–CG2 distance is more occupied at

4 Å compared to the CG2–CG2 distance (Figure 4B). The origin

for this discrepancy might be the better availability of the CD1 and

NE1 atoms over CG and CD1 for the Ile and His residues

respectively, as being farther away from the backbone on the

residue side chain. In the Phe 4-D distribution, shorter d12

distance (CE1–CE2) of 4 Å is preferred over the d11 distance

(CE1–CE1) of 6 Å (Figure 4C). This example holds also for Tyr.

In the histogram of the Glu–Pro contacts it seems that OE1 is

preferred over OE2 bonding to the Pro CD atom. Phe and Glu

are similar residues in the sense of having a symmetrical side

chain, the atom names were defined by the second chi angle [65].

As can be seen in the inset of Figure 4C, the atom that makes the

Figure 3. Val asymmetry. Only cases with correct IUPAC atom name assignment protocol were considered. (A) The CG2–CG1 distance (d21) has a
higher occupancy at 4 Å than the CG1–CG1 distance (d11). (B) Val atom notation in the PDB. The CB atom is a prochiral atom, putting the CB
hydrogen at the back, and starting at clockwise direction from the CA atom the following atoms are always CG1 then CG2. (B) The V shape objects
represent the covalent bond between CG1 CG2 and CB in the Val side chain. The possible Val conformation with CG1–CG1 (d11) and CG2–CG1 (d21)
distances of either at 4 Å or at 6 Å (C,D). Two histograms depicting the distance between CG1 (C) and CG2 (D) from the backbone nitrogen and
oxygen. (C) CG1 atom is generally closer to the backbone oxygen. (D) CG2 atom is generally closer to backbone nitrogen.
doi:10.1371/journal.pcbi.1000470.g003
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smaller chi angle is assigned number 1 [65] (in the figure it is

CD1). The higher preference for interaction of Phe CE2 atom is a

result of the higher exposure of this atom to the solvent, and thus

to an incoming bond. Conversely, the less exposed atom of Glu,

namely OE1, is preferred over OE2, though we have no good

explanation for this phenomenon. In the case of Leu, the atom

notation is similar to Val. We have noticed that the CD1–CD1

distance is more occupied at 4 Å compared to CD2–CD2 distance

(Figure 4E). It is more difficult to explain this situation, since both

CD1 and CD2 are closer to the backbone oxygen than to the

backbone nitrogen (data not shown). The mean distance values for

the CD1, CD2 atoms to the backbone oxygen are 4.36 Å and

4.15 Å respectively, and to the backbone nitrogen 5.03 Å and

4.87 Å. Favoring the contact of CD1–CD1 might be a result of an

unfavorable close contact between the two backbone oxygens. The

last example we report is Pro, the atom notation of this residue is

trivial. We have noticed different distance disruptions for two Pro

carbon atoms CD and CB. In the distribution of Asn and Pro, the

OD1–CD distance is more occupied compared to the OD1–CB

distance at 3.5 Å (Figure 4F). The origin for this discrepancy might

be the proximity of CD to the backbone nitrogen. Similar results

were seen for Asp, Glu and Gln residues in contact with Pro.

High-resolution X-ray structures provide very tight 4-D
distributions

X-ray crystallography and NMR are the two main methods for

protein structure determination at high resolution; in both,

computational energy minimization is required at various stages

of structure calculation. Since our distance potential was

originated from high-resolution data, and the atom positions are

highly restricted due to the 4-D data description of each residue

pair, we argue that our new potential provides a realistic view of

side chain orientations that can be used to evaluate computational

minimization techniques. Figure 5 shows the NH1–OD1/NH2–

OD2 distances for the Arg–Asp pair, based on distances collected

from structures obtained from either high or low-resolution X-ray

data, or from NMR. The high-resolution X-ray data gave the

sharpest peaks, followed by the low-resolution data. Additionally

we collected high-resolution X-ray data where the diffractions

were collected at a temperature of 275–300 Kelvin. The 4-D data

collected from NMR structures did not show any clear peaks, and

resembled the distribution obtained from random data. It is

argued that the proteins in NMR solutions are more flexible since

the data is collected at room temperature. However, this should

not affect the contact geometries, moreover, it seem that high

Figure 4. Asymmetry in 4-D distribution of His, Ile, Phe, Glu, Leu, and Pro residues. Only cases with correct IUPAC atom name assignment
protocol were considered. (A) The NE2–NE2 distance of the His-His pair has a higher occupancy around 3.5 Å compared to the ND1–ND1 distance. (B)
The CD1–CG2 distance of the Ile-Ile pair has a higher occupancy around 4 Å compared to the CG2–CG2 distance. (C) The CE1–CE2 distance of the
Phe-Phe pair has a higher occupancy at around 4 Å compared to the CE1–CE1 distance. The CD atom that makes the smaller torsion angle is named
CD1 (see inset). (D) The OE1–CD distance between Glu and Pro has a higher occupancy at the 3–4 Å interval compared to the OE2–CD distance. (E)
The CD1–CD1 distance of Leu-Leu has a higher occupancy at around 4 Å compared to the CD2–CD2 distance. (F) The CD1–CD1 distance of the Pro-
Pro pair has a higher occupancy at around 4 Å compared to the CD2–CD2 distance.
doi:10.1371/journal.pcbi.1000470.g004
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resolution data collected at higher temperature do not change the

distributions significantly (compare Figure 5B and 5C). What

distinguishes high resolution X-ray data from low-resolution X-ray

data and more so from NMR is the extent of minimization

methods dictating the structure. This would suggest that the

current minimization methods do not produce the ‘‘real’’ inter-

residue contacts as provided by high-resolution X-ray structures.

In the case of high-resolution structures the atom positions can be

deduced more precisely from the electron density, which reduces

the need for inaccurate minimization protocols [5].

Generating a knowledge-based potential from the 4-D
data histograms

Our initial aim in acquiring the 4-D distributions was to

generate a knowledge-based potential. The standard KBP is built

using Equation 1 and 2. Equation 1 is the conditional probability

of a distance set in case where the amino acid sequence is known.

The probability is defined as the product of the data collected (the

probability of the four distances for a given amino acid pair) and

the probability of an amino acid pair in the protein. Since the

energy is estimated as the ratio of Preal and Prand (Equation 2) and

the real and random probabilities were generated from the same

data set, the probability of the amino acid pair term cancels out.

Equation 2 is an inverse Boltzmann relation [42], where DE is a

pseudo energy gap obtained from the log ratio of the real and

random distributions. As we do not attempt to predict experi-

mental results, we defined kBT as unity. To calculate Prand we used

Equation 1 on the set of randomized structures as described in

Methods. Our random model corresponds to the situation, in

which conformations of side chains are not dictated by forces

characteristic to real proteins. The random model would

correspond to the starting point in the conformational search, in

which residue side chain conformations are assigned arbitrarily.

Thus this model is designed to maximize the difference between

real interactions and the initial state of the system. According to

Equation 2, three possible relations are found between the real and

random distributions; in the case of a favorable interaction, Preal is

higher than Prand, for an unfavorable interaction the opposite is

observed. The third possibility is that both distributions are equal

(neutral conformation) with a pseudo energy score of zero. The

random distribution acts as a reference that distinguishes the

preferred conformational states in the PDB database.

p fdistg\AAð Þ~p fdistgjAAð Þ.p AAð Þ ð1Þ

DE~{kB T log
p(fdistg\AA)Real

p(fdistg\AA)Rand

� �
ð2Þ

A general phenomenon, which is not exclusive to the 4-D data,

stems from the normalization of both the real and random

distributions to one (or the same number of events are used for

both sets). As bond distances in the real distribution peak at short

distances (which reflect the bound state), while the random

distribution of inter-residue distances will increase monotonically

Figure 5. 4-D histograms of the Arg–Asp pair (d12 versus d21) from different data sources. (A) The four distances for the Arg–Asp residue
pair. (B) High-resolution X-ray data (,2 Å). (C) High-resolution X-ray data (,2 Å) collected at temperature between 275 to 300 Kelvin. (D) Low
resolution X-ray data (2.5–3.0 Å). (E) NMR data. (F) Same data set as in (A) though all rotamers were randomly shuffled.
doi:10.1371/journal.pcbi.1000470.g005
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(Figure 6A), the curves of the two distributions have to cross each

other at larger distances (as the integral of both curves equals to

one). This causes positive pseudo energy (i.e. unfavorable

conformation according to Equation 2) at larger distances, while

no real interaction is expected (namely zero energy [13]). We

observed the same unphysical pseudo energy gap values even when

generating a random model accounting for both rotamer

probabilities and atom clashes (data not shown). Because the

number of counted interactions is growing with the square of the

distance, even a small repulsive term at extended distances will have

a large effect on the total energy calculated. We devised two

solutions for this problem; the first was to raise the distance cutoff of

the collected data to 30 Å, resulting in a much-reduced negative

energy term (see Figure 6B versus 6A). This is better seen in

Figures 6C and 6D, where the log ratio of the real/random is

drawn, showing values much closer to zero for the raised cutoff.

Secondly, we defined a distance cutoff for plausible interactions at

5 Å (at least one of the four distances has to be ,5 Å for it to be

counted). This distance cutoff removes all residue pairs with no

direct interaction between them.

Bin occupancy
Binning data at intervals of 0.5 Å gives a total number of

194481 bins up to a residue-residue distance of 10 Å. However,

the number of ‘‘real’’ counts as extracted from the database was

only between 1836 and 108094 for the least (Cys–Glu) and most

frequent (Leu–Leu) amino acid pairs respectively, with a mean

value of 108094 counts for all 190 interactions (see Table S1 for

the entire dataset). Thus, most bins were actually empty, or were

occupied by a very small number of events. This is demonstrated

in Figure 7, where the amount of data is defined as the product of

bin count times the number of bins with that count. For example,

if N bins are occupied each by 5 events, the total number of events

in this group is 5 N. To determine the distribution of events in

different bins, the data was normalized by the total number of

measurements in the histogram. The plot in Figure 7 shows the

normalized data (y-axis) in bins with a particular number of

counts (x-axis) for real and random distributions. Comparing the

real and random bin occupancy distributions clearly shows that

the random is dominated by low bin occupancies, while high

counts are reserved for the real data. For low number of events

per bin, the real and random data overlap. For example, the

average count of events per bin for the Arg–Asp pair is 3.269,

with some bins having up to 431 counts, whereas in the random

data no bin has more than 19 counts. This suggests that the data

generated from the bins with low occupancy are more prone to

error (for example, if a bin of real data has 5 events, and the

random has 2, the two occupancies are within the error of one

another). The low number of average bin counts is a major issue

of the 4-D method.

Selecting preferred residue conformation
To evaluate whether the derived 4-D data can be used for

modeling, a simple simulation was performed (see Methods for

details). Figure 8 shows the 4-D histograms of an optimal side

chain placement for Arg and Asp according to Equation 2. It is

important to mention that the carboxyl group of Asp is always

placed close to the NH2 atom of Arg. The same geometry for this

contact is observed in high-resolution protein structures as was

discussed above. The ability to reproduce the geometry of side

chain/side chain contacts as observed in the PDB demonstrates

that constructed 4-D histograms might be a useful tool for accurate

protein structure modeling.

Discussion

Knowledge-based potentials have become very popular and

successful in recent years. For a KBP to be general, each term in it

should have the maximal information content, and the number of

terms should be minimized. Too many terms will make the energy

landscape too ragged and cause overcounting. For example, a

function that contains both a van der Waals term and an

environment term may overcount the London dispersion force.

We argue that the 4-D description introduced here has higher

information content than the standard 1D distance usually used in

Figure 6. Building a random model for the KBP. (A) Data collected
using a 5 Å cutoff (i.e. at least one distance ,5 Å) for real data (blue)
and random data (red). (B) Data collected using a 30 Å cutoff. (C) and
(D) Log ratio of real and random distribution for (A) and (B) respectively.
doi:10.1371/journal.pcbi.1000470.g006

Figure 7. Bin count distribution. Bin counts for the real and random
distributions of the Leu–Val pair. The y-axis is the normalized amount of
data. The amount of data is the product of the number of
measurements in a certain bin times the number of bins with the
same number of measurements in this histogram.
doi:10.1371/journal.pcbi.1000470.g007
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KBPs, therefore providing a better definition for the relations

(forces) between residues. The downside of a more exact, multi

dimensional description of a structure is the ruggedness of the

resulting energy surface, which cannot be exhaustively probed

using discrete rotamers. Moreover, to properly define all the

interactions requires an amount of data currently not available.

Therefore, implementing the four-distance description for sam-

pling requires reducing the potential ruggedness, which can be

achieved by smoothening the data (Potapov, V., Cohen, M. &

Schreiber, G.; unpublished data, 2009). However, for scoring, the

ruggedness is of lesser importance, thus the original histograms can

be used.

The high information content of amino acid interactions was

demonstrated by the observation that many such interactions are

asymmetric, a surprising fact by itself. The asymmetry involved

interactions of Arg, Glu, Val, Phe, His, Leu, Pro and Ile. To verify

that the asymmetry is not a result of inconsistent naming we

verified that the atom names were assigned according to the

IUPAC definitions [65]. For seven residues, in which branches are

identical, we found that substantial amount of atom name

assignments in the PDB do not follow the conventions; 24% of

the cases for Phe, 23% for Tyr, 18% for Glu, 15% for Asp, 8% for

Arg, 0.8% for Leu, and 0.01% for Val. We could not attribute this

to particular structural refinement software or the date of

deposition.

This kind of asymmetry was not detected previously, using 1D

data or physical forcefields. However, the asymmetry was also not

detected in KBP, which use information on bond lengths, bond

angles, and dihedral angles for pairs, triplets, and quandruplets of

bonded atoms. The reason for this may be the lower information

content of other KBPs. A recent forcefield developed by Ma et al.

[59] is actually a 3D potential where the geometry between the

volume blocks is defined by two angles and a distance between two

planes. This method also cannot detect the asymmetry of the

residue atoms since it is a type of united atom representation. For

example, NH1 and NH2 belong to the same volume block. The

reasoning behind the asymmetry given here is mostly intuitive. We

do not argue that there is a chemical difference between different

residue atoms. Though we argue that a KBP that is based on the

PDB must maximize the information content extracted from it,

thus, this asymmetry must be taken into account. The advantage

of KBP over physical based potentials is the fact that unknown

factors can emerge from the constructed potentials, with no actual

known physical explanation. One example for such is the

hydrogen bond geometry reported by Kortemme et al. [66]. The

physical model predicted the angle between the hydrogen acceptor

and the atom covalently bound to the acceptor to be 180u, while in

the PDB most of these angles are closer to 120u. A KBP taking

advantage of the full extent of information in the PDB database

may be better in modeling protein structures. More exact

calculations in the future will be needed to produce a more

satisfying explanation for the observed asymmetries. However, the

advantage of KBPs over physical forcefields is that one can use

observations to model protein structures, even if they are not fully

understood.

Since most side chains contain more than two atoms, we had to

decide which of the atoms to use to generate the 4-D data. For

example the structurally simple Val-Val pair has three different

atom pairs CB–CG1, CB–CG2 and CG1–CG2. Thus, 6 different

4 atoms distances could be generated. More generally, the 202

different atom pairs on the 19 amino acids (excluding Gly) can be

paired using 20503 different 4-atom distributions. To choose the

190 representative pairs used for the 4-D database (one per residue

pair) we considered three different approaches; first, manually

choosing the pair that best represents the residue (e.g. CG1–CG2

for Val or OD1–ND2 of Asn). The second approach was to

maximize the Kullback–Leibler divergence between the real and

the corresponding random distributions. Since the Kullback–

Leibler divergence measures the difference between two proba-

bilities the pair with the highest difference may have the highest

information content. The third approach was to search for the pair

with the highest number of accepted distance measurements (at

least one distance less than 5 Å). The problem of limited data is

clearly demonstrated in Figure 6, that shows that most bins are

empty, or contain only low bin counts that are statistically within

the numbers found when using random side chain rotamers. This

is a main problem with a KBP, as the division between two small

numbers (random and real bin occupancy) still generates a value

different from 1, and thus assigns an energy term to that bin. To

minimize this problem, we currently use the most frequent atom

pairs as described above. Using this logic to choose atom pairs also

seems to produce the best results when using the 4-D matrix for

side chain modeling (Potapov, V., Cohen, M. & Schreiber, G.;

unpublished data, 2009). This may be the result of the limited

amount of data in the PDB, and thus may change once many

more structures will be available.

Supporting Information

Table S1 Supporting Table

Found at: doi:10.1371/journal.pcbi.1000470.s001 (0.38 MB

DOC)
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Figure 8. Optimal arrangement of Arg and Asp side chains
simulated from the derived 4-D histograms. In the preferred
orientation the carboxyl group of Asp is closer to NH2 of Arg than to
NH1. To generate the depicted orientation, two residues in arbitrary
conformation were placed randomly relative to each other, multiple
times. The top scoring orientation, according to Equation 2, was
identified and drawn in the figure. This simulation was repeated several
times resulting in similar asymmetric placement of Arg and Asp side
chains.
doi:10.1371/journal.pcbi.1000470.g008
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